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Resumé

Au cours des derniéres années les objets connectés, ou Internet des objets (IoT),
sont de plus en plus utilisés dans de nombreux domaines. Certains de ces objets
principalement des capteurs et des actionneurs forment des réseaux a faible con-
sommation d’énergie et & pertes (LLN), qui se caractérisent par les ressources
limitées et les connexions instables. Le groupe RoLL (Routing over Low-power
and Lossy networks) a développé le protocole RPL pour permettre aux objets
connectés de communiquer entre eux, mais il est vulnérable a diverses attaques
de sécurité. Dans ce projet, nous explorons le fonctionnement du protocole RPL
et analysons la sécurité des objects connectés dans le contexte de ce protocole.
Nous examinon les solutions existantes ,proposons et évaluons notre propre ap-
proche novatrice pour contrer les attaques qui ciblent ce protocole.

Mots clés : IoT, LLN, RPL, Sécurité ,Attaque, Apprentissage ma-
chine ,Confiance.
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Abstract

In recent years, connected devices, or the Internet of Things (IoT), have been
increasingly used in many fields. Some of these objects mainly sensors and
actuators form low-power and lossy networks (LLN), which are characterized
by limited resources and unstable connections. The RoLL (Routing Over Low-
power and Lossy networks) group has developed the RPL protocol to enable
connected objects to communicate with each other, but it is vulnerable to var-
ious security attacks. In this project report, we explore the operation of the
RPL protocol and analyzes the security of connected objects in the context of
this protocol. We assess existing solutions , propose and evaluate our own novel
approach to mitigate security attacks that target this protocol.

Keywords : IoT, LLN, RPL, Security , Attack, Machine Learning
,Trust.
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Introduction

In recent years, the deployment of connected objects has surged, leading to the
exponential growth of the Internet of Things (IoT) and transforming the way
people interact with technology. However, this proliferation of IoT devices also
introduces security vulnerabilities due to the transmission and storage of sensi-
tive data, making them attractive targets for attackers. As a result, ensuring
the integrity and confidentiality of IoT data has become a critical concern, de-
manding the development of robust protocols and mechanisms.

This report explores the operation of the Routing Protocol for Low-Power
and Lossy Networks (RPL) in the context of IoT security. RPL is a routing
protocol specifically designed for low-power and lossy networks (LLNs), char-
acterized by limited resources and unstable connections. The aim is to analyze
the security challenges associated with RPL, particularly focusing on secure au-
thentication and key management for mitigating internal attacks and enhancing
the overall security of the IoT.

The organization of this work is as follows: Chapter 1 provides an introduc-
tion to the IoT and its security concerns, emphasizing the need for protocols
and mechanisms to protect sensitive data.lt also offers an overview of the RPL
protocol, highlighting its role in routing data within LLNs and its significance
in improving network reliability and efficiency. Chapter 2 examines the secu-
rity implications of RPL, analyzing existing challenges and vulnerabilities. It
explores various security mechanisms that can be employed to enhance the pro-
tocol’s robustness. Chapter 3 proposes a novel approach to securing RPL using
a trust-based model, outlining how trust can be leveraged to strengthen the
security of RPL in IoT environments.Chapter 4, titled ”Evaluating our Trust-
Based Solution,” introduces outlines its evaluation process. Finally, we conclude
the report by summarizing the key findings, discussing their implications, and
providing recommendations for further research and development in the field of
IoT security.

By investigating RPL’s operation, analyzing its security aspects, and propos-
ing trust-based solutions, this study aims to contribute to the advancement of
secure IoT deployments in LLNs.



Chapter 1

RPL and its operation

1.1 Introduction

The Internet-of-Things (IoT) which consists of interconnected objects is
gaining importance among information and communication technologies. In
IoT, objects are interacting with each other in order to reach common goals in
many application domains including healthcare, energy management, military,
agriculture, supply chain and smart cities, transportation and logistics. Some of
these objects are very constrained and form Low-power and Lossy Networks
(LLN) which are networks that are characterized by low energy consumption in
order to ensure these objects have a long life. With these constraints (scarcity
of resources and unreliable links) in mind, the IETF RoLL working group has
proposed a new protocol called RPL (Routing Protocol for Low power and
Lossy Networks) based on IPv6 and specifically designed for Internet of Things
networks.

1.2 Routing Protocol for Low Power and Lossy
Networks

The RPL protocol is a proactive, distance-vector routing protocol based on
IPv6. In RPL, devices are interconnected in a tree topology using Directed
Acyclic Graphs (DAGs). A DAG is a graph structure in which the edges are
directed and the nodes do not form any loops. RPL uses a specific type of DAG
called a Destination-Oriented Directed Acyclic Graph (DODAG) to form the
tree topology [17]. The DODAG is rooted at a special node called the DODAG
root or sink, which is typically the device with the lowest rank , more resources
and fixed location, which acts as a border router or gateway in the network.

RPL differentiates upward and downward traffic based on message direction.
In RPL, downward signifies communication from the root to the nodes, while
upward indicates information flow from the nodes to the root.

Each RPL instance (which is a set of one or more DODAGs that share
a RPLInstancelD) is associated to an objective function which is responsible
for calculating a rank that enables selecting the best parent or path to reach
the destination, depending on a set of metrics and/or constraints such as the
shortest path or the quality of the links.
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Figure 1.1: RPL Instances [30]

Minimum Rank with Hysteresis Objective Function (MRHOF') [12] and Ob-
jective Function Zero (OF0) [31] are the two standardized objective functions
in RPL. The OF has as the main function to select and specify the best par-
ent or the optimal path to reach the destination. To ensure path diversity, the
rank of each node should increase in a downward direction from the root to the
candidate nodes.

1.2.1 Objective Function Zero

OFO0 is the default objective function used in RPL that considers hop count
as a routing metric to determine the best parents from among the candidate
neighbors. When constructing the DODAG, nodes should select the shortest
path in terms of hop count to the DODAG root and set their rank to be close
to the root. This ensures that the devices with the shortest paths to the root
become the preferred parents. [31]

1.2.2 Minimum Rank with Hysteresis Objective Function

OFO0 uses a static metric to calculate the node’s rank and determine the best
parent based on administrative cost, which may select a parent with poor con-
nectivity but fewer hops to the root. To address this issue, the IETF proposed
MRHOF, which uses a dynamic link metric (ETX) to achieve topology stability.
The ETX metric represents the maximum number of retransmissions required
for a packet to be received successfully at its destination. A lower ETX value



indicates a better path. MRHOF selects the lowest-cost path while preventing
churn overflow in the network. It does this through two mechanisms: choosing
the path with the lowest rank and using hysteresis to ensure that a preferred
parent is only selected if its path cost is sufficiently lower than the current path
according to a determined threshold.

1.3 Metrics

Two types of routing metrics have been defined by the RPL protocol for calcu-
lating paths: i. node metrics that considers the attributes relative to a node;
ii. and the link metrics which takes into account the attributes of links.

1. Node metrics:

()

(b)
()

The number of hops which is equivalent to the number of nodes
crossed to reach the root. The lower the number of hops, the closer
the node is to the root;

States or attributes that provide information about the character-
istics of the node such as CPU usage, memory consumed;

The energy which represents the energy source of the node (battery,
mains, etc.)

2. Link metrics:

(a)

Latency which expresses the duration of the transmission of a packet
from the sender to the receiver;

Link color which can be a representation of different types of links
by abstract values. It is used to avoid or attract specific links for
specific types of traffic.

Throughput, which represents the amount of data passing through
a link in a unit of time;

Link reliability which is an abstract representation to express the
quality of the link, either the ETX (expected number of retransmis-
sions). ETX is the number of transmissions that a node expects to
perform to a destination in order to successfully deliver a pack. The
more packets there are, the more the value of the ETX increases and
vice versa the more the successful delivery rate increases, the more
the value of EXT decreases.

1.4 Traffic patterns

There are three traffic patterns in which RPL packets can be forwarded as shown
in the diagram below :



(a) multipoint-to-point traffic (MP2P) if the communication is from
leaves to the root via upward routes;

(b) point-to-multipoint traffic (P2MP) if the communication is from
the root to leaves using downward routes; and

(¢) point-to-point traffic (P2P) if the communication is between two
nodes illustrated by black arrows using both upward and downward

routes [18].
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~——p MP2P communication . Intermediate nodes (loT device)
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Figure 1.2: Traffic patterns [13]

1.5 The construction of the DODAG

The graph (DODAG) is built gradually from a root node using an objective
function (OF). The RPL protocol uses a specific technique to create routing
tables (tree or DODAG), and this technique uses four types of messages which
are used for the discovery of neighbors, the construction of routes where the
packets will circulate and the integration of a new node into the network.

1.5.1 Control messages in RPL

The four types of control messages that are broadcasted in a network using the
RPL protocol are:

(a) DIO (DODAG Information Object): the DIO message is peri-
odically broadcasted in multicast initially by the sink node (root) in
order to create the DODAG.

(b) DAO (DODAG Object Announcement): theses messages are
used to build downward routes. After DIO messages have been broad-
casted, DAO messages are sent from the leaf nodes to the root, thus



confirming the creation of the DODAG with the routes chosen ac-
cording to the parameters of the specified metric.

(c) DAO-ACK (Destination Advertisement Object Acknowledge-
ment): the DAO message is sent by parent nodes to confirm receipt
of a DAO message.

(d) DIS (Destination Advertisement Object): the DIS message is
broadcast by a node wanting to join the network. The node that is
close to the node wanting to join the DODAG will send it a DIO
message, in this way it can send to in turn a DAO message to build
a down route ( in the storing mode ).

1.5.2  Building procedure of the DODAG

With the RPL protocol, the DODAG is built according to an objective func-
tion, the metric and the rank (the cost of the link between two network nodes).
DODAG construction starts from the root by sending DIO messages to its neigh-
bors. The DIO contains the metric/constraint used by the objective function
and the rules to join a DODAG (e.g., DIO sending interval). Nodes will receive
and process DIO messages potentially from multiple nodes and make a decision
to join the graph or not according to the objective function and local policies
(if existing). Once a node joins a graph, it automatically has a route towards
the root through its parent node. The node then computes its rank within the
graph, which indicates its position within the DODAG. If configured to act as
a router node, it starts advertising the graph information with the new infor-
mation to its own neighboring nodes. If the node is a leaf node, it simply joins
the graph and does not send any DIO message. The neighboring nodes will
repeat this process and perform parent selection, route addition and graph in-
formation advertisement using DIO messages. At the end of this process, only
upward routes (i.e., to the root) are built. To establish downward routes, a
node must send a DAO to its parent containing prefix information of the nodes
in its sub-DODAG, when the DAO message arrives to the root, the prefixes
are aggregated and the downward routes are then built and made available to
the parents, and so on. RPL nodes can also send DIS messages to solicit DIO
messages from neighbors. RPL uses the trickle algorithm to reduce the DIO
messages rate. For example, if the number of DIO messages sent within an
interval is not consistent with the network state, RPL resets the trickle timer
to a minimum value. Otherwise, if the number of DIO messages is bigger than
a certain threshold, the trickle interval (DIO message rate sending) is doubled
up to a maximum value [23].
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1.6 Trickle timer

RPL uses the trickle algorithm to reduce the DIO messages rate. For example,
if the number of DIO messages sent within an interval is not consistent with
the network state, RPL resets the trickle timer to a minimum value. Otherwise,
if the number of DIO messages is bigger than a certain threshold, the trickle
interval (DIO message rate sending) is doubled up to a maximum value [9].
The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power
and lossy networks) to exchange information in a highly robust, energy efficient,
simple, and scalable manner.

1.6.1 Trickle algorithm description

1.

Initialization of the interval size I [Imin, Imax] — that is, greater than or
equal to Imin and less than or equal to Imax.

Initialization of variable ¢ (counter) to ¢ to 0 and sets t to a random point
in the interval, taken from the range [I/2, I), that is, values greater than
or equal to I/2 and less than I. The interval ends at I.

Whenever Trickle hears a transmission that is ”consistent”, it increments
the counter c.

At time t, Trickle transmits if and only if the counter c is less than the
redundancy constant k.

When the interval I expires, Trickle doubles the interval length. If this new
interval length would be longer than the time specified by Imax, Trickle
sets the interval length I to be the time specified by Imax.

If Trickle hears a transmission that is ”inconsistent” and I is greater than
Imin, it resets the Trickle timer. To reset the timer, Trickle sets I to Imin
and starts a new interval as in step 2. If I is equal to Imin when Trickle
hears an ”inconsistent” transmission, Trickle does nothing. Trickle can
also reset its timer in response to external ”events”.



1.7 Downward routes and mode of Operation

The Routing Protocol for Low-Power and Lossy Networks (RPL) supports two
modes of operation: the storing mode and the non-storing mode. The
primary difference between the two modes lies in how routing information is
stored and maintained.

1. In the storing mode, intermediate nodes in the network store routing
information for use in forwarding packets. Each node in the DODAG
maintains a routing table containing information about its parent and
children nodes in the DODAG. In this mode, a DAO message is sent in
unicast by the child to the selected parent, which is able to store DAO
messages received by its children before sending the new DAO message
with aggregate reachability information to its parent. The storing mode
can enable or disable multicast mode [11]. This mode is useful in networks
with higher traffic volumes, as it reduces the amount of control messages
needed to maintain the DODAG structure. However, this mode requires
more memory and processing power from intermediate nodes, which can
be a problem in resource-constrained networks.

2. In the non-storing mode, intermediate nodes do not maintain routing
information. Instead, the routing information is stored only at the root
node and the destination nodes in the network. Each packet carries infor-
mation about its destination node, and intermediate nodes forward packets
based on this information. In this mode, the DAO message is sent in uni-
cast to the DODAG root, thus, intermediate parents do not store DAO
messages, but only insert their own addresses to the reverse route stack in
the received DAO message, then forwards it to its parent [11]. This mode
is useful in networks with lower traffic volumes, as it reduces the memory
and processing requirements for intermediate nodes. However, this mode
may require more control messages to maintain the DODAG structure,
which can be a problem in networks with a high density of nodes.

1.8 Conclusion

In this chapter we first introduced LLN Networks and their dedicated routing
protocol RPL. Through our analysis, we have demonstrated how RPL enables
efficient routing in LLN, making it a popular choice for a wide range of IoT
applications. In the next chapter delve deeper into the attacks that threatens
RPL and some proposed approach that tackle some of these attacks.



Chapter 2

RPL security analysis and trust-
based solutions

2.1 Introduction

The characteristics of LLN networks such as resource constraints, lack of in-
frastructure, limited physical security, dynamic topology and unreliable links
makes them vulnerable. The RPL protocol is exposed to a large variety of
security attacks.

In this chapter, we will analyze attacks against the RPL protocol paying
attention to the element of the RPL network which is impacted and the goals
of the attacks.

The security attacks represented in Fig 1. are classified into three categories
according to Anthéa Mayzaud [18]. The first category corresponds to attacks
targeting the exhaustion of network/node resources (processing, memory and
energy) which shorten the lifetime of the devices and hence the lifetime of the
RPL network. The second category corresponds to attacks against the network
traffic which includes eavesdropping attacks or misappropriation attacks. The
third category is comprised of attacks targeting the RPL network topology.
They disturb the normal operation of the network.



Figure 2.1: Classification of attacks [17]

2.2 Analysis of attacks
Attacks against Resources

The objective of attacks against resources is to drain the energy, memory, or
processing power of nodes by compelling them to perform needless tasks, re-
sulting in a depletion of resources. This causes congestion on available links
with irrelevant traffic and can impact the network’s availability, reducing the
network’s lifespan. There are two subtypes of attacks against resources, which
are direct and indirect attacks.

2.2.1 Direct attacks

Direct attacks involve a malicious node deliberately causing an overload in order
to weaken the network, and the attacker is solely responsible for the depletion
of resources. This can be accomplished through flooding attacks or overloading
attacks, both of which are carried out by the attacker [18].



2.2.1.1 Routing Table Overflow

The RPL protocol operates proactively, with RPL router nodes constructing
and sustaining routing tables when the storing mode is enabled for those nodes.
However, it is feasible to launch direct attacks on resources by overwhelming
the RPL routing tables. The approach behind routing table overload involves
broadcasting counterfeit routes through DAO messages, which flood the routing
table of the intended node. As a result, the creation of new legitimate routes
is hindered, adversely affecting network operations, and potentially leading to
a memory overflow.

2.2.1.2 Flooding Attacks

A flooding attack involves the creation of an enormous amount of network traffic
that causes nodes and links to become unavailable. These types of attacks can
be launched by either internal or external attackers. An attacker may choose
to send DIS messages to its nearby nodes, which will force them to reset their
trickle timer. Alternatively, the attacker may send DIS messages to a specific
node, which will prompt the node to respond with DIO messages. In either
case, this attack results in network congestion and overloads the RPL nodes,
causing saturation [17].

2.2.2 Indirect attacks

In the case of indirect attacks, the attacker will make other nodes generate
a large amount of traffic. For instance, such an attack can be performed by
building loops in the RPL network so that other nodes produce traffic overhead.

2.2.2.1 Increased Rank Attack

The tactic known as the ”increased rank attack” involves intentionally raising
the rank value of a RPL node to create loops in the network. In a RPL network,
each node is assigned a rank value, indicating its position in the graph structure
relative to the root node. The node’s rank value always increases downward,
maintaining the network’s acyclic structure. When a node determines its rank
value, it must be greater than the rank values of its parent nodes. To change
its rank value, a node must first update its list of parents by removing nodes
with a higher rank than its new value. Once a node has established its parent
set in the DODAG (Destination-Oriented Directed Acyclic Graph), it selects
a preferred parent from the list to optimize routing costs when transmitting
packets to the root node. A malicious node advertises a higher rank value than
it actually has, and loops are formed when the node’s new preferred parent
was in its previous sub-DODAG, but provided that the attacker refrains from
utilizing loop avoidance mechanisms.

10



2.2.2.2 DAG Inconsistency

A DODAG inconsistency attack involves a malicious node manipulating the
RPL IPv6 header options that monitor DODAG inconsistencies. The goal is
to force the target to discard packets, causing denial-of-service and increasing
control overhead. This can have a significant impact on the limited energy
reserves of constrained devices. A malicious node can use this type of attack
to modify all the packets it forwards so that the next-hop node always drops
them, which creates a black-hole [19].

2.2.2.3 Version Number Modification

Within RPL, the version number parameter serves as an indicator for global
repair operations, and only the root of the DODAG can modify it to recon-
struct the network topology. If a malicious node alters the version number, it
forces all nodes to begin exchanging control messages. The attacker can exploit
this to deplete the limited resources of the nodes and significantly degrade the
network’s performance [6].

Attacks on Traffic

This second category concerns the attacks targeting the RPL network traffic. It
mainly includes eavesdropping attacks on the one hand, and misappropriation
attacks on the other hand.

2.2.3 Eavesdropping

The pervasive nature of RPL networks may facilitate the deployment of mali-
cious nodes performing eavesdropping activities such as sniffing and analyzing
the traffic of the network.

2.2.3.1 Sniffing

A malicious node listens to the network traffic in order to gain information
about the local network topology. The information obtained from the sniffed
packets may include partial topology, routing information and data content. In
RPL networks, if an attacker sniffs control messages, it can access information
regarding the DODAG configuration such as DODAG ID, version number, ranks
of the nodes located in the neighborhood. By sniffing data packets, the attacks
can not only discover packet content but also have a local view of the topology
in the eavesdropped area by looking at source/destination addresses [18].

2.2.3.2 Traffic Analysis

Traffic Analysis provides an indirect means of breaching confidentiality and
gaining access to routing information. The objective is, like sniffing attacks,
to gather information about the RPL network such as a partial view of the

11



topology by identifying parent/children relationships. This information allows
an attacker to determine traffic flow, node positions, etc. in the network which
is used to mount other attacks.

2.2.4 Misappropriation

In misappropriation attacks, the identity of a legitimate node or its performance
are overclaimed.

2.2.4.1 Decreased Rank Attack

In case of Decreased Rank Attack, the malicious node falsifies its DIO mes-
sage by decreasing its rank value and broadcasts the false message. It hence,
over claims its proximity to the sink node. As a result neighboring nodes se-
lects the malicious node as their preferred parent, which may increase their
Expected Transmission Count. Thus, the malicious node successfully instigates
a Decreased Rank Attack [8].

2.2.4.2 Identity Attack

Information gained through sniffed packets can be used by the malicious node to
instigate an Identity attack. The malicious node then pretends to be a legitimate
node of the network. If the malicious node can clone the root node, it gains
control over the entire network topology thus compromising traffic.

2.2.4.3 Sybil attack

In Sybil attack, the malicious node multicasts an excessive number of DODAG
Information Solicitation (DIS) messages with different fictitious identities to
cause the legitimate nodes to restart the Trickle algorithm frequently and broad-
cast a large number of DODAG Information Object (DIO) messages. In RPL,
DIS and DIO are control messages necessary to build the routing topology. As
a result, immoderate receiving and broadcasting control messages drain the lim-
ited energy resource of legitimate nodes, and finally cause the legitimate nodes
to be unable to communicate and suffer from denial of service [28].

Attacks on Topology
These are attacks that damages the optimal network topology by breaking pro-

tocol operations. We distinguish two main categories among these attacks:
sub-optimization and isolation.

2.2.5 Sub-optimization

In sub-optimization attacks, the performance of the network may be poor be-
cause of the non convergence to optimal paths.
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2.2.5.1 Routing Table Falsification

In a routing protocol, it is possible to forge or modify routing information to
advertise falsified routes to other nodes. This attack can be performed in the
RPL network by modifying or forging DAO control messages in order to build
fake downward routes. This can only be done when the storing mode is enabled.
For instance, a malicious node advertises routes toward nodes that are not in
its sub-DODAG. Targeted nodes have then wrong routes in their routing table
causing network sub-optimization. As a result, the path can be longer inducing
delay, packet drops or network congestion.

2.2.5.2 Sinkhole

A sinkhole is a compromised node which attempts to capture traffic with the
intent to drop messages, thus degrading the end-to-end delivery performance,
that is, reducing the number of messages successfully delivered to their des-
tination. The mechanism by which the sinkhole captures traffic occurs when
a compromised node performs two malicious acts: First, it attracts legitimate
traffic by advertising a favorable route, e.g. through manipulation of the rank
field in a Destination Information Object (DIO) message. Second, the sinkhole
drops any legitimate data traffic routing through it, degrading the performance
of the network [33].

2.2.5.3 Wormbhole

Wormbhole is an attack in which a malicious actor establishes and controls an
out-of-band channel between two distant nodes of the network. Due to its
convenience, RPL is induced to use such a channel to forward the traffic. As a
result, the malicious actor can control a potentially large amount of traffic and
can eavesdrop or discard it. [25].

2.2.5.4 Routing Information Replay

In RPL, the replay attack is mainly performed by replaying control messages
rather than data messages. A RPL node can record valid control messages
from other nodes and forwards them later in the network. In case of dynamic
networks, this attack is quite damaging because the topology and the routing
paths are often changed. Replay attacks cause nodes to update their routing
tables with outdated data resulting in a false topology and degraded routing
performance [17].

2.2.5.5 Worst Parent

This ”Rank attack” consists in choosing systematically the worst preferred par-
ent according to the objective function. The outcome is that the resulting path
is not optimized inducing poor performance.
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2.2.6 Isolation

In case of isolation attacks, the nodes in the network may become isolated
and there is a possibility that the nodes are unable to communicate with their
parents or with the root.

2.2.6.1 Blackhole

Blackhole attacks perform malicious activities like causing high packet drops and
high route and control packet overhead, which depletes the limited resources of
the nodes. When malicious nodes propagate blackhole attacks, network latency
increases and the ranks of the nodes are altered, which causes a disruption to
the RPL network topology and to its stability. Additionally, the rank alteration
causes the nodes to recompute their ranks. The rank alteration triggers a local
repair —a self-healing mechanism that RPL uses to eliminate local routing loops.
However, with the increase in blackhole attacks, the local repair eventually
becomes inefficient prompting a global repair by the DODAG root. A continuous
initiation of these repair messages causes inefficiencies and disruption to the RPL
network [2].

2.2.6.2 DAO Inconsistency

RPL uses some flags which are carried out in IPv6 hop-by-hop option to man-
age important topological mechanisms. Down ‘O’ flag represents the expected
direction of packet, Rank-Error ‘R’ flag indicates rank error in topology, and
Forwarding-Error ‘F’ flag represents that the node is not capable of forwarding
packet to the set destination. DAO inconsistency is reported by a node when
its child node is unable to forward the data to a specified destination, due to
unavailability of a route that is learned from fake DAO message (DAO with
fake routing information) during topology creation. The attacker exploits this
mechanism to perform an attack by setting ‘F’ flag to 1 in the packets and
sending it back to its parent. This forces the parent node to discard legitimate
available downward routes. DAO inconsistency attack leads to an increase in
end-to-end delay, unoptimized topology, and isolation of nodes [32].

2.3 Trust-based solutions

In the existing literature, researchers have proposed various methods to ad-
dress the security of IoT routing, such as intrusion detection systems, machine
learning, and trust-based techniques. Traditional cryptographic methods and
complex algorithms that require additional hardware are not feasible for de-
fense against routing attacks due to the energy and processing constraints of
IoT devices. Trust-based solutions have emerged as a viable option for securing
RPL-based IoT networks, as they offer easy implementation and integration.
Trust a qualitative or quantitative property of a trustee, evaluated by a trustor
as a measurable belief, in a subjective or objective manner, for a given task, in
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a specific context, for a specific time period [16]. In a trust relationship, the
trustor must have confidence in the trustee regarding belief benevolence, and
honesty. This notion of trust is being used in various domains, including so-
ciology and computer science, particularly, communications, networks, and the
IoT [21].

In the domain of computer science , the integrity, behavior, and reliability of
a sensor node are termed as trust in sensor networks. In the network and com-
munications security, trust is a relation between participating entities. Trust re-
lationship relies on past experiences and current circumstances of entities in the
network and determines the efficiency, reconfigurability,and scalability. Certain
metrics are used for a node’s cumulative trust value estimation, which reflects
its legitimacy in the network. The node’s indirect or direct neighbours use this
trust value to engage this node in network topology and route creation. Trust
evolves over time with the changing trust metrics.

2.3.1 Existing trust-based solutions

IoT security has been worked upon continuously with the advent of smart de-
vices. Numerous security solutions and mechanisms, including machine learning-
based/deep learning-based [9], Intrusion Detection Systems, cryptographic ap-
proaches and trust-based are proposed for IoT routing and network security.
For addressing RPL attacks, existing mitigation techniques are typically based
on either combining procedures in RPL or modifications in current RPL, for
example, revising Objective Function (OF).

In the existing research works, a number of trust models have been pro-
posed for secure routing in IoT. They lack some features, such as consideration
of ToT node mobility, heterogeneity in IoT environments, adaptability to IoT
networks and routing, and consideration of RPL specific attacks. Furthermore,
trust dynamics and network performance are not taken into account in some of
the presented solutions. However, some of the papers focus solely on network
performance and routing behavior, neglecting to address routing attacks and se-
curity concerns. Moreover, critical security attacks, particularly routing attacks
in RPL, are not evaluated in some trust-based network security solutions.

2.3.1.1 Trust-based Defence Scheme for Mitigating Blackhole and
Selective Forwarding Attacks

In their work [1], they proposed a Trust-based secure RPL routing protocol
against Blackhole attacks. They later improved this work to address Selec-
tive Forwarding attacks [2]. In both studies, simulation results proved their
secure Trust-based system for RPL protocol to be a promising solution to pro-
tect RPL from routing attacks. They embedded their Trust-based system in
RPL protocol, deployed it and tested their secure protocol against the standard
RPL implementation. Based on the test experiments, they provided a proof-
of-concept of the validity of their claim that their Trust-based RPL protocol
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provides a comprehensive defence (simulation and testbed) against Blackhole
and Selective Forwarding attacks [3].

2.3.1.2 Trust aware security mechanism to detect sinkhole attack in
RPL-based IoT environment using random forest - RFTRUST

The proposed RFTrust model provides a trust-based lightweight solution for
ensuring security in the IoT network. It is primarily designed to address the
sinkhole attack in Routing Protocol for Low power and Lossy networks (RPL)
based IoT environments. It enhances the trusted routing in the IoT environment
by finding and removing sinkhole nodes in the network. The proposed model
uses Random Forest (RF) and Subjective Logic (SL) to improve the network
performance by identifying sinkhole attack using trust metrics such as deliv-
ery ratio, delay, energy consumption, and honesty. The mathematical analysis
shows the applicability of the proposed model. The RFTrust model is imple-
mented using Cooja, the Contiki network simulator.The merits of the proposed
work are highlighted by comparing performance with the existing similar proto-
cols in terms of delivery ratio, throughput, average delay, energy consumption,
false-positive rate, false-negative rate, and detection accuracy [27].

2.3.1.3 PCC-RPL: An efficient trust-based security extension for
RPL

The proposed method, which is called PCC-RPL (Parental Change Control
RPL), prevents unsolicited parent changes by utilizing the trust concept. In
PCC-RPL, all parents monitor their children behavior continuously. When a
malicious activity is detected by the parent, it decreases the child’s trust level
and informs the root by sending a suspicion message. Their simulation results
indicate that PCC-RPL can detect almost all common RPL attacks with an
acceptable accuracy compared to a well-known method. Low control overhead,
low energy consumption, short attack detection delay, and high precision are
the main features of the proposed scheme [26]. The low computational over-
head and low power consumption features of PCC-RPL combined with high
scalability make it an appropriate and viable deployment choice in IoT envi-
ronments. PCC-RPL has high accuracy ,low detection latency in detecting
malicious behavior and able to detect worst parent attack, rank promotion and
reduction attacks, and wormhole attack.

2.3.1.4 Novel Authentication and Secure Trust based RPL Routing
in Mobile sink supported Internet of Things

At first the Novel Authentication and Secure Trust-based RPL Routing in Mo-
bile sink-supported Internet of Things (SecRPL-MS) performs a registration
process where all IoT nodes in the network register themselves in the security
entity. In their work, the frequent death of IoT nodes is alleviated through
deploying mobile sink in the network. If any grid member (GM) node wants

16



to transmit their data to the grid head (GH) node, then it must undergo au-
thentication process. Secure routing is adopted in RPL by utilising the sail
fish optimisation algorithm. Each GM node encrypts its sensed data using the
prince algorithm before transmitting it to the GH node. The moving points
are selected for the mobile sink using the Quantum Inspired Neural Network
(QINN) algorithm. This proposed SecRPL-MS performance is evaluated us-
ing the Network Simulator 3 (NS3) in terms of the Packet Delivery Ratio (%),
Delay (ms), Energy Consumption (mJ), Key Generation Time (ms) and Mali-
cious Node Detection Accuracy. The proposed SecRPL-Ms outperforms 23% of
malicious node detection accuracy when compared to existing systems, which
represent the proposed SecRPL-MS system providing high security by mitigat-
ing the following attacks such as rank attack, Sybil attack, blackhole attack and
man in the middle attack [29].

2.3.1.5 SMTrust: Trust-Based Model for Secure Routing against
RPL Attacks in Internet of Things

The proposed model considers the mobility metrics for trust computation. It’s
a trust-based model proposed to improve security in RPL-based IoT , against
Rank and Blackhole. SMTrust is evaluated considering static nodes, mobile
sender nodes together with a mobile sink node. SMTrust routing algorithms
are embedded into RPL, and the protocol is assessed in terms of network per-
formance, including topology stability, throughput, packet loss rate, and power
consumption. The proposed protocol trust engine utilizes essential trust metrics
to compute the trustworthiness of the nodes. Hence, it attempts to mitigate
the effect of routing attacks by detecting and isolating the misbehaving nodes
based on their trust rating. The performance of the proposed SMTrust model
is evaluated via simulation using ContikiOS/COOJA simulator [22].

2.3.1.6 Trust based mechanism for Securing IoT Routing Protocol
RPL against Wormhole and Grayhole Attacks

This proposed method seeks to address sub-optimisation attack called Wormhole
and isolation attack called grayhole attack as these attacks can endanger the
stability of IoT networks. The traditional cryptographic methods are inoperable
for defense against various routing attack as they require high computational,
memory and battery power. Hence a Lightweight Trust mechanism is proposed
for securing RPL against wormhole and grayhole attacks. The proposed mech-
anism is energy affable and does not compel undue overhead on network traffic.
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Figure 2.2: Proposed Trust Mechanism

In this mechanism, every node in RPL network monitors its neighboring
nodes to check whether they follow the norms of RPL protocol or they deviates
from it. Trust computation is based on trust metrics called as Direct Trust
(DT) and Indirect Trust (IT). Direct Trust is the estimate of direct trust comes
under direct whilst Indirect trust values are collected by node i as other nodes’
opinions or recommendations on node j. observation of neighboursTotal Trust
(TT) is computed by adding values of direct and indirect trust .The computed
trust values are then arranged in descending order and are embedded in RPL
objective function along with Rank and ETX to route the packets only through
trusted nodes and thus malicious nodes are quarantine from the network [20].
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Table 2.1: Trust-based Mechani

sms for RPL

Mechanism Techniques | Attacks Weaknesses Validation| Year
Addressed of
Pub-
lica-
tion
Secure parent | Trust-based Rank attack | Susceptible to attacks | Simulation | 2015
node selec- | threshold like Sybil and Black-
tion  scheme | mechanism hole attacks
in route con- | for node
struction [15] evaluation
Trust-based Use of trust- | Internal and | No specific attacks | Design 2015
RPL for the | worthiness External are addressed and no | proposed
Internet of | among RPL | RPL attacks | simulation or testbed | with no
Things [10] nodes experiment was per- | validation
formed to wverify the | performed
effectiveness of the
Trust-based RPL pro-
tocol. Design proposed
with no validation per-
formed
REFTRUST: A | Trust estab- | Sinkhole at- | Accuracy and reliabil- | Simulation | 2018
trust-aware se- | lishment and | tacks ity heavily rely on the
curity mecha- | key exchange quality and representa-
nism to detect | mechanism tiveness of the training
sinkhole [27] among RPL data used
nodes
Trust-based Uses direct | Wormhole, Considers only a single | Simulation | 2018
mechanism for | trust com- | Grayhole trust metric to evalu-
Securing IoT | puted based | attacks ate the trust neighbor
Routing Pro- | on node
tocol RPL [20] | properties
and indirect
trust
SecTrust-RPL: | SecTrust em- | Rank and | Not assessed for mobile | Simulation,| 2019
A secure trust- | bedded into | Sybil attacks | environments and does | Testbed
aware RPL | RPL routing not consider energy
routing proto- | protocol, de- consumption and E2E
col for ToT [4] | tect and iso- delays during testing
late attacks
SMTrust Evaluates Selective for- | No simulation results | Not speci- | 2020
Trust-Based critical trust | warding and | to show the effective- | fied
Secure Rout- | metrics, rank attacks | ness of the model. De-
ing Proto- | allows only sign proposed with no
col [22] trustworthy validation performed
nodes
PCC-RPL: An | Monitors Worst  par- | System susceptible to | Simulation | 2021
efficient trust- | children’s ent19 rank | internal node compro-
based security | behavior, attacks, mises; not suitable for
extension for | decreases sinkhole, battery-powered RPL
RPL [26] trust  level | blackhole, networks
on malicious | wormhole
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2.4 Conclusion

Studies show that trust-based security for IoT is feasible due to its simple inte-
gration and resource-constrained nature of smart devices. Existing trust-based
solutions have insufficient consideration of node mobility and recommendation
uncertainty. In the following chapter, we propose our own innovative trust-based
solution taking into consideration these gaps.
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Chapter 3

Implementation of RPL At-
tacks and Proposition of Trust-
based Solution

3.1 Introduction

In this chapter, we focus on the implementation of RPL attacks using Contiki-
NG and Cooja, as well as the proposition of our trust-based solution empowered
by machine learning algorithms. Our aim was to gain a deeper understanding of
the vulnerabilities present in RPL-based networks and explore potential secu-
rity risks that connected objects face. By implementing these attacks, we aimed
to highlight the importance of securing such networks and lay the groundwork
for the development of effective countermeasures. This chapter outlines the
implementation approach, tools utilized, and the results and analysis of the
conducted attacks. Additionally, we introduce a novel trust-based solution that
leverages machine learning algorithms to enhance the security of RPL networks.

3.2 Working Environment

3.2.1 Contiki-NG

Contiki-NG (Next Generation) is an open source, cross-platform operating sys-
tem for severely constrained wireless embedded devices. Contiki-NG was devel-
oped as an upgraded version of the original Contiki OS, addressing limitations
related to outdated platforms and non-standard protocols. It focuses on depend-
able (reliable and secure) low-power communications and standardised proto-
cols, such as IEEE 802.15.4 , TSCH, 6LoWPAN, 6TiSCH, RPL, CoAP, MQTT,
and LWM2M.

Contiki-NG’s primary aims are to :

e facilitate rapid prototyping and evaluation of Internet of Things research
ideas,

e reduce time-to-market for Internet of Things applications, and
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e provide an easy-to-use platform for teaching embedded systems-related
courses in higher education. Contiki-NG started as a fork of the Contiki
OS and retains many of its original features. [24]

By utilizing Contiki-NG for our implementation, we were able to take ad-
vantage of its rich feature set, including its support for RPL-based networks.
This facilitated the simulation and testing of RPL attacks, enabling us to gain
insights into the vulnerabilities present in RPL-based networks and the poten-
tial security risks faced by connected objects. The flexibility and extensibility
of Contiki-NG further empowered us to customize and extend its functionali-
ties to suit our attack scenarios, making it an invaluable tool for our research
endeavors.

3.2.1.1 Contiki-NG Directory Structure

Contiki-NG comprises several components that contribute to its functionality
and versatility:

e Operating System (os): The core of Contiki-NG provides a robust
framework for developing applications for resource-constrained IoT de-
vices. It contains the actual Contiki-NG code, including system primitives
such as processes, timers, network stack, libraries, and services.

e Architecture (arch): Contiki-NG’s architecture defines the system’s
structure and interfaces, facilitating seamless integration with different
hardware platforms. It contains hardware-dependent code, such as pro-
cessor, device, and platform drivers. A list of supported platforms can be
found under arch/platforms and its subdirectories.

e examples: Contiki-NG includes a collection of examples that demon-
strate the implementation of various IoT applications. Contains ready-to-
use project examples that demonstrate how to use networking, libraries,
storage services, etc.

e tools: Contiki-NG offers a range of utilities and development tools to
assist in creating, debugging, and testing IoT applications. These tools
include compilers, debuggers, code editors, and simulation environments.
It contains tools that are not included in a Contiki-NG firmware but are
intended to run on a computer. These tools include flashing tools, the
Cooja simulator (as a submodule), Docker scripts, Vagrant, etc.

e tests: It contains all the continuous integration tests.Contiki-NG pro-
vides a dedicated testing component that allows developers to verify the
functionality, reliability, and performance of their IoT applications.
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Figure 3.1: Contiki-NG Directory Structure

3.2.1.2 Cooja Simulator

Cooja, as the simulator used in conjunction with Contiki-NG, played a crucial
role in our implementation process. It’s an application based on java that pro-
vided a graphical interface for configuring and visualizing the simulated RPL-
based networks, allowing us to observe the network behavior and assess the ef-
fectiveness of our attacks. Cooja’s ability to simulate large-scale networks with
multiple nodes and its support for real-time visualization greatly facilitated our
research on RPL attacks.

Additionally, Cooja allowed us to monitor and capture network traffic, en-
abling detailed analysis of the attack effects and their impact on the network
performance. This feature proved instrumental in evaluating the success of our
attacks and understanding their implications for securing connected objects.

3.2.2 Python

It’s a high-level programming language known for its simplicity and readability.
It offers a wide range of libraries and frameworks that make it suitable for
various applications, including the implementation of RPL attacks. Python
provides extensive support for networking, data manipulation, and machine
learning, making it an ideal choice for analyzing and manipulating data in the
context of RPL attacks. With its intuitive syntax and vast ecosystem, Python
simplifies the implementation process and allows for efficient development and
experimentation.

Python played a crucial role in analyzing the collected data. With its
versatility, ease of use, and extensive libraries, Python was an ideal choice for
developing attack scripts, processing captured network data, and conducting
statistical analyses. We utilized Python to create a script for data processing and
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feature extraction, leveraging libraries such as pandas and NumPy for efficient
data manipulation.

3.2.3 Weka

The WEKA tool is a collection of machine learning algorithms and data pre-
processing. It is designed to quickly test existing methods on new datasets in a
flexible manner. It provides extensive support for the entire process of experi-
mental data exploration, including data input preparation, statistical evaluation
of learning patterns, and visualization of input data and learning results. This
diverse and comprehensive toolkit is accessible through a common interface, al-
lowing users to compare different approaches and determine the most suitable
method for the problem at hand. [7]

3.3 Implementation of attacks

In this section, we discuss the RPL attacks that have been implemented as
part of this research. These attacks aim to demonstrate the vulnerabilities and
potential security risks associated with the RPL protocol in IoT environments.
By implementing and analyzing these attacks, we gain valuable insights into the
weaknesses of RPL and highlight the importance of developing robust security
mechanisms for connected objects.

To implement RPL attacks, we utilized the reference implementation pro-
vided by Oikonomou, Algahtani, and Tryfonas (2021) in their paper *A Refer-
ence Implementation for RPL Attacks Using Contiki-NG and COOJA’
[5]. They presented a comprehensive framework that combines Contiki-NG and
COOJA to simulate RPL attacks on wireless sensor networks. Their work con-
tributes to the understanding and analysis of RPL attacks, providing insights
into the vulnerabilities and potential countermeasures.

In their work, they highlight the approach they took to embed code for
attacks in Contiki-NG’s core modules. Instead of making multiple clones of
Contiki-NG’s directory for each attack, which would require more storage space,
they utilize C preprocessor directives. When we used this approach it allowed
us to control which attack code is included during compilation. Additionally, it
employs a boolean-like variable to determine when to activate an attack during
a simulation. The script ( javascript code ) includes functions for controlling
attack timing, accessing memory, and activating/deactivating attacks. These
techniques enable efficient customization and facilitate the integration of various
attack scenarios into the Contiki-NG framework.
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3.3.1 DIS Flooding Attack

Flooding attacks in RPL-based IoT networks aim to exhaust network resources.
By utilizing DIS (DODAG Information Solicitation) messages, which are in-
tended to gather DODAG information from neighboring nodes, a compromised
node can initiate a flooding attack. This attack triggers neighboring nodes to
respond with DIO (DODAG Information Object) messages by resetting their
DIO Trickle timers. The malicious node can launch this flooding attack re-
gardless of whether it has already joined the DODAG or not. To carry out
the attack, the compromised node reduces the transmission period of its DIS
messages, increasing the frequency of solicitation and overwhelming the network
with unnecessary traffic.

Algorithm 1: DIS Flooding Attack
Input : Attacker node: A, List of neighbors: L, Current packet: P
Output: Multicast DIS messages to trigger flooding
if P = DIS then
if Attack_type = unicast then
| A.unicast(DIS to N)
end
else if Attack_type = multicast then
| A.multicast(DIS to L)
end

end

To demonstrate the potential for targeted attacks within IoT networks us-
ing RPL, we implemented a randomized target selection mechanism within the
framework. The attack object’s target node was determined using a random
number generator, excluding nodes 1 (root) and 0 (undefined) as valid targets.
The attack commenced after 5 minutes and lasted for 10 minutes.

During the simulation, it was observed that node 2 was randomly selected as
the target node. Node 2 then launched a flood attack by flooding its neighboring
nodes with multicast DIS (DODAG Information Solicitation) messages. As a
consequence, neighboring nodes, including nodes 7, 6, and 3, were forced to
respond by broadcasting DIO (DODAG Information Object) messages in an
attempt to maintain network connectivity and stability.

This aggressive behavior by node 2 resulted in a significant increase in mul-
ticast traffic within the IoT network, potentially leading to congestion and re-
source exhaustion.
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Figure 3.2: DIS Flooding Attack

3.3.2 Selective Forwarding Attack

In this specific attack, a compromised node selectively discards all packets it is
supposed to forward, with the exception of control packets . Control packets,
such as DAO (Destination Advertisement Object) messages in RPL non-storing
mode, are allowed to pass through the compromised node. By strategically
dropping critical packets or forwarding them selectively, we highlight the vul-
nerability of RPL to communication disruption and compromised network per-
formance.
Algorithm 2: Selective Forwarding Attack

Input : Attacker node: A, List of neighbors: L, Current packet: P

Output: Drop or forward packets selectively

if P.type = DATA then

if A.shouldForwardPacket(P) then
| A.forwardPacket(P)

end

end

3.3.3 Sinkhole Attack

In the context of a Sinkhole attack, a malicious node manipulates the routing
path by advertising a falsified, more optimal route to its neighboring nodes,
with the intention of attracting and intercepting more network traffic. This
manipulation is carried out in RPL through the modification of the root’s rank
value in DIO (DODAG Information Object) messages.
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Algorithm 3: Sinkhole Attack
Input : Attacker node: A, List of neighbors: L, Current packet: P
Output: Advertise a better routing path
if P = DIO then
if P.sender € L then
| A.advertiseBetterPath(P)

end
end

3.3.4 Version Number Attack

Within RPL, DIO (DODAG Information Object) messages utilize a version
number to signify the current version of a DODAG (Destination-Oriented Di-
rected Acyclic Graph). The root node, upon detecting inconsistencies or anoma-
lies, increments the version number to initiate a global repair process. This
action involves resetting Trickle timers, clearing routing tables, and initiating
the rejoining process of the DODAG. However, in the case of a compromised
node, it can maliciously increment the version number without any means for
other nodes to verify the integrity of this increase.

Algorithm 4: Version Number Attack
Input : Attacker node: A, List of neighbors: L, Current packet: P,
Malicious version number: VM
Output: Updated version number VM and multicast DIO messages
if P = DIO and P.destination = A then
A.DIO[version] < VM
A multicast(DIO to L)
VM + VM + 1
nd
Ise if P.DIO/version] > VM then
VM < P.DIO[version] + 1
A.DIO[version] + VM
A.multicast(DIO to L)
end

o O

3.3.5 Sybil Attack

Sybil Attack involves a malicious node that creates multiple fraudulent identi-
ties. These bogus identities can be used to deceive the network by registering
fake routes, impersonating legitimate nodes, or circumventing identity-based
security measures. As a result, Sybil attacks render many security countermea-
sures ineffective and pose significant challenges for prevention and detection.
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Algorithm 5: Sybil Attack

Input : Attacker node: A, List of neighbors: L, Current packet: P
Output: Perform Sybil attack
if P.type = ROUTING then
if A.isSybilldentity(P.source) then
A.modifyRoutingInfo(P)
A.multicastModifiedPacket(P, L)
end

end

3.4 Machine learning

To realize the potential of our trust-based solution, it is essential to compre-
hend the fundamentals of machine learning. This section provides an in-depth
overview of machine learning techniques, including supervised, unsupervised,
and reinforcement learning. By understanding these approaches, we can effec-
tively employ them in our system to detect and mitigate security threats. [14]

Machine learning (ML) plays a pivotal role in our proposed trust-based
solution for securing connected objects in IoT environments. It is a powerful
technology that empowers computers to learn from data, recognize patterns,
and make informed decisions without explicit programming. At its core, ma-
chine learning revolves around the analysis of data to uncover meaning-
ful insights and enable intelligent decision-making. ML algorithms are
trained on labeled data, allowing them to recognize patterns, correlations, and
anomalies within vast amounts of information. These algorithms learn from the
data, continually refining their models to improve performance and accuracy.In
machine learning, we have three main families of models: supervised learn-
ing, unsupervised learning, and reinforcement learning. These three
approaches have distinct characteristics and are used for different purposes in
solving various machine learning problems.

3.4.1 Supervised Learning

In supervised learning, the model is trained using labeled data, where the input
features are associated with corresponding target labels. The objective is to
learn a mapping function that can predict the correct label for new, unseen data
points. Examples of supervised learning algorithms include linear regression,
logistic regression, support vector machines (SVM), decision trees, and neural
networks. Supervised learning is commonly used for tasks such as classification
and regression.
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3.4.1.1 Decision Tree (DT)

Decision Tree is a supervised learning algorithm that constructs a flowchart-like
structure to make decisions based on the input features. It recursively splits the
data based on feature conditions, creating a tree structure where each internal
node represents a feature test, each branch represents an outcome of the test,
and each leaf node represents a class label.

Within the trust-based solution, Decision Tree can be utilized to classify
connected objects based on their behavior patterns. By analyzing the attributes
and their values, the Decision Tree algorithm can make predictions about the
trustworthiness of the objects. The tree’s structure allows for interpretability,
as each decision path can be traced and understood. Decision Tree models are
particularly useful when explainability is crucial, as they provide insights into
the decision-making process.

3.4.1.2 Random Forest (RF)

Random Forest is an ensemble learning method that combines multiple decision
trees to make predictions. It constructs a set of decision trees using random
subsets of the training data and features, and the final prediction is determined
by aggregating the predictions of individual trees. Random Forest offers im-
proved accuracy and robustness compared to a single decision tree. It can han-
dle high-dimensional data and mitigate the risk of overfitting. Random Forest
can enhance the trust-based solution by providing more accurate and reliable
classifications.

3.4.1.3 Naive Bayes (NB)

Naive Bayes is a probabilistic classifier based on Bayes’ theorem. It assumes
that the features are conditionally independent given the class label, which
simplifies the modeling process. Naive Bayes classifiers are computationally
efficient and work well even with limited training data. They are particularly
useful for text classification tasks but can also be applied to other types of data.
In the trust-based solution, Naive Bayes can be employed to quickly assess the
trustworthiness of connected objects based on their behavior patterns.

3.4.1.4 K-Nearest Neighbors (K-NN)

K-Nearest Neighbors is a simple yet effective algorithm that classifies new in-
stances based on the class labels of its k nearest neighbors in the training data.
It measures the distance between instances using metrics such as Euclidean dis-
tance or cosine similarity. K-NN is a non-parametric algorithm, meaning it does
not make assumptions about the underlying data distribution. It is versatile and
can handle both classification and regression tasks. In the trust-based solution,
K-NN can be used to classify connected objects based on the similarity of their
behavior to other known trustworthy or malicious instances.
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3.4.1.5 Support Vector Machines (SVM)

Support Vector Machines are powerful classifiers that aim to find an optimal
hyperplane that separates the data into different classes while maximizing the
margin between them. SVMs can handle high-dimensional data, nonlinear
boundaries, and outliers effectively. They are capable of capturing complex
relationships in the data and have good generalization performance. SVMs can
contribute to the trust-based solution by accurately classifying the behavior of
connected objects and detecting potential security threats.

3.4.1.6 Logistic Regression

Logistic Regression is a popular supervised learning algorithm for binary clas-
sification tasks. It models the relationship between the input features and the
probability of belonging to a particular class. By applying a logistic function to
the linear combination of the input features, Logistic Regression estimates the
probability of an instance belonging to a specific class. It is suitable for scenar-
ios where the outcome variable is categorical and has two possible outcomes. In
the context of our trust-based solution, Logistic Regression can be employed to
classify connected objects as trustworthy or malicious based on their behavior
patterns and input features.

3.4.1.7 Linear Regression

Linear Regression is a widely used supervised learning algorithm for regression
tasks. It models the relationship between the input features and a continuous
numerical target variable. By fitting a linear equation to the data, Linear Re-
gression predicts the target variable based on the values of the input features.
It is particularly useful for understanding the linear relationship between vari-
ables and making predictions based on that relationship. In the context of our
trust-based solution, Linear Regression can be utilized to analyze and predict
the behavior of connected objects based on various input features.

3.4.2 Unsupervised Learning

Unsupervised learning involves training models on unlabeled data, where the
objective is to discover meaningful patterns, structures, or relationships within
the data. Unlike supervised learning, there are no predefined labels or targets.
Common unsupervised learning algorithms include clustering algorithms like
k-means clustering and hierarchical clustering, dimensionality reduction tech-
niques like principal component analysis (PCA) and t-SNE, and association rule
mining algorithms. Unsupervised learning is useful for tasks such as clustering,
anomaly detection, and data exploration.
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3.4.3 Reinforcement Learning

Reinforcement learning focuses on training an agent to interact with an envi-
ronment and learn optimal actions through trial and error. The agent receives
feedback in the form of rewards or penalties based on its actions, and the goal is
to maximize cumulative rewards over time. Reinforcement learning algorithms
employ techniques like Markov Decision Processes (MDP), Q-learning, and pol-
icy gradients.

3.5 Proposed Trust-Based System

In order to detect attacks and enhance the security of our system, we have de-
veloped a trust-based solution that leverages machine learning techniques. Our
approach aims to identify and mitigate various attacks by implementing a series
of steps. These steps involve simulating RPL attacks on Cooja, extracting re-
sults using tools like 6LoWPAN Analyzer, preparing the dataset, processing and
analyzing the data, and creating a machine learning model for attack detection.
By integrating this countermeasure into our system, we can effectively identify
and respond to potential threats.

The proposed solution consists of the following steps:

1. Simulation of RPL attacks on Cooja: Launch the simulation using
Cooja, a network simulator for constrained devices, and simulate RPL
attacks by configuring the network nodes accordingly.

2. Getting results from Cooja using 6LoOWPAN Analyzer and other
tools: After the simulation, retrieve the results from Cooja using 6LoW-
PAN Analyzer. This tool allows you to capture and analyze network traffic
in the 6LoWPAN protocol.

3. Preparation of the dataset: Convert the obtained results, which may
include pcap files and log files, to CSV files. Adapt these CSV files for
further analysis using Wireshark, a popular network protocol analyzer.

4. Data processing and analysis: Process the CSV files containing net-
work traffic data. Perform feature extraction to extract relevant informa-
tion from the network traffic, such as packet headers, flow statistics, or
any other relevant attributes that can help in detecting RPL attacks.

5. Creating a model using machine learning algorithms: Utilize ma-
chine learning algorithms to create a model for RPL attack detection.
This involves training the model using the processed dataset and selecting
appropriate algorithms, such as decision trees, support vector machines,
or neural networks. Split the dataset into a training set and a testing set
to evaluate the model’s performance.
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Figure 3.3: Propoposed Solution

3.6 Conclusion

In conclusion, this chapter focused on the implementation of RPL attacks us-
ing Contiki-NG and Cooja, as well as the proposition of a trust-based solution
empowered by machine learning algorithms. Through the implementation of
various RPL attacks, we gained valuable insights into the vulnerabilities present
in RPL-based networks and the potential security risks faced by connected ob-
jects. The utilization of Contiki-NG provided a robust and flexible framework
for simulating and testing these attacks, enabling us to analyze the effects of
the attacks on network performance and evaluate their impact.

Furthermore, we introduced a novel trust-based solution that leverages ma-
chine learning algorithms to enhance the security of RPL networks. By utilizing
Python and the WEKA tool, we were able to process captured network data,
extract relevant features, and apply machine learning techniques for anomaly
detection and trust evaluation. The combination of machine learning and RPL
provides a promising approach for detecting and mitigating attacks in IoT en-
vironments. Overall, this chapter serves as a foundation for further research in
securing RPL-based networks and developing effective countermeasures against
potential threats.
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Chapter 4

Evaluating our Trust-Based
Solution

4.1 Introduction

The existing literature offers various solutions to address the security challenges
in IoT deployments. However, our proposed trust-based solution stands out
as a unique approach that harnesses the capabilities of machine learning for
attack detection.

By utilizing machine learning algorithms, we empower our trust-based sys-
tem to analyze and classify the behavior of connected objects. This enables us
to identify trustworthy and malicious activities accurately. Through this
innovative approach, we aim to overcome the limitations of existing solutions
and provide enhanced security for IoT networks.

Furthermore, our solution not only focuses on detection but also emphasizes
the evaluation of its performance. We recognize the importance of concrete
results to assess the effectiveness of our system and draw meaningful conclusions.
Therefore, rigorous evaluation procedures are an integral part of our approach,
allowing us to quantify the impact and capabilities of our trust-based solution
accurately.

4.2 Evaluation of the proposed system

The evaluation of the system begins with simulating the network environment
using Cooja, an emulator for wireless sensor networks. The simulation allows
us to mimic real-world scenarios and study the system’s behavior under various
conditions. During the simulation, we collect raw data from the network using
tools such as 6LoWPAN analyzers and log files obtained from mote output.
These tools provide valuable insights into the network traffic, packet durations,
source-destination relationships, and other relevant parameters.

The duration of the simulation depends on the specific attack being im-
plemented, as indicated in the JavaScript script provided in the figure. For
instance, in the case of a DIS Flooding attack, the attack is initiated after 5
minutes and ceases after 10 minutes. This duration allows us to observe the
network’s response and analyze the impact of the attack on the system. In this
evaluation, Z1 motes have been utilized as the type of motes in the network.
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/J attacks. push(new Attack(*SHA_on", 8, 0, 606066));

/J attacks. push(new Attack(*SFA_on", 8, 360608, 660606));
// attacks.push(new Attack("sha_on", 7, 6, 660660));

// attacks.push(new Attack(*vna_on", 8, 380608, 660606));
attacks.push(new Attack('DFA on', 7, 300000, 660000));

/] sya = new Attack(*SYA_on®, 7, 200060, 606060);

// sya.vName="fake_id";
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// sya.valuesList.push(6x26); sya.timesList.push(466060);

// attacks.push(sya);
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Figure 4.1: Simulation and Data extraction

After obtaining the log files and pcap files from the simulation, we pro-
ceed with further data processing and feature extraction. Using Wireshark, we
convert the pcap file to CSV format, which enables easier data manipulation
and analysis. Next, we employ a Python script specifically designed for feature
extraction and data processing. This script allows us to extract relevant features
from the CSV files. The extracted features capture important characteristics
of the network traffic and node behavior, which are crucial for training and

evaluating machine learning models.

The generated dataset from the Python script includes attributes such as
ID, DIO_Count, DIS _Count, DAO_Count, Packets_Sent, and Label. To-
gether, these attributes form a comprehensive dataset that enables feature ex-

traction, analysis, and training of machine learning models.
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In [42]: # -*- coding: utf-8 -*-
#libraries
import pandas as pd

import numpy as np
import re

#Let's get the csv file.
flnm = "DIS malicious1RI4NIM.csv"
filestr = "Attack Files/" + flnm|

# resultfile variable is used for recording pruduct CSV dataset.
resultfile = "Results/" + flnm

# We take raw data to the Raw Data dataset.
Raw_Data = pd.read_csv(filestr , index_col = "No.")

# Converting Raw Data to numpy array
np_Raw Data = np.array(Raw Data)

# Sorting data on @ axis. (@ axis is the time values.)

# The columns 0: Time, 1: Source, 2:Destination, 3:Protocol, 4:Packet Length, 5:Info
np_Raw_Data = np_Raw_Data[np.argsort(np_Raw_Data[:, 6])]

Figure 4.2: Python script for feature extraction and data processing

Once the data has been processed and the features have been extracted, we
create a dataset that can be loaded into WEKA (Waikato Environment for
Knowledge Analysis). WEKA is a popular data mining and machine learning
software tool that provides a comprehensive environment for data analysis and
model training. Within WEKA, we can apply various analysis techniques and
train machine learning models using the processed dataset.

nicholus@ic: Weka GUI Chooser

Program Visualization Tools Help
Applications

$ cd weka Explorer
3 $ ./weka.sh
WARNING: A terminally deprecated method i

Experimenter
WARNING: System::setSecurityManager has [ WEK
ile:/home/nicholus/weka/weka. jar) TN UnivEns
WARNING: Please consider reporting this f{ QWMKA KnowledgeFlow
rApp
WARNING: System::setSecurityManager will

3 NEW ZEALA

e s Workbench
Version 38.6

s

i Simple CLI

Hamilton, New Zealand

Figure 4.3: WEKA

To load the dataset into WEKA, we follow a simple process. By clicking
on ”Open File” in WEKA, we can select the desired dataset to load. However,
it’s important to note that WEKA recognizes the default file format as .arff.
Therefore, in order for it to recognize and process our dataset in CSV format, we
need to ensure that the file extension is changed from .csv to .arff. This allows
it to seamlessly handle and analyze the dataset, providing a smooth workflow
for further analysis and training of machine learning models.
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Figure 4.4: Loading Dataset on WEKA

In WEKA’s ”Classify” tab, we are presented with a variety of algorithms
to choose from for our analysis. However, before proceeding, we need to select
the target attribute, such as "DIS_Count” or the desired label, to indicate the

attribute we want to predict.

Once the target attribute is selected, we can

proceed to choose the specific algorithm that suits our analysis requirements
and specific parameter settings. After selecting the algorithm, we can further
configure the settings and choose the desired testing options. Finally, by clicking
on the ”Start” button, WEKA begins the classification process and generates
the output of the classifier, providing valuable insights and predictions based on
the selected algorithm and the provided dataset.
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Figure 4.5: Choosing ML algorithm

By following this pipeline, starting from simulation and obtaining log and
pcap files, converting to CSV format, performing feature extraction, and uti-
lizing WEKA for analysis and training, we can gain valuable insights into the
system’s behavior and performance in the presence of different attacks.
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4.3 Evaluating Model Performance
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Figure 4.6: Training Model
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The output from running the ZeroR classifier on the dataset DIS_M2_613.csv

is as follows:

e There are 444 instances with 7 attributes including src, dst, packets_sent,
DioCount, DisCount, DaoCount, and label.

e The test mode is set to split 70.0% train, remainder test.

e The classifier predicts the class value as 0 for all instances and the model
was built in 0 seconds.

e During evaluation on the test split, it took 0 seconds to test the model.
Out of the total 133 instances in the test split, 119 instances (89.4737%)
were correctly classified, while 14 instances (10.5263%) were incorrectly

classified.
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e The mean absolute error is 0.2717, and the root mean squared error is
0.3246.

e The detailed accuracy by class shows that for class 0, the true positive
rate, false positive rate, precision, recall, and F-measure are all 1.000,
while for class 1, they are all 0.000.

e The weighted average true positive rate and false positive rate are 0.895,
indicating relatively higher accuracy for class 0. The confusion matrix
shows that all instances belonging to class 0 (119 instances) were classi-
fied correctly, but all instances belonging to class 1 (14 instances) were
misclassified as class 0.

To calculate the global success rate or accuracy of a classification model, you
can use the following formula:

Success_global = (TP 4+ TN)/ (FP 4+ FN + TP 4+ TN )

In this formula, TP represents the number of instances correctly classified as
the target class, TN represents the number of instances correctly classified as not
the target class, FP represents the number of instances incorrectly classified as
the target class, and FN represents the number of instances incorrectly classified
as not the target class.

By summing up the true positives (TP) and true negatives (TN) and divid-
ing it by the total number of instances, including true positives, true negatives,
false positives (FP), and false negatives (FN), we can obtain the global success
rate or accuracy of the classification model. This measure provides an overall
assessment of how well the model performs in terms of correctly classifying in-
stances.

From the confusion matrix in the output, we have:

e TP =119
e TN=0
e FP =0
e FN =14

Substituting these values into the formula:

Success_global = (119 + 0) / (119 + 0 + 0 + 14) = 119 / 133 =
0.8947

Therefore, the global success rate or accuracy for the classification model is
approximately 0.8947 or 89.47%.
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4.4 Testing system

To save a model in Weka after evaluating its performance, we can
follow these steps:

1.

In the Weka Explorer interface, we go to the ” Classify” tab and select the
desired classifier from the list on the left-hand side.

We click on the ”Save model” button and choose a location and provide
a name for the model file.

Lastly we click ”Save” to save the model. By saving the model, we can
reuse it later for predictions on new or unseen datasets without retraining.

To test a dataset using the saved model, we can :

. Open Weka Explorer and go to the ”Classify” tab.

Click on the "Load model” button and navigate to the location of the
saved model file. Select the model file.

Go to the ”"Preprocess” tab to load your dataset and click on the ”Open
file” button and select your dataset file.

. In the "Classify” tab, under the ”Test options” section, select ”Supplied

test set” and click on ”Set”.

Choose the dataset you want to use for testing. Click on the ”Start”
button to apply the saved model to the dataset and obtain predictions.

The predictions can be viewed in the ” Classify” tab under the ” Test mode”
section.

By following these steps, we can test a dataset using the saved model in
Weka and observe the predictions made by the model.
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4.5 Conclusion

In conclusion, the evaluation of our trust-based solution has demonstrated its
potential to address security challenges in IoT deployments. By leveraging ma-
chine learning algorithms, our system effectively analyzes and classifies the be-
havior of connected objects, enabling accurate identification of trustworthy and
malicious activities. Through rigorous evaluation procedures, we have obtained
valuable insights into the system’s performance.

The evaluation process involved simulating real-world scenarios using Cooja
and collecting raw data for analysis. By processing the data, extracting relevant
features, and utilizing WEKA for training machine learning models, we achieved
a global success rate or accuracy of approximately 89.47%. These results affirm
the effectiveness of our trust-based solution in accurately classifying instances
and detecting malicious behavior.

Overall, the evaluation has provided strong evidence of the capabilities and
reliability of our trust-based solution. The outcomes obtained serve as a foun-
dation for further development and improvement, reinforcing the potential of
our approach to enhance the security of IoT networks and mitigate the risks
associated with malicious activities.
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Conclusion

In conclusion, this work addresses the urgent security challenges faced by IoT
networks and proposes a trust-based system empowered by machine learning
techniques. The context of the work revolves around the current state of IoT
networks and the alarming security issues they encounter, including the need to
safeguard networks and protect users’ data privacy and integrity.

The main issue addressed in this research is the development of an effec-
tive solution to enhance IoT network security. By leveraging machine learning
algorithms, the proposed trust-based system enables IoT networks to adapt,
learn from network traffic data, and detect anomalies and potential threats in
real-time. Through simulated network environments and extensive data analy-
sis, we assessed the system’s performance in detecting security threats, such as
DIS Flooding, achieving promising accuracy, precision, and recall rates. The
evaluation study resulted in a global success rate or accuracy of approximately
89.47%, highlighting the effectiveness of our trust-based system in accurately
classifying instances and safeguarding IoT networks..

In future work, we aim to further improve our solution to enhance its capa-
bilities. Specifically, our focus will be on expanding the range of detected attacks
and enabling nodes to assign low trust values or scores to untrustworthy nodes.
Additionally, we plan to update neighboring nodes to avoid communication with
nodes that exhibit malicious behavior.

Overall, this research provides a comprehensive approach to tackle the secu-
rity concerns associated with IoT networks. The integration of machine learning
algorithms and the adoption of a trust-based system offer significant potential
to enhance anomaly detection and threat response. Our future efforts will be
dedicated to advancing the solution to provide even stronger security measures
for ToT networks, ensuring the privacy and integrity of connected objects and
users’ data.
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