

وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifiqu جامعة عبد الحميد ابن باديس مستغانم

Université Abdelhamid Ibn Badis de Mostaganem کلیة العلوم و التکنولوجیا

Faculté des Sciences et de la Technologie Département de Génie Civil et Architecture

MEMOIRE DE FIN D'ETUDE DE MASTER ACADEMIQUE

Filière: TRAVAUX PUBLICS.

Spécialité: VOIES ET OUVRAGES D'ART (VOA)

Etude de la liaison autoroutière reliant la wilaya de Batna à l'autoroute Est-Ouest

du Pk 31+260 au Pk 43+260

Lot1: du Pk 31+260 au Pk 37+260

Présenté par :

• Mr KHALEF Soufyane.

Mme. ABBOUD Souaad.

Soutenu le: 26 JUIN 2024

Devant le jury de soutenance composé de :

Président: Mr.KERAOUTI RABEH

Encadrant: Mr. ROUAM SERIK MOHAMED.

Examinateur: Mr.TALIA AHMED

Invité: Mr. BOUARFA ZOHIR

Année Universitaire: 2023-2024

Remerciement

Tout notre remerciement à ALLAH qui nous a donné le courage, la détermination, la volonté et la persévérance d'aller jusqu'au bout.

C'est avec une profonde et particulière reconnaissance que nous remercions notre encadrant Mr ROUAM SERIK MOHAMED pour son soutien, sa guidance tout au long de ce projet de recherche, sa patience et son expertise ont été essentielles à la réussite de ce mémoire.

Nos remerciements s'adressent aux membres de jury qui ont accepté de juger ce modeste travail.

A tous ceux qui nous ont assistés de près ou de loin dans la réalisation de

ce projet de fin d'étude.

Dédicace

Je dédie ce projet :

A ma chère mère,

A mon cher père,

Qui n'ont jamais cessé, de formuler des prières à mon égard, de me soutenir Et de m'épauler pour que je puisse atteindre mes objectifs.

A mes chères sœurs,

Pour ses soutiens moraux et ses conseils précieux tout au long de mes études.

A mes chers frères,

Qui je souhaite une bonne santé.

A mes chères ami(e)s

Pour leurs aides et supports dans les moments difficiles

K. HALEF Soufyane

Dédicace

Rien n'est aussi beau à offrir que le fruit d'un labeur que l'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant notre gratitude et notre reconnaissance durant toute notre existence.

Je dédie ce modeste travail à :

Mes chers parents, mon mari ,mon petit-fils, mes frères et mes sœurs

En leur souhaitant plein de bonheur et de réussite. Vous éclairez ma voie,
je vous aime.

A tous les étudiants de la promotion 2023-2024, option VOA. A tous les enseignants qui ont participé à ma formation.

ABBOUD Souand

Résumé

Notre projet de fin d'étude rentre dans le domaine des études des infrastructures de transport, et en particulier les routes. La route est considérée comme un élément efficace reliant les différentes régions du pays. Elle contribue au développement à travers différentes activités économiques et les échanges commerciaux. Ce projet présente une étude de la liaison autoroutière reliant la Wilaya de Batna à l'autoroute Est-Ouest sur une distance de 12 km ,1 er tranche (Du PK 31+260 au PK 37+260) sur une distance de 6km. Nous visions à travers cette étude la mise en application de nos connaissances acquises Durant Notre cycle de formation, en mettant en évidence ; les normes géométriques, choix de terrain, étude du trafic, le choix d'axe et les rayons, dessiner la ligne rouge sur le profil en long, définir les éléments du profil en travers, calcul des cubatures pour connaitre les volumes de déblais et remblais.

Finalement, la signalisation de la route et prendre en considération le volet économique et financier.

Summary

Our project of end study returns in the field of the infrastructures of transport, and particular the roads. The roads is considered an effective element linking the various regions of the country and to contribute its development through various economic activities and commercial exchanges. This project presents a study of the motorway link connecting the wilaya of Batna and the east-west highway over a distance of 12 km, 1ST slice (from the PK 31+260 to PK 37+260) over a distance of 6km. We aimed to go through the present study, applying our knowledge gained during our training cycle, by highlighting it; the norms geometrical, choice of ground, study of the traffic, the choice of axis and the spokes, draw the red line on the profile in length, defined the elements of the profile in cross, calculation cubature's to know the volumes cuttings and embankments.

Finally, signaling the road and take into consideration the economic and financial component.

ملخص

يندرج مشروع نهاية دراستنا في مجال البنية التحتية تعتبر الطريق عنصرا فعالا يربط بين مختلف مناطق الدولة ويساهم في تنميتها من خلال الانشطة الاقتصادية والتجارية المختلفة.

هذا المشروع هو دراسة للمقطع من الطريق السريع الرابط بين ولاية باتنة والطريق السيار شرق غرب على مسافة 12كم، الشطر

الاول (من النقطة الكيلومترية 260+31 الى النقطة الكيلومترية 260+37) على مسافة 6كم.

تهدف هذه الدراسة الى تطبيق المعارف المكتسبة خلال الدورة التدريبية لناءمن خلال تسليط الضوء على القواعد الهندسية واختيار

ارضية المشروع ودراسة حركة المرور واختيار محور الطريق مع رسم الخط الاحمر على المقطع الطولي وتحديد المقاطع العرضية وحساب حجم التربة.

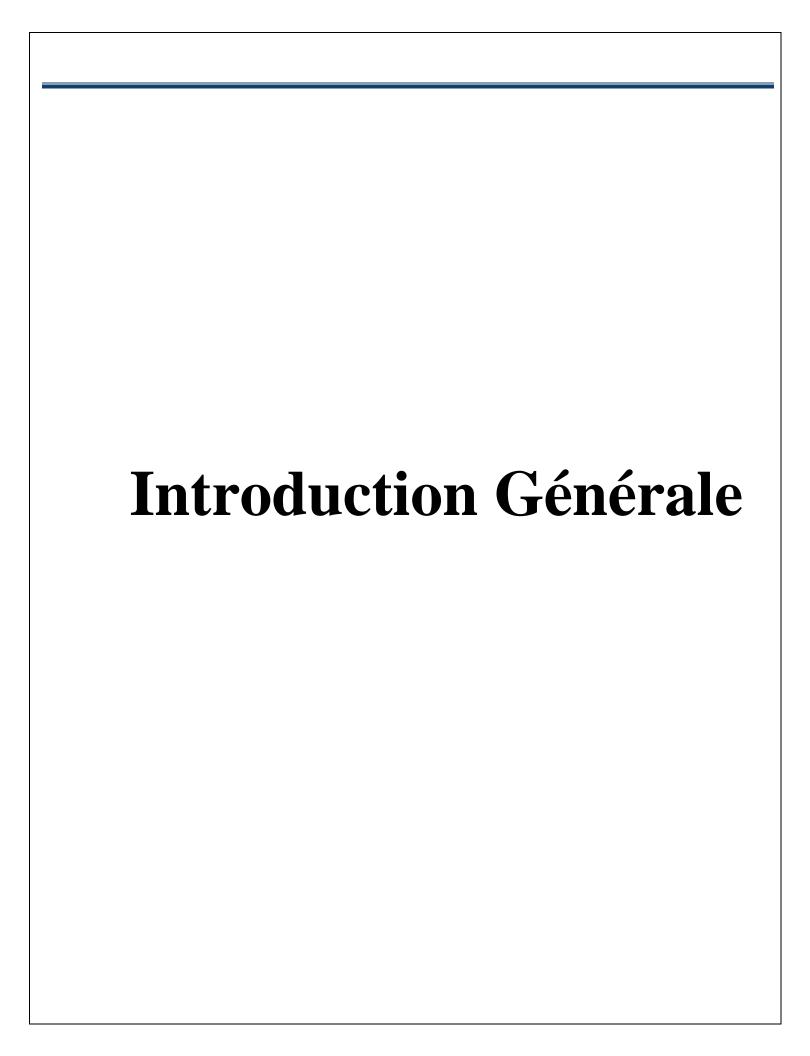
واخيرا الاشارة الى تكلفة الطريق ومراعاة الجانب الاقتصادي والمالي.

Liste des matières

	INTRODUCTION GENERALE:	l
1	PRÉSENTATION GÉNÉRALE :	3
	1.1 Introduction:	3
	1.2 Presentation du Reseau :	
	LE RESEAU ROUTIER ALGERIEN SE PRESENTE AUJOURD'HUI COMME SUIT:	4
2	CHAPITRE 02: PRESENTATION DE PROJET	6
	2.1 Presentation de la Wilaya:	6
	2.2 CARACTERISTIQUE NATURELLES ET CONDITIONS CLIMATIQUES :	7
	2.2.1 Le relief :	7
	2.2.2 Le climat :	8
	2.3 LES INFRASTRUCTURES DE BASE EXISTANTE :	8
	2.3.1 Réseau routier :(2017 source DPSB)	8
	2.3.2 Le réseau ferroviaire :	
	2.3.3 Les infrastructures aéroportuaires :	
	2.4 ADDUCTION EAU POTABLE/ASSAINISSEMENT/HYDRAULIQUE	
	2.4.1 Alimentation en Eau Potable :	
	2.4.2 Assainissement:	
	2.5 OBJECTIF DU PROJET:	
	2.6 JUSTIFICATION DU PROJET:	
	2.7 FONCTION DES AUTOROUTES DE LIAISON	
	2.8 DESCRIPTION DU PROJET:	11
C	CHAPITRE 03 : NORMES GEOMETRIQUES ET DONNEES DE BASE	13
	3.1 Generalites:	
	5.1 GENERALITES:	13
	3.2 Environnement de la route :	
		13
	3.2 Environnement de la route :	13
	3.2 Environnement de la route :	13 13
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité :	13 13 23
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference :	
	3.2 ENVIRONNEMENT DE LA ROUTE : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 CATEGORIE DE LA ROUTE : 3.4 LA VITESSE DE REFERENCE : CHAPITRE 04 : ETUDE DU TRAFIC	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants :	
	3.2 ENVIRONNEMENT DE LA ROUTE: 3.2.1 La dénivelée cumulée moyenne: 3.2.2 Sinuosité: 3.3 CATEGORIE DE LA ROUTE: 3.4 LA VITESSE DE REFERENCE: CHAPITRE 04: ETUDE DU TRAFIC 4.1 GENERALITE: 4.2 DIFFERENTS TYPES DE TRAFIC: 4.3 ANALYSE DES TRAFICS EXISTANTS: 4.4 MESURE DES TRAFICS:	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics : 4.4.1 Les Comptages :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics : 4.4.1 Les Comptages : 4.4.2 Les enquêtes : c)Relevé des plaques minéralogiques : d)Interview des conducteurs :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics existants : 4.4 Les Comptages : 4.4.1 Les Comptages : 6.1 Creation des minéralogiques : 6.2 Calcul de la Capacite : 7.3 Calcul de la Capacite : 8.4 Calcul de la Capacite : 8.5 Calcul de la Capacite :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics existants : 4.4.1 Les Comptages : 4.4.2 Les enquêtes : c)Relevé des plaques minéralogiques : d)Interview des conducteurs : 4.5 Calcul de la capacité :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 CATEGORIE DE LA ROUTE : 3.4 LA VITESSE DE REFERENCE : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 GENERALITE : 4.2 DIFFERENTS TYPES DE TRAFIC : 4.3 ANALYSE DES TRAFICS EXISTANTS : 4.4 MESURE DES TRAFICS : 4.4.1 Les Comptages : 4.4.2 Les enquêtes : c)Relevé des plaques minéralogiques : d)Interview des conducteurs : 4.5 CALCUL DE LA CAPACITE : 4.5.1 Définition de la capacité : 4.5.2 Calcul du TJMA horizon :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics : 4.4.1 Les Comptages : 4.4.2 Les enquêtes : c)Relevé des plaques minéralogiques : d)Interview des conducteurs : 4.5 Calcul de La Capacité : 4.5.1 Définition de la capacité : 4.5.2 Calcul du TJMA horizon : 4.5.3 Calcul du trafic effectif :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics existants : 4.4.1 Les Comptages : 4.4.1 Les Comptages : 6.1 Circle des plaques minéralogiques : 6.2 Calcul de La Capacité : 6.3 Calcul du TJMA horizon : 6.4 Débit de pointe horaire normal :	
	3.2 Environnement de la route : 3.2.1 La dénivelée cumulée moyenne : 3.2.2 Sinuosité : 3.3 Categorie de la route : 3.4 La vitesse de reference : CHAPITRE 04 : ETUDE DU TRAFIC 4.1 Generalite : 4.2 Differents types de trafic : 4.3 Analyse des trafics existants : 4.4 Mesure des trafics : 4.4.1 Les Comptages : 4.4.2 Les enquêtes : c)Relevé des plaques minéralogiques : d)Interview des conducteurs : 4.5 Calcul de La Capacité : 4.5.1 Définition de la capacité : 4.5.2 Calcul du TJMA horizon : 4.5.3 Calcul du trafic effectif :	

4.5.7 Calcule nombre de voies :	32
4.5.8) Application au projet :	33
Projection future du projet :	
CHAPITRE 05 :PARAMETRES CINEMATIQUE :	37
5.1 Introduction	37
5.2 DISTANCE DE FREINAGE	37
5.3 TEMPS DE REACTION	38
5.4 DISTANCE D'ARRET:	39
5.5 MANŒUVRE DE DEPASSEMENT :	40
5.6 ESPACEMENT ENTRE DEUX VEHICULES:	41
5.7 APPLICATION AU PROJET:	41
CHAPITRE 06: TRACE EN PLAN	44
6.1 Introduction:	44
6.2 LA VITESSE DE REFERENCE (DE BASE)	44
6.2.1 Choix de la vitesse de référence :	44
6.3 PARAMETRES FONDAMENTAUX (B40):	44
6.4 REGLES ET PRINCIPES DU TRACE EN PLAN	44
6.5 LES ELEMENTS DU TRACE EN PLAN:	
6.5.1 Alignements droit :	
6.5.2 Les arcs de cercle :	
6.6 COURBES EN PLAN:	
6.6.1 Le rayon minimal absolu RHM :	
6.6.2 Le rayon minimal normal RHN :	
6.6.3 Le rayon au devers minimal RHd :	
6.6.4 Le rayon non déversé RHnd :	
6.6.5 Détermination des dévers dmax et dmin.	
6.6.6 Détermination du coefficient transversal ft.	
6.6.7 Détermination du coefficient f '' en fonction de la catégorie	
6.6.8 Visibilité en courbe	
6.6.9 Sur largueur.	
6.7 Courbes de raccordements	
6.7.1 Clothoïde.	
6.7.2 Expression mathématique de la Clothoïde	
6.7.3 Elément de la Clothoïde.	
6.7.4 Longueur de la Clothoïde	
CHAPITRE 07 :PROFIL EN LONG.	57
7.1 Definition:	57
7.2 REGLES A RESPECTER DANS LE TRACE DU PROFIL EN LONG:	
7.3 REGLES A RESPECTER DANS LE TRACE DE LA LIGNE ROUGE.	
7.4 ELEMENTS DE COMPOSITION DU PROFIL EN LONG	
7.5 COORDINATION ENTRE LE TRACE EN PLAN ET LE PROFIL EN LONG.	
7.6 DECLIVITE.	
7.6.1 Déclivité minimum.	
7.6.2 Déclivité maximum.	
7.7 LES RACCORDEMENTS EN PROFIL EN LONG.	
7.7.1 Les raccordements en angle saillant (convexes).	
7.7.1 Les raccordements en angle satuant (convexes). 7.7.2 Raccordements concaves (angle rentrant).	
7.7.2 Naccoraements concaves (angle rentrant).	01

	7.8 DETERMINATION PRATIQUE DU PROFIL EN LONG:	62
	7.8.1 Détermination de La position du point de rencontre (S)	63
	7.8.2 Calculs de La tangente.	63
	7.8.3 Projection horizontale de la longueur de raccordement	64
	7.8.4 Calcul de la flèche	64
	7.8.5 Calcul de la flèche Et de l'altitude d'un point courant M sur la courbe	64
	7.8.6 Calcul des cordonnées du sommet de la courbe (T)	64
	7.9 Exemple de Calcul de profil en long rentrant :	65
5	CHAPITRE 08 : PROFIL EN TRAVERS.	67
	8.1 Definition.	67
	8.2 LES ELEMENTS DU PROFIL EN TRAVERS :	67
	8.3 APPLICATION NUMERIQUE AU PROJET.	
6	CHAPITRE 09: LES CUBATURE	71
	9.1 Generalites.	71
	9.2 Definition.	71
	9.3 METHODE DE CALCUL DES CUBATURES.	71
	9.3.1 La méthode SARRAUS.	
	9.3.2 Méthode de GULDEN.	74
	9.3.3 Méthode linéaire	
	9.4 APPLICATION AU PROJET.	
7	CHAPITRE 10 : DIMENSIONNEMENT DU CORPS DE CHAUSSEE	76
	10.1 Generalites:	76
	10.1.1 De la charge des véhicules	
	10.1.2 Des intempéries.	
	10.1.3 Des efforts tangentiels	
	10.2 LA CHAUSSEE.	77
	10.2.1 Au sens géométrique	
	10.2.2 Au sens structurel.	
	10.3 LES DIFFERENTES CATEGORIES DE CHAUSSEE.	79
	10.4 LES PRINCIPALES METHODES DE DIMENSIONNEMENT.	81
	10.4.1 Method C.B.R (California – Bearing – Ratio)	81
	10.4.2 Coefficient d'équivalence.	82
	10.5 APPLICATION AU PROJET.	83
	10.5.1 Méthode de l'indice CBR	83
	10.5.2 Calcul des épaisseurs des différentes couches	84
	10.5.3 Epaisseur équivalente :	84
C	CHAPITRE 11 : ETUDE GEOTECHNIQUE	87
	11.1 DEFINITION	87
	11.2 METHODOLOGIE D'UNE ETUDE GEOTECHNIQUE ROUTIERE	87
	11.3 CARACTERISATION DES SOLS	
	11.4 CONSTITUANTS D'UN SOL	88
	11.5 ESSAIS PERMETTANT DE DETERMINER LES PARAMETRES DE NATURE DES SOLS	
	11.5.1 Analyse granulométrique par tamisage :	89
	11.5.2 Analyse granulométrique par voie humide	91
	11.5.3 Limites d'Atterberg :	92
	11.5.4 Valeur de Bleu du Sol (VBS)	92


11.6 LES ESSAIS DE DETERMINATION DES PARAMETRES DE COMPACTAGE	93
11.6.1 Essai Proctor	93
11.6.2 L'indice de portance (CBR)	93
CHAPITRE 12 : ASSAINISSEMENT.	96
12.1. Generalites :	
12 .2. Objectif de l'assainissement	96
12 .3. ASSAINISSEMENT DE LA CHAUSSEE	
12 .4. DEFINITIONS DES TERMES HYDRAULIQUES	98
CHAPITRE 13 : SIGNALISATION.	101
13.1. DEFINITION:	101
13.2 OBJECTIFS DE SIGNALISATION ROUTIERE	101
13.3 CRITERES A RESPECTER POUR LES SIGNALISATIONS	101
13.4. TYPES DE SIGNALISATION	101
13.5. APPLICATION AU PROJET	105
13.2. Eclairage	111
13.2.1. Catégorie d'éclairage	111
13.2.2. Paramètres d'implantation des luminaires	
13.2.3. Eclairage d'un point singulier	113
CHAPITRE 14 : IMPACT DU PROJET SUR L'ENVIRONNEMENT	115
14.1. IMPACTS DU PROJET SUR L'ENVIRONNEMENT :	115
14.1.1. Les impacts négatifs :	115
14.1.2. Les impacts positifs :	115
14.2. MESURES D'ATTENUATION:	115
14.2.1. Mesures d'atténuation formulées des impacts négatifs et renforcer les impacts positifs :	115
14.2.2 LES MESURES DE RENFORCEMENT DES IMPACTS POSITIFS QUI PORTE SUR:	116
CHAPITRE 15 : DEVIS QUANTITATIF ET ESTIMATIF	118
CONCLUSION GENERALE.	120

Liste des figures

Figure 1-1 Réseau routier Algérien	
Figure 2-1 carte de localisation des limites de la wilaya de Batna	
Figure 2-2 Carte des accès à la wilaya de Batna	
Figure 2-3 localisation du projet	
Figure 3-1 La dénivelée cumulée moyenne h/L	
Figure 3-2 sinuosité	23
Figure 5-1 Distance de freinage	
Figure 5-2 Temps de réactions	
Figure 5-3 Distance d'arrêt	39
Figure 5-4 Espacement entre véhicule	4
Figure 6-1 Elément du tracé en plan	45
Figure 6-2	42
Figure 6-3 La Clothoïde	
Figure 7-1 Eléments du profil en travers	63
Figure 9-1 Volume remblais, déblais.	72
Figure 9-2	73
Figure 10-1 Les différentes catégories de chaussée	80
Figure 10-2 les différentes couches.	85
Figure 11-1 les différentes phases d'un sol	88
Figure 11-2 Courbe granulométrique	9
Figure 11-3 Principe de l'essai Proctor normal et modifié	93
Figure 13 -1 Flèche de sélection	
Figure 13-2 Marque sur la chaussée	100
Figure 13-3 Flèche de rabattement	100
Figure 13-4 Schéma de signalisation stop sur chaussée	102
Figure 13-5 Schéma de marquage par hachures	
Figure 13-6 panneau spéciaux (type A)	110
Figure 13-7 Les Signnaux d'identification des routes (type E)	11.
Figure 13-8 Paramètre de l'implantation des luminaires	112

Liste des tableau

Tableau 1-1 Réseau routier Algérien	04
Tableau 3-1 Détermination de la nature de terrain	22
Tableau 3-1 Sinuosité	23
Tableau 3-2 Environnement de la route	24
Tableau 3-3 Vitesse de référence	25
Tableau 4-1 Valeurs du coefficient P	31
Tableau 4-2 Valeurs de K1 en fonction de l'environnement	32
Tableau 4-3 Valeurs de K2 en fonction de l'environnement	32
Tableau 4-4 Valeurs de la capacité théorique	32
Tableau 4-5 Tableau récapitulatif des résultats	35
Tableau 5-1 Coefficient de frottement longitudinal selon les normes de B40	38
Tableau 5-2 Les valeurs du temps de perception réaction t en fonction de E,CAT et Vr	39
Tableau 5-3 Lois de distance d'arrêt	40
Tableau 5-4 Valeur de dvd et dmd en fonction de la vitesse.	40
Tableau 6-1 Dévers en fonction de l'environnement.	48
Tableau 6-2 Dévers	49
Tableau 6-3 Détermination du coefficient transversal ft	49
Tableau 6-4 Détermination du coefficient F''en fonction de la catégorie	49
Tableau 6-5 Tableau récapitulatif des paramètres cinématiques	
Tableau 6-6 Les rayons en plan selon B40	50
Tableau 7-1Valeur de déclivité maximale[NormesB40].	59
Tableau 7-2 Rayons convexes (angle saillant) [B40]	61
Tableau 7-3 Rayons concave (angle rentrant) [B40]	
Tableau 7-4 tableau récapitulatif	
Tableau 10-1 Les coefficients d'équivalence pour chaque matériau	
Tableau 10-2 tableau de différentes couches.	
Tableau 11-1 Valeurs usuelles de teneur en eau.	
Tableau 13-1 Modulation de la ligne continue	103

Introduction générale :

Après l'indépendance, l'Algérie est entrée dans un autre grand combat qui est la révolution économique et social pour maintenir le pays et lui rendre sa place sur le terrain international et cela passe par l'amélioration et la modernisation de ses infrastructures de base notamment les infrastructures routières afin de désenclaver les localités isolées facilitant ainsi les déplacements et les échanges commerciaux. C'est pour cela que l'état algérien a pris la politique de construire les routes pour arriver aux zones agricoles et aux zones industrielles en commençant par rétablir et aménager le réseau routier que le colonialisme a laissé et peu à peu après pour atteindre un certain développement économique. On a commencé à réaliser de grandes infrastructures et parmi celles-ci on trouve l'autoroute Est-Ouest qui relie plusieurs wilayas du nord du pays.

La wilaya de BATNA doit être reliée à cette autoroute par nécessité vue l'importance de cette wilaya pour l'économie du pays. Durant la réalisation de la présente étude, nous accordons beaucoup d'importance à la sécurité routière, le confort routier pour les usagers de la route.

Notre thème de fin d'étude, consiste à étudier la liaison Autoroutière reliant la Wilaya de Batna à l'Autoroute Est-Ouest du PK 31+260 au PK 43+260 lot1 du PK 31+260 au PK 37+260 sur un linéaire de 06 Kms .

Notre travail consiste en une présentation générale du projet ainsi que les données de base. Une étude de trafic et de tracées en plan avec les différents profils. Aussi le dimensionnement du corps de chaussée à partir de l'étude géotechnique, et par la suite, l'assainissement, la signalisation et l'impact sur l'environnement, ont clôturée notre travail par une conclusion générale

Chapitre I	
Présentation Généra	le

Présentation Générale :

1.1 Introduction:

Avec une superficie de 2.381.741 km2 l'Algérie occupe le deuxième rang en Afrique et la dixième à l'e échelle mondiale. Sa population dépasse les 45 millions d'habitants et dont la plus grande partie est concentrée au nord du pays. Dans notre pays la route joue un rôle de première importance, car 90 % du volume des échanges (des personnes et des marchandises) se font par transport routier. Cela reflète la prédominance du mode de transport routier par rapport aux autres modes, on comprend dès lors, tout l'intérêt que présente le développement du réseau routier ainsi que sa sauvegarde. En effet, la route toujours été un élément stratégique et économique d'une importance considérable, son intervention et ses sollicitations dans plusieurs domaines ne sont plus à démontrer et un facteur déterminant de développement socio-économique et un outil que l'état a entre les mains pour maintenir un certain niveau d'équité entre les populations. L'Algérie dispose d'une couverture relativement importante en manière d'infrastructures routière, en effet le réseau routier algérien demeure l'un des plus denses des continent africain, sa longueur est estimée à 180 000 km de route (dont 153 000 km goudronnées) et plus de 3 756 ouvrages d'art. L'Autoroute Est-Ouest de 1 216 km permet de relier la ville d'Annaba de l'extrême Est jusqu'à la ville de Tlemcen à l'extrême Ouest. La route reste donc le moyen de communication le plus important dans notre pays. Elle est de ce fait la solution qui répond globalement au besoin et qui aide à garantir toute démarche d'aménagement du territoire. Par conséquences, la politique algérienne s'attelle actuellement à réserver une place de plus importante voire aux actions d'entretien et de sauvegarde des éléments du réseau routier.

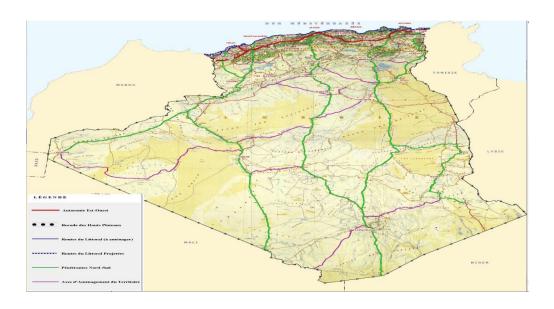


Figure-1.1 Réseau routier Algérien.

1.2 Présentation du Réseau :

Le réseau routier Algérien se présente aujourd'hui comme suit :

Tableau 1-1 Réseau routier Algérien.

Types de Routes	Revêtu	Piste	Total	Taux
AutoRoute est	1216	_	_	1216
ouest				
RN	24 436	3 720	28 156	26%
CW	21 439	2 367	23 806	21.98%
CC	32 008	24 332	56 340	52.02%
Total du Réseau	77 883	30 419	108 302	/

Notant cependant que 30 419 km sont des routes non revêtues (piste), ce réseau en RN, CW, et CC, représente 28 % de l'ensemble du réseau national.

Chapitre II	
Présentation du Proje	t

Chapitre 02: Présentation De Projet

2.1 Présentation de la wilaya :

Lors de l'élaboration de tout projet routier, l'ingénieur doit commencer par la recherche de l'emplacement de la route dans la nature et son adaptation la plus rationnelle à la configuration du terrain en tenant compte des obligations suivantes : Une obligation de sécurité, liée au tracé, à la qualité des véhicules admis et à l'adhérence de la surface de roulement.

- Une obligation de confort.
- Une obligation d'économie globale.
- Dans le cas de l'étude de projet routier, il faudrait tenir compte des véhicules admis aux conditions de surface de la chaussée et aux conditions ambiantes (métrologie, visibilité.....).

Situation géographique :

La Wilaya de Batna est située au nord-est de l'Algérie dans la région des Aurès, à 410 KM de la capital Alger et elle s'élève à plus de 900 m au-dessus du niveau de mer. Sa superficie est de l'ordre de 12.038,76 km². Administrativement, la wilaya compte 61 communes dont 21 sont des chefs de daïra.

Limites géographiques :

La Wilaya de Batna est limitée au nord, par la wilaya de Mila.au nord-est par la wilaya de Oum-El-Bouaghi. à l'est par la Wilaya de Khenchela. Au sud, par Wilaya de Biskra.à l'Ouest ,par la Wilaya de M'sila .Au nord-ouest, par la Wilaya de Sétif .

Figure 2-1 carte de localisation des limites de la wilaya de Batna

2.2 Caractéristique naturelles et conditions climatiques :

2.2.1 Le relief :

La répartition des différents milieux physiques est définie comme suit :

a) Les hautes plaines telliennes :

Elles totalisent une superficie de 2.934 Km², soit 24% de la superficie globale de la wilaya. Au nord, on distingue le domaine des hautes plaines telliennes qui matérialisent la limite nord de la wilaya, particulièrement avec la série des petits chotts tels que chott Beida, chott Taricht, Sebkhet Ezzemoul. Dans cette partie de la wilaya, les altitudes varient de 800 à 1000 m et les pentes excèdent rarement 3 %. Les précipitations sont d'une moyenne de 350 mm/an.

b) Les reliefs montagneux :

Ils totalisent une superficie de 5.340 Km², soit 45% de la superficie totale de la wilaya. Cette zone formée par la jonction des deux Atlas tellien et saharien constitue l'ensemble physique le plus important de la wilaya et elle est formée par l'ensemble des monts du Hodna, de Bou Taleb et de Belezma, pour l'Atlas tellien et par les Aurès, Djebel Metlili et les monts du Zab aussi appelés monts des Zibans, pour l'Atlas saharien. Les altitudes varient de 700 m au Djebel Rebaa sur le versant nord des monts du Zab à 2 326 m au Djebel Chelia qui constitue le plus haut point de l'Algérie du Nord. Les précipitations varient entre 600 et 900 mm/an.

Ces reliefs incluent deux zones de montagnes :

- Les montagnes de l'Atlas tellien : Boutaleb, Foughal, Mestaoua, Guetiane et les monts du Belezma.
- Les montagnes de l'Atlas saharien divisées en trois sous zones :
 - 1. Les montagnes subhumides (Chelia, Mahmel);
 - 2. Les montagnes semi-arides et arides (le reste des Aurès, Metlili, etc.);
 - 3. Les montagnes sahariennes (le versant sud des Aurès et les montagnes du versant nord des monts du Zab).

c) Les hautes plaines steppiques :

Elles totalisent une superficie de 3.764 Km², soit 31% de la superficie totale de la wilaya. Situées dans la partie ouest de la wilaya, elles affichent une altitude moyenne inférieure à 500 m. Elles sont encadrées au nord par les monts du Hodna, à l'est par les monts du Bellezma et le Metlili et au sud par le versant nord des monts du Zab constitué par les djebels Ammar, Mekmizane et Bouzokma. Cette région est divisée en trois zones :

1. La zone des glacis : située en contrebas des reliefs montagneux : N'Gaous- El Djezzar- Sefiane-Boumagueur et Gosbat ;

2. La plaine du Hodna: M'Doukel –Barika – Bitam – Ouled Amma;

3. La zone des chotts : Azil abdelkader.

2.2.2 Le climat :

Le Climat de la ville de Batna est celui d'une région semi-aride. La température moyenne est de 4°C en janvier et de 35°C en juillet. Durant l'hiver la température descend en dessous de zéro la nuit avec souvent des gelées (présence de verglas sur les chaussées). Durant l'été la température peut atteindre les 45°C à l'ombre. La pluviométrie moyenne est de 210 mm par ans.

2.3 Les infrastructures de base existante :

2.3.1 Réseau routier :(2017 source DPSB)

Le réseau routier de la wilaya de Batna a une longueur totale de 4 801 ,51 Km, répartis comme suit :

• Routes nationales : 804,30 km.

• Chemins de wilaya : 650,40 km.

• Chemins communaux : 2 323 ,28 km.

• Pistes : 1 023,53 km

Figure 2-2 Carte des accès à la wilaya de Batna

2.3.2 Le réseau ferroviaire :

Le réseau ferroviaire est constitué de deux voies principales s'étalant sur un linéaire de 179,5 km. La première voie traverse la willaya du nord au sud sur une longueur de 99,7 km, avec quatre (04) gares : Ain Yagout, Djerma, Batna et Ain Touta. Elle relie Batna à Constantine et aux deux ports de Skikda et d'Annaba au nord, et Batna à Biskra et Touggourt au sud comme elle relie le nord du pays (Annaba, Constantine et Alger) à la région des hauts plateaux et le sud du pays. La deuxième voie relie Ain Touta à M'sila sur une longueur de 79.8 km. Elle compte cinq (05) gares à savoir, la Cimenterie, Seggana, Barika, Ouled Abdellah et Ouled Ammar. Le volume de marchandises transportées est de l'ordre de 600 000 tonnes/an et le nombre de voyageurs s'élève à 410 000 voyageurs/an.

2.3.3 Les infrastructures aéroportuaires :

La wilaya dispose d'un aéroport international dénommé « Mostefa Benboulaid » situé dans la commune de Lazro, daïra de Sériana, à 35km au nord du chef-lieu de wilaya.

- Nombre de voyageurs : 97 300/ an.
- Volume de marchandises transportées : 15,20 tonnes/an.

2.4 Adduction eau potable/Assainissement/Hydraulique

2.4.1 Alimentation en Eau Potable:

- Réseaux d'adduction : 1475.87 km ;
- Taux de raccordement en AEP : 94.5 %.

2.4.2 Assainissement:

- Longueur totale du réseau d'assainissement : 2525,33 km;
- Taux de raccordement au réseau public d'assainissement : 89%.

Stations d'épuration :

- Réalisation en 2005 de STEP à Batna et à Timgad ;
- Réalisation de 22 (vingt-deux) bassins de décantation ;
- Réalisation d'une station de lagunage à Ksar- Bellazema et Cherf el Ain dans la commune de Merouana;
- Réalisation de la mini STEP de Fesdis (travaux en cours) ;

- Réalisation de la station d'épuration de la ville de Batna, les collecteurs compris ;
- Réalisation de deux STEP à Arris et Barika (travaux en cours) ;

2.5 Objectif du projet :

- Relier la wilaya de BATNA à l'autoroute Est-Ouest.
- Améliorer le niveau de service de la route et sa sécurité en réduisant le temps de passage sur elle.
- Augmenter la capacité de la route.
- Offrir un nouveau axe de développement et d'échange entre la Wilaya de BATNA et les autres wilaya.
- Permettre un gain de temps pour les usagers.
- Favoriser un grand échange Economique entre les wilayas limitrophes.

2.6 Justification du projet :

La réalisation de cette route va créer une liaison entre la wilaya de Batna et l'autoroute est-ouest et aussi elle permettra aux usagers qui traversent la route de réduire le temps de parcourt donc cet évitement va être une voie rapide entre l'autoroute et le chef-lieu de la wilaya de Batna

2.7 Fonction des autoroutes de liaison

Les autoroutes sont des infrastructures lourdes qui permettre d'offrir aux usagers une grande qualité de service, tant pour la sécurité de circulation que pour le confort et les temps de parcours. Leur réalisation est décidée au vu d'étude socio-économique intégrant les impératifs d'aménagement des territoires. La fonction principale des autoroutes de liaison est découlée des trafics à moyenne et long distance, il est nécessaire d'évaluer les différents courants susceptibles d'être intéressé par l'autoroute, par type de trafic (VL, PL) et aux différents horizons de l'étude

2.8 Description du projet :

Le projet commence au niveau de Ain El Ksar wilaya de BATNA, traverse trois wilaya Batna, Oum El Bouaghi puis la wilaya de Mila, en arrivant à l'autoroute Est-Ouest, Le projet est divisé en deux lots, on s'intéresse dans notre étude au lot N°01, qui appartient à la section du PK 31+260 au PK 37+260, ce tronçon présente des ouvrages hydrauliques et des passages mixtes Agricole et animaux.

Notre section contient:

- Un passage supérieur au PK 34+420 avec un rétablissement de Ain Djasser .
- Un passage supérieur au PK 35+986.85.

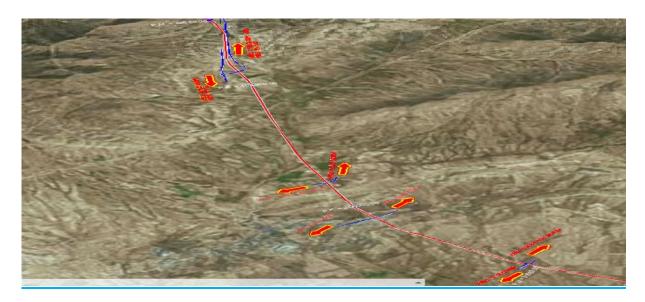


Figure 2.3 localisation du projet

Chapitre III Normes Géométriques et Données de Base

Chapitre 03 : Normes géométriques et données de base .

3.1 Généralités :

L'exécution de chaque projet routier doit être précédée par une reconnaissance du terrain, à ce niveau ça concert le rôle de l'étude géotechnique soit pour prévoir les matériaux et les méthodes adéquats aux travaux de terrassement dans la phase d'exécution. Pour déterminé l'environnement de la route on doit ce referait à la norme de la B40.

3.2 Environnement de la route :

L'environnement de la route définit l'état actuel de la route et est caractérisé par deux (02) indicateurs :

- La dénivelée cumulée moyenne ;
- La sinuosité.

3.2.1 La dénivelée cumulée moyenne :

C'est la somme en valeur absolue des dénivelées successives rencontrées le long de l'itinéraire. Le rapport de la dénivelée cumulée total H à la longueur total de l'itinéraire L permet de mesurer la variation longitudinale du relief.

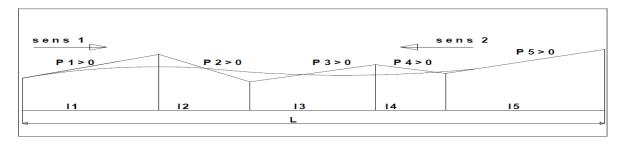


Figure 0-1 La dénivelée cumulée moyenne h/L

$$D_{c} = \frac{|\sum_{Pi>0} P_{i}L_{i} + \sum_{Pi<0} P_{i}L_{i}|}{L}$$

Avec:

P: pente du terrain

L : longueur de l'itinéraire (L=L1+L2+L3+...+Ln)

Source: normes techniques B40

3.2.1.1 Calcul de la dénivelée cumulée moyenne

Tableau 3-1 données de base

PT N°	PK		Z terrain naturel	DH (m)
475	31260	profil 0	957 255	0
476	31280	20	857,355	0,068
477	31300	20	857,423	
477	31300	20	857,482 857,531	0,059
479	31340	20	857,576	0,049
480	31340	20	857,641	0,043
481	31370,854	10,854	857,748	0,107
482	31370,834	9,146	857,796	0,107
483	31400	20	·	0,048
484	31400	20	857,953 858,08	0,137
485	31420	20	858,216	0,127
486	1	20	·	
487	31460 31480	20	858,281	0,065 0,119
			858,4	
488	31500	20	858,568	0,168
489	31520	20	858,85	0,282
490	31540	20	858,998	0,148
491	31560	20	859,211	0,213
492	31580	20	859,379	0,168
493	31585	5	859,376	-0,003
494	31600	15	859,456	0,08
495	31620	20	859,72	0,264
496	31640	20	859,658	-0,062
497	31660	20	859,696	0,038
498	31680	20	859,884	0,188
499	31700	20	860,007	0,123
500	31720	20	860,163	0,156
501	31740	20	860,234	0,071
502	31760	20	860,319	0,085
503	31780	20	860,389	0,07
504	31800	20	860,483	0,094
505	31806	6	860,503	0,02
506	31820	14	860,572	0,069
507	31840	20	860,716	0,144

508	31860	20	860,893	0,177
509	31880	20	861,048	0,155
510	31900	20	861,028	-0,02
511	31920	20	861,145	0,117
512	31940	20	861,323	0,178
513	31960	20	861,432	0,109
514	31980	20	861,609	0,177
515	32000	20	861,906	0,297
516	32020	20	862,164	0,258
517	32040	20	862,48	0,316
518	32042,94	2,94	862,503	0,023
519	32060	17,06	862,676	0,173
520	32080	20	862,993	0,317
521	32100	20	863,26	0,267
522	32120	20	863,425	0,165
523	32140	20	863,832	0,407
524	32160	20	863,873	0,041
525	32180	20	863,903	0,03
526	32200	20	863,86	-0,043
527	32220	20	863,866	0,006
528	32240	20	863,98	0,114
529	32260	20	864,228	0,248
530	32280	20	864,48	0,252
531	32300	20	864,72	0,24
532	32320	20	865,041	0,321
533	32340	20	865,42	0,379
534	32360	20	865,763	0,343
535	32380	20	866,052	0,289
536	32400	20	866,401	0,349
537	32420	20	866,648	0,247
538	32440	20	867,002	0,354
539	32460	20	867,282	0,28
540	32480	20	867,448	0,166
541	32500	20	867,485	0,037
542	32508	8	867,481	-0,004
543	32520	12	867,488	0,007
544	32540	20	867,537	0,049
545	32560	20	867,653	0,116
546	32580	20	867,784	0,131

547	32592	12	867,879	0,095
548	32600	8	867,998	0,119
549	32620	20	868,324	0,326
550	32640	20	868,43	0,106
551	32660	20	868,559	0,129
552	32680	20	868,595	0,036
553	32700	20	868,577	-0,018
554	32720	20	868,525	-0,052
555	32740	20	868,59	0,065
556	32760	20	868,83	0,24
557	32780	20	868,804	-0,026
558	32800	20	868,863	0,059
559	32820	20	869,012	0,149
560	32828	8	869,026	0,014
561	32840	12	868,912	-0,114
562	32860	20	868,777	-0,135
563	32880	20	868,846	0,069
564	32900	20	869,024	0,178
565	32920	20	869,131	0,107
566	32940	20	869,124	-0,007
567	32960	20	869,498	0,374
568	32980	20	869,822	0,324
569	33000	20	869,878	0,056
570	33020	20	870,236	0,358
571	33040	20	870,68	0,444
572	33060	20	871,087	0,407
573	33080	20	871,363	0,276
574	33100	20	871,531	0,168
575	33120	20	871,529	-0,002
576	33140	20	871,473	-0,056
577	33160	20	871,614	0,141
578	33180	20	871,725	0,111
579	33200	20	871,923	0,198
580	33220	20	872,114	0,191
581	33240	20	872,238	0,124
582	33260	20	872,411	0,173
583	33280	20	872,622	0,211
584	33300	20	872,935	0,313
585	33320	20	873,242	0,307

		•	1	1
586	33340	20	873,5	0,258
587	33360	20	873,917	0,417
588	33380	20	874,415	0,498
589	33400	20	874,46	0,045
590	33404	4	874,547	0,087
591	33420	16	874,686	0,139
592	33440	20	874,841	0,155
593	33460	20	875,335	0,494
594	33480	20	875,652	0,317
595	33500	20	876,042	0,39
596	33520	20	876,472	0,43
597	33540	20	877,035	0,563
598	33560	20	877,264	0,229
599	33580	20	877,608	0,344
600	33600	20	877,865	0,257
601	33620	20	878,067	0,202
602	33640	20	878,3	0,233
603	33660	20	878,583	0,283
604	33680	20	878,776	0,193
605	33700	20	878,826	0,05
606	33720	20	879,043	0,217
607	33740	20	879,309	0,266
608	33760	20	879,57	0,261
609	33780	20	879,808	0,238
610	33783,14	3,14	879,844	0,036
611	33800	16,86	879,944	0,1
612	33820	20	880,012	0,068
613	33840	20	880,253	0,241
614	33860	20	880,553	0,3
615	33880	20	880,864	0,311
616	33900	20	881,137	0,273
617	33920	20	881,461	0,324
618	33940	20	881,786	0,325
619	33960	20	882,114	0,328
620	33980	20	882,483	0,369
621	34000	20	882,812	0,329
622	34020	20	883,1	0,288
623	34040	20	883,462	0,362
624	34060	20	883,614	0,152

24061 721	1 721	002 571	0.042
		· · · · · · · · · · · · · · · · · · ·	-0,043
 		, ,	0,775
			0,556
+			0,39
 		·	0,48
+		886,385	0,613
34180	20	886,995	0,61
34200	20	887,683	0,688
34208	8	887,991	0,308
34220	12	888,45	0,459
34240	20	889,119	0,669
34260	20	890,146	1,027
34280	20	891,178	1,032
34292	12	891,913	0,735
34300	8	892,394	0,481
34320	20	893,616	1,222
34340	20	894,886	1,27
34360	20	896,129	1,243
34380	20	897,424	1,295
34400	20	898,469	1,045
34420	20	899,232	0,763
34440	20	899,667	0,435
34460	20	900,543	0,876
34480	20	901,484	0,941
34500	20	902,504	1,02
34520	20	903,455	0,951
34540	20	904,492	1,037
34560	20	905,41	0,918
34580	20	906,469	1,059
34600	20	907,614	1,145
34620	20	908,786	1,172
34640	20	910,129	1,343
34660	20	911,807	1,678
34680	20	913,629	1,822
34700	20	915,249	1,62
34720	20	916,654	1,405
34740	20		1,264
34760	20		0,064
34780	20	916,374	-1,608
	34208 34220 34240 34260 34280 34292 34300 34320 34340 34360 34380 34400 34420 34440 34460 34520 34540 34560 34580 34600 34620 34640 34680 34720 34740 34760	34080 18,279 34100 20 34120 20 34140 20 34160 20 34180 20 34200 20 34208 8 34220 12 34240 20 34280 20 34292 12 34300 8 34320 20 34340 20 34380 20 34440 20 34400 20 34440 20 34450 20 34500 20 34500 20 34500 20 34500 20 34500 20 34500 20 34600 20 34600 20 34600 20 34600 20 34600 20 34600 20 34600 20 34600 20 34600 20	34080 18,279 884,346 34100 20 884,902 34120 20 885,292 34140 20 885,772 34160 20 886,385 34180 20 886,995 34200 20 887,683 34208 8 887,991 34220 12 888,45 34240 20 899,119 34260 20 891,178 34280 20 891,178 34292 12 891,913 34300 8 892,394 34320 20 893,616 34340 20 894,886 34360 20 897,424 34400 20 898,469 34420 20 899,232 34440 20 899,667 34460 20 903,455 34540 20 903,455 34540 20 905,41 34580 <td< td=""></td<>

	I 24000 I	• •	014000	l
664	34800	20	914,238	-2,136
665	34820	20	912,886	-1,352
666	34840	20	912,061	-0,825
667	34860	20	910,977	-1,084
668	34880	20	909,784	-1,193
669	34900	20	908,689	-1,095
670	34920	20	907,92	-0,769
671	34940	20	907,467	-0,453
672	34960	20	907,428	-0,039
673	34980	20	907,587	0,159
674	35000	20	907,746	0,159
675	35020	20	908,042	0,296
676	35040	20	908,435	0,393
677	35060	20	908,969	0,534
678	35062,672	2,672	909,059	0,09
679	35080	17,328	909,517	0,458
680	35100	20	910,123	0,606
681	35120	20	910,725	0,602
682	35140	20	911,348	0,623
683	35160	20	911,985	0,637
684	35180	20	912,751	0,766
685	35200	20	913,539	0,788
686	35220	20	914,308	0,769
687	35240	20	915,02	0,712
688	35260	20	915,973	0,953
689	35280	20	917,004	1,031
690	35300	20	917,988	0,984
691	35320	20	919,005	1,017
692	35340	20	920,127	1,122
693	35360	20	921,368	1,241
694	35380	20	922,974	1,606
695	35400	20	925,03	2,056
696	35420	20	927,511	2,481
697	35440	20	930,951	3,44
698	35460	20	933,386	2,435
699	35480	20	933,895	0,509
700	35500	20	933,421	-0,474
701	35520	20	932,023	-1,398
702	35540	20	930,611	-1,412

703	35560	20	930,801	0,19
704	35580	20	930,294	-0,507
705	35600	20	928,775	-1,519
706	35620	20	928,687	-0,088
707	35640	20	929,069	0,382
708	35660	20	929,445	0,376
709	35680	20	930,098	0,653
710	35700	20	930,839	0,741
711	35720	20	931,723	0,884
712	35740	20	932,492	0,769
713	35760	20	932,968	0,476
714	35780	20	933,393	0,425
715	35800	20	933,983	0,59
716	35820	20	934,544	0,561
717	35840	20	935,148	0,604
718	35860	20	935,738	0,59
719	35880	20	936,315	0,577
720	35900	20	936,845	0,53
721	35920	20	937,358	0,513
722	35940	20	937,655	0,297
723	35960	20	938,124	0,469
724	35980	20	939,057	0,933
725	35986,95	6,95	938,918	-0,139
726	36000	13,05	938,565	-0,353
727	36020	20	937,844	-0,721
728	36040	20	937,43	-0,414
729	36060	20	936,955	-0,475
730	36080	20	936,546	-0,409
731	36100	20	936,032	-0,514
732	36120	20	935,484	-0,548
733	36140	20	934,978	-0,506
734	36160	20	934,491	-0,487
735	36168	8	934,295	-0,196
736	36180	12	933,989	-0,306
737	36200	20	933,512	-0,477
738	36220	20	933,058	-0,454
739	36240	20	932,748	-0,31
740	36252	12	932,499	-0,249
741	36260	8	932,277	-0,222

742	36280	20	931,663	-0,614
743	36300	20	931,122	-0,541
744	36320	20	930,665	-0,457
745	36340	20	930,173	-0,492
746	36360	20	929,702	-0,471
747	36380	20	929,25	-0,452
748	36400	20	928,736	-0,514
749	36420	20	928,179	-0,557
750	36440	20	927,668	-0,511
751	36460	20	927,171	-0,497
752	36480	20	926,881	-0,29
753	36500	20	926,562	-0,319
754	36520	20	926,275	-0,287
755	36540	20	925,677	-0,598
756	36560	20	925,288	-0,389
757	36580	20	925,037	-0,251
758	36600	20	924,674	-0,363
759	36620	20	924,261	-0,413
760	36640	20	923,931	-0,33
761	36660	20	923,713	-0,218
762	36680	20	923,52	-0,193
763	36700	20	923,324	-0,196
764	36720	20	923,283	-0,041
765	36740	20	923,299	0,016
766	36760	20	923,529	0,23
767	36780	20	924,048	0,519
768	36800	20	924,602	0,554
769	36807,761	7,761	924,76	0,158
770	36820	12,239	924,957	0,197
771	36840	20	925,038	0,081
772	36860	20	924,747	-0,291
773	36880	20	924,298	-0,449
774	36900	20	923,717	-0,581
775	36920	20	923,364	-0,353
776	36940	20	923,71	0,346
777	36960	20	923,113	-0,597
778	36980	20	923,132	0,019
779	37000	20	923,18	0,048
780	37020	20	923,026	-0,154

781	37040	20	922,427	-0,599
782	37060	20	921,912	-0,515
783	37080	20	921,305	-0,607
784	37100	20	920,357	-0,948
785	37120	20	919,165	-1,192
786	37140	20	920,99	1,825
787	37160	20	921,216	0,226
788	37180	20	921,177	-0,039
789	37191,212	11,212	921,184	0,007
790	37200	8,788	921,227	0,043
791	37220	20	921,489	0,262
792	37240	20	921,918	0,429
793	37260	20	922,569	0,651
	$\Sigma =$	6000	$\Sigma =$	65,214

Alors H/L = 65,214/6000 = 0,010869

Dc = 1,09 %

N°	Classification du	Dénivelée
	terrain	cumulée
1	Plat	Dc<1.5%
2a	Plat mais inondable	Dc=1.5%
2b	Terrain vallonné	1.5% <dc≤4%< th=""></dc≤4%<>
3	Terrain montagneux	Dc>4%

Tableau 3.2 : Détermination de la nature des terrains.

Ce qui conduit à un terrain plat à partir du (tableau 3.2)

3.2.2 Sinuosité:

La sinuosité T d'un itinéraire est égale au rapport de la longueur L_S sur la longueur totale de l'itinéraire.

T= (longueur sinueuse des sections dont Ri<200m)/L_{total}

Les trois types d'environnement Ei distingués résultent du croisement des deux paramètres précédents selon le tableau ci-dessous :

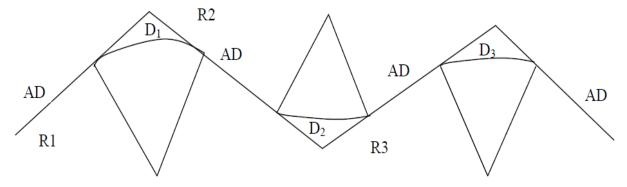


Figure 3-2 sinuosité

3.2.2.1 Calcul de la sinuosité :

$$\sigma = \frac{LS}{L}$$

Avec:

- Ls : la somme des développées des rayons inférieurs ou égale à 200m (R≤200m).
- L: la longueur totale de la route.
- Ls=0 si aucun rayon n'est inférieur à 200m.

Tableau 3.3 Sinuosité.

	Classification	Sinuosité
1	Sinuosité faible	σ<0.10
2	Sinuosité moyenne	0.10<σ<0.30
3	Sinuosité forte	σ>0.30

Dans notre cas:

L = 6000 m

Ls=0

 $\sigma = 0$ caractéristique d'une sinuosité faible (tableau).

Tableau 3.4 Environnement de la route.

Sinuosité et relief	Faible	Moyenne	Forte
Plat	E 1	E2	/
vallonné	E2	E2	E3
Montagneux	/	E3	E3

Les trois types d'environnement résultent du croisement des deux paramètres précédents selon le tableau ci-dessous :

Dans notre cas:

Un terrain Plat /Une Sinuosité Faible / L'environnement de la route E1

3.3 Catégorie de la route :

Selon la B40 (norme technique d'aménagement des routes algériennes) les routes sont classées en Cinq catégories fonctionnelles, correspondants aux finalités économiques et administratives).

Les Cinq catégories de la route sont :

CAT 1: Liaison entre les grands centres économiques.

CAT 2 : Liaison entre d'industrie de transformation et d'industrie légère.

CAT 3 : Liaison entre des chefs-lieux de wilaya et de daïras non desservie par le

Réseau de CAT1 et CAT 2.

CAT 4 : Liaison des centres de vie non relie au réseau de CAT 1-2-3.

CAT 5: Routes et pistes non comprises dans les CAT précédentes.

Dans le cas de notre projet, et après l'analyse des données il s'avère que La catégorie de notre projet rentre dans la CAT 1

3.4 La vitesse de référence :

La vitesse de référence représente la vitesse de circulation des véhicules sur une route a circulation normale et au-dessous de laquelle les véhicules rapides peuvent circuler normalement. Elle est déterminée en fonction de l'importance des liaisons assurées par la section de la route et par les conditions géographiques. La vitesse est donc en fonction de (catégories, environnement)

Tableau 3-4 Vitesse de référence.

Environnement	E1	E2	E3
Catégorie			
CAT 1	120- <mark>100</mark> -80	100-80-60	80-60-40
CAT 2	120-100-80	100-80-60	80-60-40
CAT 3	120-100-80	100-80-60	80-60-40
CAT 4	100-80-60	80-60-40	60-40
CAT 5	80-60-40	60-40	40

Pour notre projet et après analyse des données il s'avère que Vr = 100 km/h.

Chapitre IV Etude du Trafic

Chapitre 04: Etude du Trafic

4.1 Généralité:

L'étude de trafic est une étape primordiale dans toute réflexion relative a un projet routier. cette étude permettra de déterminer la virulence du trafic et son agressivité, et aussi le type d'aménagement à réaliser. Le trafic journalier moyen annuel (TJMA) est nécessaire pour déterminer les différentes caractéristiques d'un tronçon routier (nombre de voies, type d'échanges et aussi dimensionnement de la chaussée).

L'étude de trafic s'attachera à la connaissance des trafics :

- La nature des flux, pour déterminer les points d'échange
- Le niveau des trafics et leur évolution pour programmer dans le temps les investissements
- Les mouvements directionnels permettant de définir les caractéristiques des échanges.
- Le niveau de trafic poids lourds déterminant directement le dimensionnement de la structure de la chaussée.

4.2 Différents types de trafic :

a) Trafic normal:

C'est un trafic existant sur l'ancien aménagement sans prendre en considération le trafic du nouveau projet.

b) Trafic dévié :

C'est le trafic attiré vers la nouvelle route aménagée. La déviation du trafic n'est qu'un transfert entre les différents moyens d'atteindre la même destination.

c) Trafic total:

C'est la somme du trafic annuel et du trafic dévié.

d) Trafic induit:

C'est un trafic qui résulte de nouveau déplacement des personnes vers d'autres déviations.

4.3 Analyse des trafics existants :

Pour connaître en un point et à un instant donné le volume et la nature du trafic, il est nécessaire de procéder à un comptage. Ces derniers nécessitent une logistique et une organisation appropriées. Les analyses de circulation sur les diverses artères du réseau routier sont nécessaires pour l'élaboration des plans d'aménagement ou de transformation de l'infrastructure, détermination des dimensions à donner aux routes et appréciation d'utilité des travaux projetés.

4.4 Mesure des trafics :

Cette mesure est réalisée par différents procédés complémentaires :

- Les comptages
- Les enquêtes

4.4.1 Les Comptages :

C'est l'élément essentiel de l'étude de trafic, on distingue deux types de comptage

- Les comptages manuels.
- Les comptages automatiques.
- a) Comptages manuels: Ils sont réalisés par les enquêteurs qui relèvent la composition du trafic pour compléter les indicateurs fournis par les comptages automatiques. Les comptages manuels permettent de connaître le pourcentage de poids lourds et les transports en commun, Les trafics sont exprimés en moyenne journalière annuelle (T.J.M.A)
- **b)** Comptages automatiques : Ils sont effectués à l'aide d'appareil enregistreur comportant une détection pneumatique réalisée par un tube en caoutchouc tendu en travers de la chaussée. On distingue ceux qui sont permanents et ceux qui sont temporaires.

4.4.2 Les enquêtes :

Cette méthode permet en particulier de recenser les flux de trafic inter zonaux, en définissant leur origine et destination. Il existe plusieurs types d'enquêtes.

a) Enquêtes « origine-destination » :

Il est plus souvent opportun de compléter les informations recueillies à travers des comptages par des données relatives à la nature du trafic et à l'orientation des flux, on peut recourir en fonction du besoin, à diverse méthodes, lorsque l'enquête est effectuée sur tous les accès à une zone prédéterminée (une agglomération entière, une ville ou seulement un quartier) on parle d'enquête cordon. Cette méthode permet en particulier de recenser les flux de trafic inter zonaux.

b)Les Enquêtes papillons ou distributions :

Le principe consiste à délimiter le secteur d'enquête et à définir les différentes entrées et sorties, un agent colle un papillon sur le pare-brise de chaque véhicule (ou on distribue une carte automobiliste), sachant que ces papillons et sont différents à chaque entrée un autre agent identifie l'origine des véhicules en repérant les papillons ou en récupérant les cartes. Les avantages de la méthode : sont la rapidité de l'exploitation et la possibilité de pouvoir se faire de jour comme de nuit. Les inconvénients de la méthode

: c'est que l'enquête ne permet pas de connaître l'origine et la destination exacte des véhicules, mais seulement les points d'entrées et de sortie du secteur étudié.

c)Relevé des plaques minéralogiques :

On relève, par enregistrement sur un magnétophone en différents points (à choisir avec soin) du réseau, les numéros minéralogiques des véhicules ou au moins une (de l'ordre de quatre à chiffres ou lettres) la comparaison de l'ensemble des relevés permet d'avoir une idée des flux.

Cette méthode permet d'avoir des résultats sans aucune gêne de la circulation par contre le relevé des numéros est sujet à un risque d'erreur non négligeable.

d)Interview des conducteurs :

Cette méthode est lourde mais donne des renseignements précis.

On arrête (avec l'aide des forces de gendarmerie pour assurer la sécurité) un échantillon de véhicules en différents points du réseau et on questionne (pendant un temps très court qui ne doit pas dépasser quelques minutes sous peines d'irriter l'usager) l'automobiliste pour recueillir les données souhaitées :

- ✓ Origine.
- ✓ Motif.
- ✓ Fréquence et durée.
- ✓ Trajet utilisé.

Ces informations s'ajoutent à celles que l'enquêteur peut relever directement tels que le type de véhicule.

e)Les enquêteurs à domicile – Enquête ménage :

Un échantillon de ménages sélectionné à partir d'un fichier fait l'objet d'une interview à son domicile par une personne qualifiée, le temps n'étant plus limité comme dans le cas des interviews le long des routes, on peut poser un grand nombre de questions et obtenir de nombreux renseignements en général, ce type d'enquête n'est pas limité à l'étude d'un projet particulier mais porte sur l'ensemble des déplacements des ménages dans une agglomération.

4.5 Calcul de la capacité :

4.5.1 Définition de la capacité :

On définit la capacité de la route par le nombre maximal des véhicules pouvant raisonnablement passé sur une section donnée d'une voie dans une direction (ou deux directions) avec des caractéristiques géométriques et

de circulation pendant une période de temps bien déterminée. La capacité s'exprime sous forme d'un débit horaire

4.5.2 Calcul du TJMA horizon:

La formule qui donne le trafic journalier moyen annuel à l'année horizon est :

Avec:

 $TJMAh = TJMAo(1+\tau)n$

TJMAh: le trafic à l'année horizon.

TJMAo : le trafic à l'année de référence.

n: nombre d'année.

 τ : taux d'accroissement du trafic (%).

4.5.3 Calcul du trafic effectif:

C'est le trafic traduit en unité de véhicules particulier (UVP), en fonction du type de route et de l'environnement. Pour cela on utilise des coefficients d'équivalence pour convertir les PL en (UVP). Le trafic effectif est donné par la relation :

$$Teff = [(1-Z) + PZ].TJMah$$

Teff: trafic effectif à l'horizon.

Z : pourcentage de poids lourds (%).

P : coefficient d'équivalence pour le poids lourd, il dépend de la nature de la route.

La présence des véhicules poids lourds réduit le débit des routes ainsi l'encombrement des poids lourds est évaluer come P véhicules particulaire, P variant et sa valeur est associée à la nature topographique du terrain et le nombre des voies d'une route. Le tableau si dessous nous permet de déterminer le coefficient d'équivalence « P » pour poids lourds en fonction de l'environnement et les caractéristiques de notre route.

Tableau 4-1 Valeurs du coefficient P

Routes	E1	E2	E3
2 voies	3	6	12
3 voies	2.5	5	10
4 voies	2	4	8

4.5.4 Débit de pointe horaire normal :

Le débit de pointe horaire normal est une fraction du trafic effectif à l'horizon il est exprimé en unité de véhicule particulier (UVP). Il est donné par la formule :

$$Q = (\frac{1}{n}) \times Teff$$

Avec:

n: Nombre d'heure, (en général n=8 heures) d'après le B40 on prend (1/n)=0.12.

Q : Débit de pointe horaire est exprimé en UVP/h.

4.5.5 Débit horaire admissible :

Le débit horaire maximal accepté par voie est déterminé par la formule :

Qadm
$$(UVP/h) = K1.K2.$$
 Cth

Avec:

K1: coefficient lié à l'environnement.

K2 : coefficient de réduction de capacité.

Cth : capacité effective par voie, qu'un profil en travers peut écouler en régime stable.

Valeur de K1:

Tableau 4-2 Valeurs de K1 en fonction de l'environnement.

Env	E1	E2	E3
K1	0.75	0.85	0.90 à 0.96

Valeur de K2:

Tableau 4-3 Valeurs de K2 en fonction de l'environnement.

Env. et CAT	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5
E1	1.00	1.00	1.00	1.00	1.00
E2	0.99	0.99	0.99	0.98	0.98
E3	0.91	0.95	0.97	0.96	0.96

Valeur de Cth : Capacité théorique du profil en travers en régime stable.

4.5.6 Capacité théorique :

Tableau 4-4 Valeurs de la capacité théorique.

Route à 2 voies de 3.5m	1500 à <mark>2000 uvp/h</mark>
Route à 3 voies de 3.5m	2400 à 3200 uvp/h
Route à chaussées séparées	1500 1800 uvp/h

4.5.7 Calcule nombre de voies :

Chaussée bidirectionnelle:

* On compare Q à Qadm pour les divers types de routes et on prend le profil permettant d'avoir

$$Q \leq Qadm$$

Chaussée unidirectionnelle:

* Le nombre de voies par chaussée est le nombre le plus proche du « N » avec :

N = S.d /Qadm

Tel que : S : coefficient de dissymétrie, en général égal à 2/3.

Qadm: débit admissible par voie.

d : débit à l'année d'horizon

4.5.8) Application au projet :

D'après les résultats du trafic qui nous ont été fournis par la SETA qui sont les suivants :

- ✓ Le trafic à l'année de compactage 2017TMJA = 13 019V/J.
- ✓ Le taux d'accroissement annuel du trafic $\tau = 3.3^{\circ}/_{o}$.
- ✓ La vitesse de base sur le tracé Vb =100 km /h.
- ✓ Le pourcentage moyen de poids lourds $Z = 20^{\circ}/_{o}$.
- ✓ L'année de mise en service sera en 2025
- ✓ Environnement (E1) Catégorie (CAT1).
- ✓ La durée de vie estimée à 20 ans.

Projection future du projet :

$$TJMA_n = (1+\tau)^n \times TJMA_0$$

Trafic a l'année de mise en service (2025) :

$$TIMA_{2025} = (1 + 0.033)^8 \times 13019$$

$$TJMA_{2025} = 16880 \text{ v/j}$$

Trafic a l'année horizon (2040) pour une durée de vie de 20 ans :

$$TJMA_{2045} = (1 + 0.033)^{20} \times 16\,880$$

Trafic Effectif:

$$T_{\text{eff}} = [(1-z) + p.z] \times TJMA_{\text{h}}$$

Année de mise en service :

$$T_{\rm eff2025} = [(1-0.2) + 2 \times 0.2] \times 16880$$

 $T_{\rm eff2025} = 20\ 256\ \rm uvp/j$

Année horizon

$$T_{\text{eff2045}} = [(1-0.2) + 2 \times 0.2] \times 32313$$

$$T_{\rm eff2045=}38776 \, \rm vp/j$$

Débit de point horaire normale :

- $Q=(\frac{1}{n})\times T_{eff}$
- $Q_{2025} = 0.12 \times 20256$
- $Q_{2025} = 2431$
- $Q_{2045} = 0.12 \times 38776$
- Q₂₀₄₅=4 653 uvp/h

Debit hoarier admissible:

C'est le débit admissible que peut supporter une route :

Le débit que supporte une section donnée :

- K1 : coefficient correcteur pris égal à 0.75 pour E1 (d'après le B40)
- K2 : coefficient correcteur pris égala 1 pour environnement (E1) et catégorie (C1) (d'après le B40)
- Cth: capacité théorique Cth= 2000(d'après le B40 pour E1, C1 et pour une chaussée à2 voies).
- Qadm= 0,75 x1 x 2000
- Qadm=1500 uvp/h /sens

Calcul nombre des voies :

$$N = S \times Q / Qadm$$

S : coefficient de dissymétrie, en général égal à 2/3

$$N = (2/3) \times (4653/1500)$$

$$N = 2.07 = 2$$
 voies /sens.

Calcul de l'année de saturation de 2x2 voies :

Qsaturation = 4 x Qadm

Qsaturation = $4 \times 1500 = 6000 \text{ uvp/h}$

$$n = \frac{\ln(\frac{Q_{Sat}}{Q})}{\ln(1+\tau)} = \frac{\ln(\frac{6000}{1500})}{\ln(1+0.033)}$$

$$n = 43ans$$

D'où notre route sera saturée dans 43 ans après la mise en service donc l'année de saturation est 2068

Tableau 4-5 Tableau récapitulatif des résultats

TJMA ₂₀₂₅	16 880
TJMA ₂₀₄₅	32 313
T _{eff2025}	20 256
T _{eff2045}	38 776
Q ₂₀₂₅	2 431
Q2045	4 653
<i>Qadm</i>	1500
N	2voies

CONCLUSION:

Le profil en travers de notre projet, selon l'étude de trafic, est composé de : (2×2) voies de 3,5m de largeur.

La saturation surviendra 43 ans après l'année de mise en service soit en 2068

Chapitre V Paramètres Cinématique

Chapitre 05 : Paramètres Cinématique :

5.1 Introduction

L'étude cinématique, sont des paramètres relatifs à la considération du mouvement des véhicules sur la route, ces paramètres déterminent les caractéristiques nécessaires au tracé du projet. Elle a pour but de déterminer les paramètres cinématiques nécessaire à l'évaluation de la visibilité qui conditionne le comportement de l'usager sur la route.

5.2 Distance de freinage

Les possibilités de freinage sont limitées, du fait du jeu de l'adhérence, il existe une distance minimum pour obtenir l'arrêt complet du véhicule. La distance de freinage d₀ est la distance parcourue pendant l'action de freinage pour annuler la vitesse dans une condition conventionnelle de la chaussée mouillée. Elle varie suivant la pente longitudinale de la chaussée

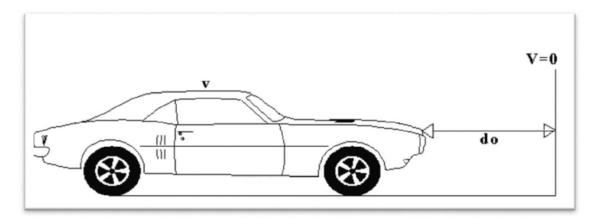


Figure 5-1 Distance de freinage.

Dans le cas général, la route est déclive c'est-à-dire elle est en rampe ou en pente.

$$d_0 = \frac{4}{1000} \times \frac{V^2}{(fl \pm i)}$$

Dans ce cas la formule d₀ sera :

Rampe :
$$d_0 = \frac{4}{1000} \times \frac{Vr^2}{(frl+e)}$$

Pente :
$$d_0 = \frac{4}{1000} \times \frac{Vr^2}{(frl-e)}$$

En palier (e=0) on aura:

$$d_0 = \frac{4}{1000} \times \frac{Vr^2}{(frl)}$$

Vr: Vitesse de référence en Km/h.

e: Déclivité.

f_{rl}: Coefficient de frottement longitudinal qui dépend de la vitesse Vr.

Le coefficient de frottement longitudinal f varie avec l'état des pneus de la chaussée

Comme il peut varie avec la vitesse du véhicule.

Tableau 5-1 Coefficient de frottement longitudinal selon les normes de B40

	Vr (Km/h)	40	60	80	100	120	140
	Catégorie 1-2	0.45	0.42	0.39	0.36	0.33	0.30
fl	Catégorie 3-4-5	0.49	0.46	0.43	0.40	0.36	/

D'après les valeurs du tableau des normes B40 et en ce qui concerne notre projet

On a $f_1 = 0.36$

5.3 Temps de réaction

Souvent l'obstacle est imprévisible et le conducteur a besoin d'un temps pour réaliser la nature de l'obstacle ou du danger qui lui apparaît. Ce temps est en général appelé temps de perception du conducteur, il diffère d'une personne à une autre et varie en fonction de l'état psychique et physiologique. De nombreuses études faites sur le comportement des conducteurs, ont montré que le temps de perception et de réaction est en moyenne :

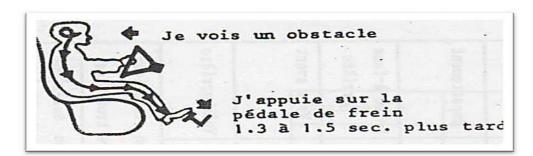


Figure 5-2 Temps de réactions

Dans une attention concentrée :

t= 1.2 s pour un obstacle imprévisible

t = 0.6 s pour un obstacle prévisible

On prend t = 1.8 s par rapport à la catégorie et la vitesse :

Tableau 0-2 Les valeurs du temps de perception réaction t en fonction de E,CAT et Vr

CAT	CAT 1-2		CAT 3-4-5	
Env				
VITESS	> 80	<80	>60	<60
E				
E1 et E2	1.8s	2s	1.8s	2s
Е3		1.8s		

Donc la distance parcourue pendant le temps de réaction et de perception est :

 $\mathbf{d_1} = \mathbf{v} \times \mathbf{t}$ Avec: $\mathbf{v} : \mathbf{m/s}$ $\mathbf{t} : \mathbf{s}$

5.4 Distance d'arrêt :

La distance parcourue par le conducteur entre le moment dans lequel l'œil du conducteur perçoit l'obstacle et l'arrêt effectif du véhicule est désigné sous le nom de distance d'arrêt (d).

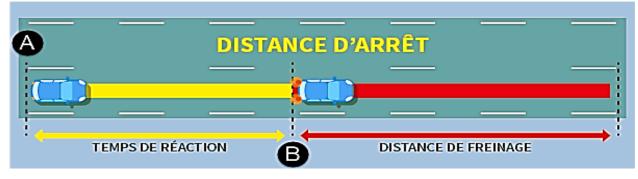


Figure 5-3 Distance d'arrêt.

Tableau 5-3 Lois de distance d'arrêt.

Nature de route	Alignement droit	courbe
T(s)		
1.8	$D1 = d_0 + 0.50v$	D1=1.25 d_0 +0.50v
	-	
2	$D1 = d_0 + 0.55v$	D1=1.25 d_0 +0.55v
	-	

D1 : distance d'arrêt

 $\mathbf{D_0}$: distance de freinage

V: vitesse (km/h)

5.5 Manœuvre de dépassement :

dvdm: Distance de visibilité et de manœuvre de dépassement moyenne

dvdN: Distance de visibilité et de manœuvre de dépassement normale

dmd : Distance de visibilité de manœuvre et de dépassement

Tableau 5-4 Valeur de dvd et dmd en fonction de la vitesse.

Vr(Km/h)	40	60	80	100	120	140
dvdm	4v	4v	4v	4.2v	4.6v	5v
uvum	160	240	320	420	550	700
dvdN	6v	6v	6v	6.2v	6.6v	7v
uvan	240	360	480	620	790	980
Dmd	70	120	200	300	425	/

D'après le tableau des normes de laB40, on tire les valeurs de dvdm, dvdn et dmd en fonction de la vitesse.

5.6 Espacement entre deux véhicules :

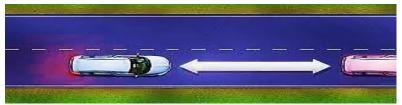


Figure 5-4 Espacement entre véhicule

L'espacement entre deux véhicules : est une notion. Il s'agit de la distance qu'un conducteur doit conserver entre son véhicule et celui qui le précède, celle-ci dépend directement de la vitesse du véhicule. Elle correspond à la distance parcourue pendant deux secondes, durée supérieure au temps de réaction : ainsi si les deux véhicules ont la même capacité de freinage, il n'y aura pas de collision

$$E = 8 + 0.2V \ 0.003V^2$$

5.7 Application au projet :

Distance de freinage:

Pour notre projet on a fl: 0.36

 \triangleright En alignement droit : e = 0 (cas purement théorique)

$$d_0 = \frac{4}{1000} \times \frac{V^2}{(fl \pm i)} \quad d_0 = \frac{4}{1000} \times \frac{100^2}{(0.36)} = 111.111 \text{ m}$$

➤ En rampe : e = +0.052

$$\begin{aligned} d_0 &= \frac{4}{1000} \times \frac{V^2}{(fl \pm e)} \\ d_0 &= = \frac{4}{1000} \times \frac{100^2}{(0.36 + 0.052)} = 97.087 m \end{aligned}$$

 \triangleright En pente : e = -0.052

$$d_0 = \frac{4}{1000} \times \frac{V^2}{(fl \pm e)}$$

$$d_0 == \frac{_4}{_{1000}} \times \frac{_{100^2}}{_{(0.36-0.052)}} = \ 129.870 \ m$$

Distance d'arrêt :

a) En alignement droit :

On a
$$Vr = 100 \text{ km/h}$$
 $t = 1.8s$ $d = d0 + 0.50 \text{ Vr}$

ightharpoonup En palier: $d = 111.11 + (0.50 \times 100) = 161,111 m$

- ightharpoonup En rampe : d = 97.087+ (0.50×100) = 141,087 m
- ightharpoonup En pente: d =129,870+ (0.50×100) = 179,870 m

b) En courbe:

On a
$$Vr = 100 \text{ km/h}$$
 = 1.8s

d = 1.25d0 + 0.50Vr

- ightharpoonup En palier: $d = 1.25 \times 111.111 + (0.50 \times 100) = 188,888 m$
- ightharpoonup En rampe: $d = 1.25 \times 97.087 + (0.50 \times 100) = 171,358 m$
- ightharpoonup En pente: d =1.25×129.870+ (0.50×100) = 212,337m

$$Dvdm = 420 \text{ m} \quad dvdN = 620 \text{m} \quad \text{dmd} = 300 \text{ m}$$

Espacement entre véhicules :

$$E = 8 + 0.2v + 0.003v^2$$

$$E = 8 + 0.2(100) + 0.003(100)^{2}$$

E = 58.

Chapitre VI Tracé en plan

Chapitre 06 : Tracé en plan

6.1 Introduction:

Lors de l'élaboration de tout projet routier l'ingénieur doit commencer par la recherche du couloir de la route dans le site concerné. Le tracé en plan est une succession des droites reliées par des liaisons. Il représente la projection de l'axe routier sur un plan horizontal qui peut être une carte topographique ou un relief schématise par des courbes de niveau. Les caractéristiques des éléments constituant le tracé en plan doivent assurer les conditions de confort et de stabilité et qui sont données directement dans les codes routiers en fonction de la vitesse de base et le frottement de la surface assuré par la couche de roulement.

6.2 La vitesse de référence (de base)

La vitesse de référence (Vb) c'est le paramètre qui permet de déterminer les caractéristiques géométriques minimales d'aménagement des points singuliers pour le confort et la sécurité des usagers, la vitesse de référence ne devrait pas varier sensiblement entre les sections différentes, un changement de celle-ci ne doit être admis qu'en coïncidence avec une discontinuité perceptible à l'usager (traverser d'une ville, modification du relief... etc.).

6.2.1 Choix de la vitesse de référence :

Le choix de la vitesse de référence dépend de :

- Type de route.
- Importance et genre de trafic.
- Topographie.
- Conditions économiques d'exécution et d'exploitation.

6.3 Paramètres fondamentaux (B40) :

Pour le cas de notre projet d'après les normes la route à aménager on opte pour une vitesse de référence de 100 km/h qui correspond à la catégorie L1 selon la norme établie par l'ICTAAL 2000.

6.4 Règles et principes du tracé en plan

Les normes exigées et utilisées dans notre projet sont résumées dans le B40, il faut respecter ces normes dans la conception ou dans la réalisation. Dans ce qui suit, on va citer certaines exigences qui nous semblent pertinentes.

- L'adaptation de tracé en plan au terrain naturel afin d'éviter les terrassements importants.
- Le raccordement du nouveau tracé au réseau routier existant.

- Eviter de passer sur des terrains agricoles et des zones forestières.
- Eviter au maximum les propriétés privées.
- Eviter le franchissement des oueds afin d'éviter le maximum d'ouvrages d'arts et cela pour des raisons économiques.
- Eviter les sites qui sont sujets à des problèmes géologiques.
- Limiter le pourcentage de longueur des alignements entre 40% et 60% de la longueur totale de tracé
- Toutes les courbes horizontales dont le rayon est inférieur à *RHnd* (rayon horizontale non déversé) devront être introduites avec des raccordements progressifs.

6.5 Les éléments du tracé en plan :

Le tracé en plan est constitué par des alignements droits raccordés par des courbes, il est caractérisé Par la vitesse de référence appelée ainsi vitesse de base qui permet de définir les caractéristiques Géométriques nécessaires à tout aménagement routier. Le raccordement entre les alignements droits et les courbes entre elles d'autre part, elle se fait à l'aide de Clothoïdes qui assurent un raccordement progressif par nécessiter de sécurité et de confort

Des usagers de la route.

Un tracé en plan moderne est constitué de trois éléments :

- Des droites (alignements).
- Des arcs de cercle.
- Des courbes de raccordement progressives.

Figure 6-1 Elément du tracé en plan.

6.5.1 Alignements droit:

Bien qu'en principe la droite soit l'élément géométrique le plus simple, son emploi dans le tracé des Routes est restreint.

- La cause en est qu'il présente des inconvénients, notamment :
- De nuit, éblouissement prolongé des phares.
- Monotonie de conduite qui peut engendrer des accidents.
- Appréciation difficile des distances entre véhicules éloignés.
- Mauvaise adaptation de la route au paysage.

Il existe toutefois des cas ou l'emploi d'alignement se justifie :

- En plaine ou, des sinuosités ne seraient absolument pas motivées.
- Dans des vallées étroites.
- Le long de constructions existantes.
- Pour donner la possibilité de dépassement.

Donc la longueur des alignements dépend de :

- La vitesse de base, plus précisément de la durée du parcours rectiligne.
- Des sinuosités précédentes et suivant l'alignement.
- Du rayon de courbure de ces sinuosités

Règles concernant la longueur des alignements :

Une longueur minimale d'alignement Lmin devra séparer deux courbes circulaires de même sens, cette longueur sera prise égale à la distance parcourue pendant cinq (5) secondes à la vitesse maximale permise par le plus grand rayon de deux arcs de cercle. Si cette longueur minimale ne peut pas être obtenue, les deux courbes circulaires sont raccordées par une courbe en C, Ove, S, ou à sommet. La longueur maximale *Lmax* est prise égale à la distance parcourue pendant 60 secondes.

Avec V en (m/s).

$$l_{min} = 5v$$

$$l_{\text{max}} = 60v$$

6.5.2 Les arcs de cercle :

Trois problèmes se posent :

- Stabilité des véhicules en courbe.
- Visibilité en courbe.
- Inscription des véhicules longs dans les courbes de rayon faible.

Dans un virage de rayon R, un véhicule subit l'effet de la force centrifuge qui tend à provoque une instabilité du système, afin de réduire l'effet de la force centrifuge en incline la chaussée transversalement vers l'intérieure du virage (éviter le phénomène de dérapage) d'une pente dite devers exprimée par sa tangente

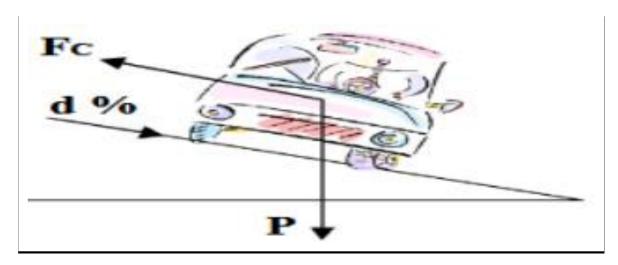


Figure 6-2

Remarque

- ❖ Le devers « d » ne doit pas être trop grand (risque de glissement à faible vitesse par temps pluvieux ou verglas)
- ❖ Le devers « d » ne doit pas être trop faible pour assurer un bon écoulement des eaux. Ceci nous conduit à la série de couples (Catégorie, d).
- ❖ Au devers maximum correspond le rayon minimum absolu *RHm* avec :

Tableau 6-1 Dévers en fonction de l'environnement.

Environnement Devers	Facile	Moyen	Difficile
Devers Minimal			
- Cat 1-2	2.5%	2.5%	2.5%
- Cat 3-4-5	3%	3%	3%
Devers Maximal			
- Cat 1-2	7%	7%	7%
- Cat 3-4	8%	8%	7%
- Cat 5	9%	9%	9%

6.6 Courbes en plan:

6.6.1 Le rayon minimal absolu RHM:

C'est le plus petit rayon en plan admissible pour une courbe présentant un dévers maximal et Parcourue par la vitesse de référence

$$RHm = \frac{vr^2(km/h)}{127(d+ft)}$$

6.6.2 Le rayon minimal normal RHN:

Le rayon minimal normal (RHN) doit permettre à des véhicules dépassant Vr de 20km/h de

Rouler en sécurité.

$$RHN = \frac{(Vr+20)^2}{127(d+ft)}$$

6.6.3 Le rayon au devers minimal RHd:

C'est le rayon au dévers minimal, au-delà duquel les chaussées sont déversées vers l'intérieur du virage et telle que l'accélération centrifuge résiduelle à la vitesse Vr serait équivalente à celle subie par le véhicule circulant à la même vitesse en alignement droit. Dévers associé

$$RHd = \frac{Vr^2}{127(2.dmin)}$$

$$dmin = 2.5\%$$
 en catégorie $1 - 2$
 $dmin = 3\%$ en catégorie $3 - 4$

6.6.4 Le rayon non déversé RHnd:

C'est le rayon tel que l'accélération centrifuge résiduelle que peut parcourir un véhicule roulant à la vitesse V = Vr et présente un dévers vers l'extérieur.

$$RHnd = \frac{vr^2}{127(f'' - dmin)}$$

6.6.5 Détermination des dévers dmax et dmin.

Tableau 6-2 Dévers.

	Cat1	Cat2	Cat3	Cat4	Cat5
Dmin	-2.50%	-2.50%	-3%	-3%	-4%
Dmax	7%	7%	8%	8%	9%

6.6.6 Détermination du coefficient transversal ft.

Tableau 0-3 Détermination du coefficient transversal ft.

Vr	40	60	80	100	120	140
Cat 1-2	0.22	0.16	0.13	0.11	0.1	0.1
Cat 3-4-5	0.22	0.18	0.15	0.125	0.11	/

6.6.7 Détermination du coefficient f'' en fonction de la catégorie.

Tableau 0-4 Détermination du coefficient F"en fonction de la catégorie.

Catégories	Cat1	Cat2	Cat3	Cat4	Cat5
F ''	0.06	0.06	0.07	0.075	0.075

Tableau 0-5 Tableau récapitulatif des paramètres cinématiques

Vitesse réf	100 km/h
dmax	7%
dmin	-2.50%
d=dmax-2%	5%
Ft	0.11
F "	0.06

Tableau 6-6 Les rayons en plan selon B40

RHm =	450,00m	RHn =	650,00m	RHd =	1600,00m	RHnd =	2200
D(RHm)=	7,0%	D(RHN)=	5.0%	D(RHd)=	2,5%	d(RHnd)=	-2.5%

$$RH_{m} = \frac{v_{r}^{2}}{127(d+ft)} \Rightarrow RH_{m} = \frac{100^{2}}{127(0.07+0.11)} = 437.45 \text{ m}$$

$$RH_{n} = \frac{(v_{r}+20)^{2}}{127(d+ft)} \Rightarrow RH_{n} = \frac{(100+20)^{2}}{127(0.05+0.11)} = 708.66 \text{ m}$$

$$RH_{d} = \frac{v_{r}^{2}}{127.2.dmin} \Rightarrow RH_{d} = \frac{100^{2}}{127.2.0.025} = 1574.80 \text{m}$$

$$RH_{nd} = \frac{v_{r}^{2}}{127.(f''-dmin)} \Rightarrow RH_{nd} = \frac{100^{2}}{127(0.06-0.025)} = 2249.71 \text{m}$$

On remarque que les valeurs calculées correspondant réellement aux valeurs du tableau (normes B40).

6.6.8 Visibilité en courbe.

Un virage d'une route peut être masqué du côté inférieur de la courbe par un talus de déblai, ou par une construction ou forêt. Pour assurer une visibilité étendue au conducteur d'un véhicule, il va falloir reculer le talus ou abattre les obstacles sur une certaine largeur à déterminer. Au lieu de cela, une autre solution serait d'augmenter le rayon du virage jusqu'à ce que la visibilité soit assurée.

6.6.9 Sur largueur.

Un long véhicule à deux (2) essieux, circulant dans un virage, balaye en plan une bande de chaussée plus large que celle qui correspond à la largeur de son propre gabarit. Pour éviter qu'une partie de sa carrosserie n'empiète sur la voie adjacente, on donne à la voie parcourue par ce véhicule une sur largeur par rapport à sa largeur normale en alignement

Égale à : S = 50 / R

Avec:

R : rayon de l'axe de la route.

6.7 Courbes de raccordements.

Le fait que le tracé soit constitué d'alignement et d'arc ne suffit pas, il faut donc prévoir des raccordements à courbure progressif, qui permettent d'éviter la variation brusque de la courbe lors du passage d'un alignement à un cercle ou entre deux courbes circulaires et ça pour assurer :

- La stabilité transversale du véhicule.
- Confort des passagers du véhicule.
- Transition de la forme de la chaussée.
- Un tracé élégant, souple, fluide, optiquement et esthétiquement satisfaisant.

6.7.1 Clothoïde.

La Clothoïde est une spirale, dont le rayon de courbure décroît d'une façon continue dès l'origine ou il infini jusqu'au point asymptotique ou il s'annule, la courbure de la clothoïde est linéaire par rapport à la longueur de l'arc. Parcourue à vitesse constante, la clothoïde maintient constante la variation de l'accélération transversale, ce qui est très avantageux pour le confort des usagers.

6.7.2 Expression mathématique de la Clothoïde.

La Courbure K linéairement proportionnellement à la longueur curviligne.

K = C.L

On pose: $1/C = A^2 => L.R = A^2$

6.7.3 Elément de la Clothoïde.

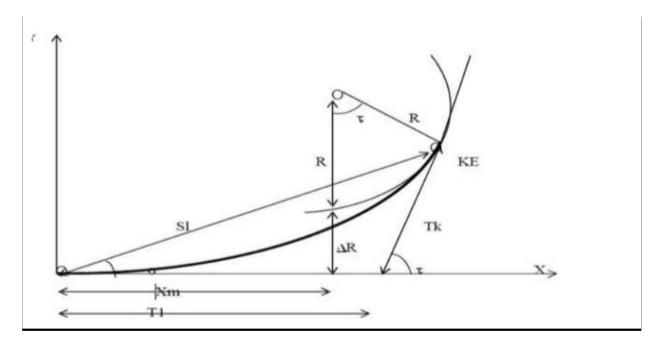


Figure 0-3 La Clothoïde

Avec:

R : rayon du cercle. KA: origine de la Clothoïde.

KE : extrémité de la Clothoïde.

 Δ R: ripage : Δ R = $L^2 / 24 * R$.

 τ : angle des tangentes.

 $\tau = L/2*R$.

TC: tangente courte.

TL: tangente longue.

 σ : angle polaire.

SL: corde KE KA.

M: centre du cercle d abscisse Xm.

Xm: abscisse du centre du cercle M à partir de KA.

Ym: ordonnée du centre du cercle M à partir de KA.

X: abscisse de KE.

Y : ordonnée de KE.

6.7.4 Longueur de la Clothoïde

La longueur de la Clothoïde doit satisfaire les trois conditions suivantes :

6.7.4.1 Condition d'optique.

Pour la condition d'optique, on adoptera les conditions suivantes :

$$\tau \ge 3^a$$
 Soit $\tau \ge \frac{1}{18}$ rads

$$\tau = \frac{L}{2R} > \frac{1}{18} \ rads \longrightarrow L > \frac{R}{9}$$

soit

 $R/3 \le A \le R$

Règle générales (B40)

R
$$\leq$$
1500m $\Delta R = 1m$ (éventuellement **0.5m**)

$$L = \sqrt{24R \Delta R}$$

R≤1500m≤5000m

$$L \ge \frac{R}{9}$$

 $R > 5000 \text{m} \ \Delta R = 2.5 m.$

 $L=7.75\sqrt{R}$.

6.7.4.2 Condition de gauchissement.

Cette condition a pour objet d'assurer à la voie un aspect satisfaisant en particulier dans les zones de variation de devers, elle s'applique par rapport à son axe.

 $L \ge 1$. Δd . V_B

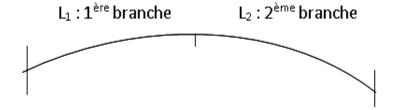
L: longueur de raccordement.

1:Largeur de la chaussée.

Δd: variation de dévers.

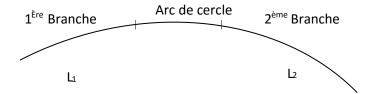
6.7.4.3 Condition de confort dynamique :

Cette condition consiste à limiter le temps de parcours t du raccordement et la variation par unité de temps de l'accélération transversale d'un véhicule.

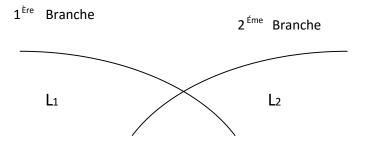

$$L_3 \geq_{\frac{18}{18}}^{\underline{Vr^2}} \left[\frac{\underline{Vr^2}}{127 R} - \Delta \mathbf{d} \right]$$

Finalement, la longueur de la Clothoïde sera le Max entre les L des 3 conditions.

6.7.4.4 Vérification de non chevauchement :


 $\underline{\mathbf{1}}^{\text{er}}\underline{\text{cas}}$: $\tau < \frac{\gamma}{2}$: Les deux alignements droits sont raccordés par les 2 branches de Clothoïde donc non

chevauchement.


6.7.4.5 Clothoïde sans arc de cercle :

 $\underline{2^{\text{ème}}}$ cas : $\tau = \frac{\gamma}{2}$: les 2 alignements droits sont raccordés par les 2 branches de Clothoïde sans arc de cercle.

6.7.4.6 Clothoïde avec arc de cercle:

 $\underline{3}^{\grave{e}me}\underline{cas}: \ \tau > \frac{\gamma}{2}$: la construction de la Clothoïde est impossible == chevauchement.

.

Chapitre VII Profil en Long

Chapitre 07: Profil en long.

7.1 Définition :

Le profil en long est une représentation plane de la surface du terrain naturel suivant un plan vertical contenant l'axe du tracé. Il détermine la configuration du terrain au droit de l'axe de la route caractérisé par des droites (pente, rampe), courbe horizontal ou incliné et paliers rigoureusement droits.

Le profil en long est l'un des facteurs principaux qui interviennent dans l'économie de déclivité maximale et autres caractéristiques techniques, il conditionne le degré ainsi que le volume de terrassement aussi bien que le cout de réalisation de la construction.

Pratiquement, pour chaque point du profil en long on doit déterminer :

- L'altitude du terrain naturel (ligne noire).
- L'altitude du projet (ligne rouge).

7.2 Règles à respecter dans le trace du profil en Long :

- Parmi les règles à tenir en compte on peut citer :
- Assurer la coordination entre tracé en plan et profil en long.
- Respecter la valeur maximale et minimale des pentes et rampes.
- Assurer l'écoulement et l'évacuation des eaux de ruissellement de la chaussée tout le long du tracé.
- Rechercher un équilibre entre le volume des déblais et remblais.
- Eviter les angles aux rentrant pour raison de stagnation des eaux.
- Eviter les hauteurs excessives de remblai.
- Assurer la visibilité de dépassement.
- Adapter le profil en long aux grandes lignes du paysage.
- Doit suivre autant que possible le terrain naturel en léger remblai.

7.3 Règles à respecter dans le tracé de la ligne rouge.

La ligne rouge a une influence sur le cout de la réalisation du projet, pour cela nous avons essayé de respecter :

- Les rayons préconisés par les règlements actuels.
- Les déclivités (ne pas dépasser la valeur maximale).

- Eviter les angles rentrants en déblais (problèmes de stagnation des eaux).
- Assurer si possible une bonne coordination entre le tracé en plan et le profil en long.
- Le profil en long nous donne une idée sur la forme du terrain naturel qui nous permet de choisir la ligne du projet de façon à tenir compte du passage impératif en déblai dans les pentes.
- Equilibrer les surfaces remblai et déblai et éviter les grands terrassements.
- Assurer une bonne visibilité ;
- Assurer un confort dynamique pour l'usager ;
- Permettre l'évacuation des eaux en prenant des déclivités supérieures ou égales à 0.5%.

7.4 Eléments de composition du profil en long.

Le profil en long est constitué d'une succession de segment de droites (rampes et pentes) raccordés par des courbes circulaires. Pour chaque point du profil en long on doit déterminer :

- L'altitude du terrain naturel
- L'altitude de la ligne du projet
- La déclivité de la ligne du projet

7.5 Coordination entre le tracé en plan et le profil en long.

La coordination du tracé en plan et du profil en long doit faire l'objet d'une étude d'ensemble, afin d'assurer une bonne insertion dans le site, respecter les règles de visibilité et autant que possible, un certain confort visuel ; ces objectifs incitent à Faire coïncider les courbes horizontales et verticales, puis respecter les conditions :

- R vertical $> 6 \times R$ horizontal, pour éviter un défaut d'inflexion.
- Supprimer les pertes de tracé dans la mesure où une telle disposition n'entraîne pas de coût sensible.

7.6 Déclivité.

On appelle déclivité d'une route la tangente de l'angle que fait le profil en long avec l'horizontal. Elle prend le nom de pente pour les descentes et rampes pour les montées.

7.6.1 Déclivité minimum.

Dans un terrain plat n'emploie normalement jamais de pente nulle de façon à ce que l'écoulement des eaux pluviales s'effectue facilement a long de la route au bord de la chaussé.

On adopte en général les pentes longitudinales minimales suivantes :

- Au moins 0,5% et de préférences 1 %, si possible.
- Imin= 0,5 % dans les longues sections en déblai : pour que l'ouvrage d'évacuation des eaux ne soit pas trop profondément.
- Imin= 0,5 % dans les sections en remblai prévues avec des descentes d'eau

7.6.2 Déclivité maximum.

Du point de vue technique, la déclivité max dépend de l'adhérence entre pneus et chaussée, ainsi que la réduction des vitesses qu'elle provoque. La déclivité maximale est acceptée particulièrement dans les courtes distances inférieures à 1500m à cause de :

- La réduction de la vitesse et l'augmentation des dépenses de circulation par la suite (cas de rampe Max).
- L'effort de freinage des poids lourds est très important qui fait l'usure de pneumatique (cas de pente max).

Donc, La déclivité maximale dépend de :

- Condition d'adhérence.
- Vitesse minimum de PL.
- Condition économique.

Tableau 7-1Valeur de déclivité maximale[NormesB40].

Vr (Km/h)	40	60	80	100	120	140
Déclivité max (%)	8	7	6	5	4	4

Remarque : l'augmentation excessive des rampes provoque ce qui suit :

- Effort de traction est considérable.
- Consommation excessive de carburant.
- Faibles vitesses.
- Gène des véhicules.

La vitesse de base qu'on a retenue dans notre projet est 100 Km/h, donc la déclivité maximale est de 5%.

7.7 Les raccordements en profil en long.

Le changement de déclivité constitue des points particuliers dans le profil en long, ce changement est assuré par l'introduction de raccordement circulaire qui doit satisfaire aux conditions de confort et de visibilité. On distingue deux types raccordements :

- Les raccordements en angle saillant (convexes).
- Les raccordements en angles rentrants (concaves).

7.7.1 Les raccordements en angle saillant (convexes).

Les rayons minimums admissibles des raccordements paraboliques en angles saillants sont déterminés à partir de la connaissance de la position de l'œil humain et des obstacles d'une part, des distances d'arrêt et de visibilité d'autre part. La conception des raccordements convexes doit satisfaire les conditions Suivantes :

- Condition de confort.
- Condition de visibilité.

7.7.1.1.Condition de confort.

Lorsque le profil en long comporte une forte courbure de raccordement, les véhicules sont soumis à une accélération verticale insupportable, qu'elle est limitée à :

Pour:

• Cat 1-2
$$g/40$$
 $Rv min = 0.3 Vr^2$

• Cat 3-4-5
$$g/30$$
 $Rv min = 0.23 Vr^2$

•
$$Vr^2/Rv < g/40$$
 g=10m/s

Avec:

Rv: rayon vertical (m).

Vr : vitesse référence (Km/h).

7.7.1.2 Condition de visibilité.

Elle intervient seulement dans les raccordements des points hauts comme conditions supplémentaires à celle de confort. Il faut que deux véhicules circulent en sens opposés puis-sent s'apercevoir à une distance double de la distance d'arrêt au minimum Le rayon de raccor-dement est donné par la formule suivant

$$Rv \ge \frac{d^2}{2.(h_0 + h_1 + 2\sqrt{h_0 \cdot h_1})} \approx 0.27 D^2$$

Avec:

d : Distance d'arrêt (m).

h₀: Hauteur de l'œil (m).

h₁: Hauteur de l'obstacle (m).

Dans le cas d'une route unidirectionnelle :

$$\mathbf{h_0} = 1.1 \text{ m}$$
 $\mathbf{h_1} = 0.15 \text{ m}$

On trouve :
$$Rv = ad_1^2 a = 0.24$$

Pour Cat 1-2
$$Rv = 0.24 d_1^2$$

Les rayons assurant ces deux conditions sont donnés par les normes en fonction de la vitesse de base et la catégorie, pour choix unidirectionnelle et pour une vitesse de base Vb=100 (Km/h) et pour la catégorie 1-2 on a :

Tableau 7-2 Rayons convexes (angle saillant) [B40].

Rayon	symbole	valeur
Min-absolu	RVm1	6 000
Min-normal	RVN1	12 000

7.7.2 Raccordements concaves (angle rentrant).

Dans le cas de raccordement dans les points bas, la visibilité diurne n'est pas déterminante, plutôt c'est pendant la nuit qu'on doit s'assurer que les phares du véhicule devront éclairer un tronçon suffisamment long pour que le conducteur puisse percevoir un obstacle, la visibilité est assurée pour un rayon satisfaisant la relation :

$$R'v = \frac{{d_1}^2}{(1.5 + 0.035 \times d_1)}$$

Tableau 7-3 Rayons concaves (angle rentrant) [B40].

Rayon	symbole	valeur
Min-absolu	RVm1	3 000
Min-normal	RVN1	200

7.7.2.1 Condition esthétique.

Il faut éviter de donner au profil en long une allure sinusoïdale en changeant le sens de déclivité sur des distances courtes, pour éviter cet effet on impose une minimale (L > 50) pour dévers d < 10% (spécial échangeur).

Tableau 7-4 tableau récapitulatif

Catégorie	C1	
Environnement	E1	
Vitesse	100km/h	
Rayan en angle Saillant	Route unidirectionnel (2x2voies)	
Rv	Rvm1 (minimal absolu) = 6000 m	
	Rvn1 (minimal normal) = 12000m	
Déclivité maximale Imax%	05%	
Hauteur de l'œil	1,1 m	
Hauteur d'Obstacle	0.15m	
Distance d'arrêt	161.11 m	

7.8 Détermination pratique du profil en long :

Dans les études des projets, on assimile l'équation du cercle

$$x^2 + y^2 - 2RY = 0$$

À l'équation de la parabole

$$x^2 - 2RY = 0 \longrightarrow Y = \frac{x^2}{2R}$$

Pratiquement, le calcul des raccordements se fait de la façon suivante :

- Donnée les coordonnées (abscisse, altitude) des points A et D.
- Donnée La pente P1 de la droite (AS).

- Donnée la pente P₂ de la droite (DS).
- Donnée le rayon R.

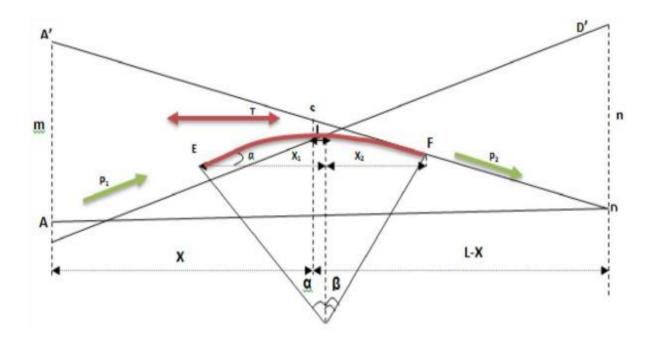


Figure 7_1 : Détermination du profil en long.

7.8.1 Détermination de La position du point de rencontre (S).

On a:

$$z_{D'} = z_A + l. P_2$$
; $m = z_{A'} - z_A$

$$z_{A\prime} = z_D + \text{L.}p_1$$
 ; $n = z_{D\prime} - z_D$

Les deux triangles SAA' et SDD' sont semblables donc :

$$\frac{m}{n} = \frac{x}{l-x} \quad x = \frac{ml}{m+n}$$

$$x_{s=}x + x_A$$

$$Z_S = p_1.x + z_A$$

7.8.2 Calculs de La tangente.

$$T = \frac{R}{2} \left[P_1 - P_2 \right]$$

On prend (+) lorsque les deux pentes sont de sens contraires, on prend (-) lorsque les deux pentes sont de même sens.

La tangente (T) permet de positionner les pentes de tangentes E et F.

$$E\left\{ \begin{matrix} X_E = X_S - T \\ Z_E = Z_S - T.P_1 \end{matrix} \right\}$$

$$F\left\{ \begin{matrix} X_F = X_S - T \\ Z_F = Z_S - T.P_2 \end{matrix} \right\}$$

7.8.3 Projection horizontale de la longueur de raccordement.

LR=2T

7.8.4 Calcul de la flèche.

$$H = \frac{T^2}{2R}$$

7.8.5 Calcul de la flèche Et de l'altitude d'un point courant M sur la courbe.

$$M \left\{ H_X = \frac{x^2}{2R} \\ Z_M = Z_B + X_{P1} - \frac{X^2}{2R} \right\}$$

7.8.6 Calcul des cordonnées du sommet de la courbe (T).

Le point J correspond au point le plus haut de la tangente horizontale.

$$X_1 = R_{P1}$$
; $X_2 = RP_2J$ $X_J = X_E + RP_1$
$$\begin{cases} X_J = X_S + RP_1 \\ Z_J = Z_E + X_1 \cdot P_1 \frac{X_1^2}{2R} \end{cases}$$

Dans le cas des pentes de même sens le point J est en dehors de la ligne de projet et ne présente aucun intérêt. Par contre dans le cas des pentes de sens contraire La connaissance du point (J) est intéressante en particulier pour l'assainissement en zone de déblai le partage des eaux de ruissellement se fait à partir du point J, c'est à dire les pentes des fossés descendants dans les sens J ver A et D.

7.9 Exemple de calcul de profil en long rentrant :

7.9.1 Calcul de la tangente.

> Dans le cas où les déclivités sont de sens contraire :

$$T = \frac{Rv}{200} |P1 + P2|$$

> Dans le cas où les déclivités sont de même sens :

$$T = \frac{Rv}{200} |P1 - P2|$$

$$T = \frac{4000}{200} | -5.00 + 1.00 |$$

$$T = 80 \text{ m}.$$

La longueur L du raccordement verticale

$$L = 2 \times T$$

$$L = 2 \times 80$$

$$L = 160 \text{ m}$$

➤ La flèche F

$$F = \frac{T^2}{2R}$$

$$F = \frac{80^2}{2(4000)}$$

Chapitre VIII Profil en Travers

Chapitre 08: Profil en travers.

8.1 Définition.

Le profil en travers d'une chaussée c'est la coupe perpendiculaire à l'axe de la route sur un plan vertical, la largeur de cette chaussée est en fonction de l'importance et de l'hétérogénéité du tracé à écouler. On comprend par le débit admissible le trafic prévisible à l'année de saturation, autrement dit : la capacité théorique calculée par un horizon voulu qui tient compte de l'évolution du trafic. La plateforme des routes comprend : Les chaussées, les accotements latéraux est éventuellement un terre-plein central. Le profil en travers doit être tel qu'il puisse assurer à tout moment l'écoulement du trafic actuel et prévisible dans de bonnes conditions de sécurité et de confort, et ainsi l'évacuation rapide des eaux de pluie.

8.2 Les éléments du profil en travers :

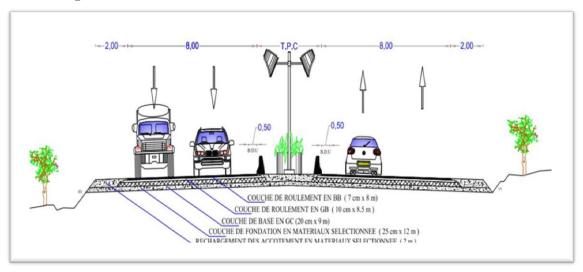


Figure 8-1 Eléments du profil en travers

Le profil en travers doit être constitué par les éléments suivants :

A. La chaussée:

C'est la partie renforcée et affectée à la circulation des véhicules. Pour subir directement les actions des véhicules et les facteurs naturels, sa largeur dépend essentiellement de considération de débit, elle est divisée en voies de circulations.

B. Les accotements :

Les accotements se trouvent aux cotés de la chaussée, ils étaient utilisés auparavant soit pour le dépôt des matériaux soit pour les piétons, maintenant, ils sont utilisés pour stationnement. Sur les routes importantes la largeur des accotements est de 2 à 2.5m utilisés comme bande d'arrêt, mais dans notre cas sa largeur est de 1.5m.

C. Plate-forme:

C'est la surface de la route située entre les fossés ou les crêtes des talus de remblais, comprenant la chaussée et les accotements, éventuellement les terre-pleins et les bandes d'arrêts.

D. L'assiette

C'est la surface de la route délimitée par les terrassements.

E. L'emprise :

C'est la surface du terrain naturel affectée à la route et à ses dépendances (Talus, exutoires, etc....) limitée par le domaine public.

F. Le talus :

Le talus a une inclinaison qui dépend de la cohésion des sols qui le constitue, cette inclinaison est désignée par une fraction (A/B) tel que :

A : la base du talus.

B: hauteur du talus.

G. Le fossé:

C'est un ouvrage hydraulique destiné à recevoir les eaux de ruissellement provenant de la route, talus et les eaux de pluie.

H. Le terre-plein central T.P.C

Il assure la séparation matérielle des deux sens de circulation, sa largeur est de celle de ses constituants : les deux bandes dérasées de gauche et la bande médiane.

- Bande dérasée de gauche (B.D.G): Elle est destinée à éviter un effet de paroi lié aux barrières de sécurité, elle est dégagée de tous obstacles revêtu et se raccorde à la chaussée.
- **Bande médiane**: Elle sert à séparer physiquement les deux sens de circulation, et à implanter certains équipements (barrière, support de signalisation, etc.), sa largeur dépend, pour le minimum des éléments qui sont implanter.

I. La largeur roulable :

Elle comprend les sur largeurs de chaussée, la chaussée et bande d'arrêt.

8.3 Application numérique au projet.

Après l'étude de trafic, le profil en travers type retenu pour notre route sera compose d'une chaussée bidirectionnelle. Les éléments du profil en travers types sont comme

Suit:

Chaussée : $(3,5 \times 2) \times 2 = 14,00$ m.

Accotement $:2 \times 2 = 4,00$ m.

Chapitre IX Cubatures

Chapitre 09: Les cubature

9.1 Généralités.

Les cubatures de terrassement désignent la quantité de terre qui doit être déplacée lors de travaux de terrassement. Il s'agit d'une mesure importante dans le domaine de la construction, de l'urbanisme et des travaux publics car elle permet de déterminer la quantité de matériaux nécessaires pour la réalisation d'un projet. Les cubatures de terrassement sont souvent exprimées en mètres cubes (m³) et sont calculées en mesurant la différence entre le volume initial de la terre et le volume final après les travaux. Cette mesure permet aux professionnels du terrassement de déterminer la quantité de terre qui doit être déplacée pour réaliser un projet, comme l'excavation de fondations, la construction de routes, de ponts ou de barrages, ou encore la mise en place de canalisations.

9.2 Définition.

Les cubatures de terrassement, c'est l'évolution des cubes de déblais et remblais que comporte le projet à fin d'obtenir une surface uniforme et parallèlement sous adjacente à la ligne projet. Les éléments qui permettent cette évolution sont :

- Les profils en long.
- Les profils en travers.
- Les distances entre les profils.

Les profils en long et les profils en travers doivent comporter un certain nombre de points suffisamment proches pour que les lignes joignent ces points différents le moins possible de la ligne du terrain qu'il représente.

9.3 Méthode de calcul des cubatures.

Les cubatures sont les calculs effectués pour avoir les volumes des terrassements existants dans notre projet. Les cubatures sont fastidieuses, mais il existe plusieurs méthodes de calcul des cubatures qui simplifie le calcul. Le travail consiste a calculé les surfaces SD et SR pour chaque profil en travers, en suite on les soustrait pour trouver la section pour notre projet. On utilise la méthode SARRAUS, c'est une méthode simple qui se résume dans le calcul des volumes des tronçons compris entre deux profils en travers successifs.

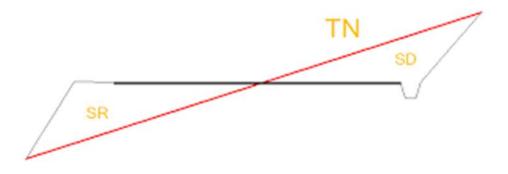


Figure 9-1 Volume remblais, déblais.

Avec:

TN: terrain naturel.

SR: surface remblais.

SD: surface déblais.

9.3.1 La méthode SARRAUS.

La méthode SARRAUS est une méthode de calcul des cubatures de terrassement qui est utilisée pour estimer la quantité de terre à déplacer lors de la construction de routes, de canaux, de digues, de terrains de sport, etc. Cette méthode est basée sur l'utilisation de prismes droits et elle est adaptée aux terrains présentant des pentes régulières.

La méthode SARRAUS consiste à diviser la section de terrain en plusieurs prismes droits de base trapézoïdale. La largeur de chaque trapèze est égale à la largeur de la section de terrain à cette hauteur, et la longueur de chaque trapèze est égale à la distance entre deux coupes transversales consécutives. La hauteur de chaque prisme est égale à la différence de niveau entre les deux coupes transversales.

Cette méthode « formule des trois niveaux » consiste a calculé le volume déblai ou remblai des tronçons compris entre deux profils en travers successifs.

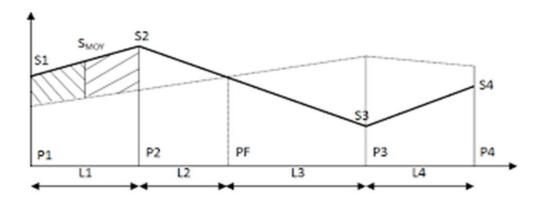


Figure 09-2.

$$V = \frac{L}{6}(S_1 + S_2 + 4 \times S_{Moy})$$

Avec:

• **PF**: Profil fictive, surface nulle.

• **S1**: Surface de profil en travers P1.

• L1: Distance entre ces deux profils.

• S_{Mov} : Surface intermédiaire (surface parallèle et mi-distance L1).

Pour éviter des calculs très long, on simplifie cette formule en considérant comme très voisines les deux expressions SMOY et (S1+S2)/2; Ceci donne :

$$V_i = \frac{L_i}{2} \times (S_i + S_{i+1})$$

Donc les volumes seront :

• Entre P1 et P2 : $V_1 = \frac{L_1}{2} \times (S_1 + S_2)$.

• Entre P2 et PF : $V_2 = \frac{L_2}{2} \times (S_2 + 0)$.

• Entre Pf et P3 : $V_3 = \frac{L_3}{2} \times (0 + S_3)$.

• Entre P3 et P4 : $V_4 = \frac{L_4}{2} \times (S_3 + S_4)$.

En additionnant membres à membre ces expressions on a le volume total des terrassements :

$$V = \frac{L_1}{2}S_1 + \frac{L_1 + L_2}{2}S_2 + \frac{L_2 + L_3}{2} \times 0 + \frac{L_3 + L_4}{2}S_3 + \frac{L_4}{2}S_4$$

9.3.2 Méthode de GULDEN.

Dans cette méthode les sections et les largeurs des profils sont calculées de façon classique mais la distance du barycentre de chacune des valeurs à l'axe est calculée pour obtenir les volumes et les surfaces. Ces valeurs sont multipliées par le déplacement du barycentre en fonction de la courbure au droit du profil concerné. Cette méthode permet donc de prendre en compte la position des quantités par rapport à la courbure instantanée. Si on utilise la méthode de GULDEN, la quantité (longueur d'application) n'a plus de sens.

9.3.3 Méthode linéaire.

C'est la méthode classique. Les sections et les largeurs sont multipliées par la longueur d'application pour obtenir les volumes et les surfaces. Cette méthode ne prend pas en compte la courbure du projet donc les résultats sont identiques quel que soit le tracé en plan.

9.4 Application au projet.

Dans notre projet, le calcul est fait par logiciel Covadis. Les résultats détaillés sont en annexe. L'objectif fixé est de réduire au maximum la différence entre les volumes de déblais et remblais.

Volume totale de décapage = 109 286 m³

Volume des déblais $V_D = 278 \ 326 \ \text{m}^3$

Volume des remblais $V_R = 574 \ 912 \text{m}^3$

Différence de volume (excès de remblais) : $V_R - V_D = 296\,586\,\mathrm{m}^3$

Chapitre X Dimensionnement du Corps de Chaussée

Chapitre 10 : Dimensionnement du corps De chaussée.

10.1 Généralités :

Le dimensionnement du corps de chaussée est l'étape de conception d'une chaussée qui consiste à déterminer les caractéristiques géométriques et structurelles des différentes couches qui constituent la chaussée. Il s'agit d'une étape cruciale pour s'assurer que la chaussée sera capable de supporter les charges du trafic, les variations climatiques et les conditions environnementales tout en assurant la sécurité des usagers.

Le dimensionnement du corps de chaussée doit prendre en compte plusieurs facteurs tels que la classification de la route, la nature du sol, la qualité des matériaux disponibles sur le site, la fréquence et le type de véhicules qui circuleront sur la chaussée, les conditions climatiques, la topographie et les normes et réglementations en vigueur dans la région où la chaussée sera construite. Le résultat du dimensionnement du corps de chaussée est une épaisseur et une composition de différentes couches de matériaux, chacune ayant une fonction spécifique pour assurer la sécurité et la durabilité de la chaussée. Une fois la conception réalisée, des études de faisabilité et de coût doivent être effectuées pour choisir les matériaux les plus appropriés pour chaque couche et optimiser les coûts de construction et d'entretien à long terme.

La chaussée est essentiellement un ouvrage de répartition des charges roulantes sur le terrain de fondation. Pour que le roulage s'effectue rapidement, sûrement et sans usure exagérée du matériel, il faut que la surface de roulement ne se déforme pas sous l'effet :

10.1.1 De la charge des véhicules.

- La charge maximale autorisée sue un jumelage isolé est de 65 KN (6,5 tonnes) soit un essieu standard de 130 KN (13 T).
- Il arrive également que cette charge maximale dépassée à cause de phénomène de surcharge.

10.1.2 Des intempéries.

Les variations de la température peuvent engendre dans les solides élastiques des champs de contrainte et engendre aussi : les effets du gel, les efforts de l'ensoleillement sur la déformation des mélanges bitumineux, et sur le vieillissement du bitume.

10.1.3 Des efforts tangentiels.

Lorsqu'un véhicule est en mouvement apparaissent des efforts horizontaux du fait :

- De la transmission de l'effort moteur ou du freinage.
- De la mise en rotation des roues non motrice.
- De la résistance aux efforts transversaux.

Toutes ces actions tangentielles s'accompagnent de frottement dans lesquels se dissipent de l'énergie et qui usent les pneumatiques et les chaussées.

10.2 La chaussée.

10.2.1 Au sens géométrique.

Au sens géométrique, la chaussée est la surface plane et horizontale de la route destinée à la circulation des véhicules, des piétons et des cyclistes. Elle est généralement délimitée par les bordures de la voie de circulation et est caractérisée par sa largeur, sa pente longitudinale et sa courbure.

La largeur de la chaussée dépend du nombre de voies de circulation, du type de véhicules qui l'empruntent et des contraintes environnementales. Elle est généralement comprise entre 3,5 mètres pour une voie de circulation et jusqu'à 30 mètres pour les autoroutes à plusieurs voies.

La pente longitudinale de la chaussée correspond à la déclivité de la route dans le sens longitudinal. Elle est conçue pour faciliter l'écoulement des eaux de pluie et améliorer la visibilité des usagers de la route. La pente doit être suffisamment faible pour permettre une circulation fluide et éviter les risques d'aquaplaning.

La courbure de la chaussée correspond au rayon de la courbe dans le plan horizontal de la route. Elle est déterminée par les contraintes topographiques et la vitesse de circulation des véhicules. Une courbure trop prononcée peut causer des risques de dérapage et d'accident, tandis qu'une courbure trop faible peut augmenter la fatigue des conducteurs et des passagers.

10.2.2 Au sens structurel.

Au sens structurel, la chaussée est une structure de chaussée qui assure la résistance et la portance de la route. Elle est constituée de plusieurs couches de matériaux, chacune ayant une fonction spécifique. La couche supérieure est la surface de roulement, souvent recouverte d'un revêtement en asphalte ou en béton. Les couches inférieures sont conçues pour assurer la stabilité et la portance de la chaussée, la répartition des charges et le drainage des eaux de pluie.

10.2.2.1 Couche de surface.

Elle composée de la couche de roulement et la couche de liaison et elle est en contact direct avec le pneumatique de véhicule et la charge extérieure. Son rôle est de :

- Encaisser les efforts de cisaillement provoqués par la circulation.
- Imperméabiliser la surface de la chaussée.
- Assurer la sécurité (adhérence) et le confort (bruit et uni.)
- Assurer une transition avec les couches inférieures plus rigides.

10.2.2.2 Couche de base.

La couche de base est une des couches qui composent la structure de la chaussée. Elle est située sous les couches de forme et est destinée à assurer la portance de la chaussée en répartissant les charges de manière uniforme sur toute la surface de la route.

La couche de base est généralement constituée de matériaux granulaires, tels que le gravier, le sable ou le concassé, et peut avoir une épaisseur variant de quelques centimètres à plusieurs dizaines de centimètres en fonction des contraintes de la circulation et des caractéristiques du sol.

La couche de base a pour rôle de supporter les charges de circulation, de résister aux déformations de la chaussée et de distribuer les contraintes verticales sur toute la surface de la route. Elle contribue également à améliorer le drainage de la chaussée en permettant l'écoulement des eaux de pluie vers les couches inférieures.

Le choix des matériaux et la qualité de leur mise en œuvre sont des facteurs clés dans la résistance et la durabilité de la couche de base. Des matériaux de qualité inférieure ou une mise en œuvre insuffisante peuvent entraîner une dégradation prématurée de la chaussée, des déformations et des fissures, ainsi qu'une diminution de la sécurité routière.

10.2.2.3 Couche de fondation.

La couche de fondation est une couche de la structure de la chaussée située sous la couche de base et qui assure la répartition des charges de la chaussée sur le sol support.

La couche de fondation est généralement constituée de matériaux de grande dimension (pierres, blocs de béton, etc.) ou de matériaux plus fins et compactables (par exemple des matériaux granulaires comme le sable). Cette couche est destinée à renforcer la résistance de la chaussée et à répartir les charges de circulation sur une surface plus importante.

La couche de fondation est particulièrement importante dans les zones où le sol est instable ou peu porteur. Elle doit être dimensionnée en fonction des caractéristiques du sol, du trafic attendu et des charges de la chaussée. Une mauvaise conception ou une mise en œuvre défectueuse de la couche de fondation peut entraîner des déformations, des affaissements et des fissures dans la chaussée.

La mise en œuvre de la couche de fondation nécessite une grande attention. Les matériaux doivent être compactés avec soin pour garantir une bonne répartition des charges et une résistance optimale de la chaussée. Les matériaux de la couche de fondation doivent également être compatibles avec les autres couches de la chaussée pour garantir une bonne adhérence entre les différentes couches.

En résumé, la couche de fondation est une couche de la structure de la chaussée qui contribue à renforcer la résistance de la chaussée et à répartir les charges de circulation sur une surface plus importante. Elle est donc essentielle pour garantir la durabilité et la sécurité de la chaussée.

10.2.2.4 Couche de forme.

La couche de forme est la couche supérieure du sol naturel sur laquelle est construite la chaussée. Elle sert de base à la construction de la chaussée et permet d'obtenir une surface plane et stable pour la mise en place des autres couches de la structure de la chaussée.

La couche de forme est constituée du sol naturel existant qui est nivelé et compacté pour atteindre les caractéristiques de portance et de planéité nécessaires. Elle peut également être constituée de matériaux d'apport, tels que du sable ou du gravier, si le sol naturel est insuffisamment porteur ou peu stable.

La qualité de la couche de forme est très importante pour la stabilité et la durabilité de la chaussée. Une couche de forme insuffisamment compactée ou non homogène peut entraîner des problèmes tels que des affaissements, des fissures et des ondulations dans la chaussée.

La mise en œuvre de la couche de forme doit être réalisée avec soin pour garantir une surface plane et homogène. Elle doit être compactée à l'aide de matériel approprié, tels que des rouleaux compresseurs, pour atteindre les caractéristiques de portance et de planéité requises.

En résumé, la couche de forme est la couche supérieure du sol naturel sur laquelle est construite la chaussée. Elle est essentielle pour garantir la stabilité et la durabilité de la chaussée, et doit être mise en œuvre avec soin pour garantir une surface plane et homogène.

10.3 Les différentes catégories de chaussée.

Il existe deux catégories de chaussées :

- Les chaussées classiques (souples et rigides)
- Les chaussées inverses (mixtes ou semi-rigides)

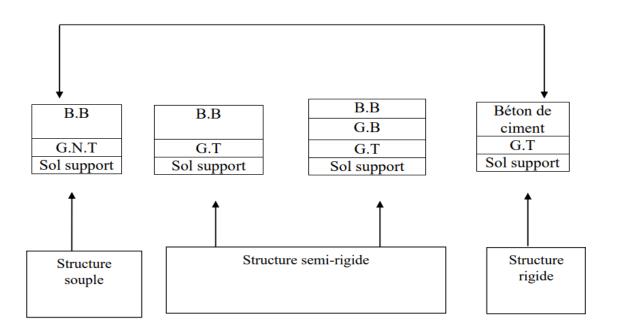


Figure 10-1 Les différentes catégories de chaussée.

Avec:

BB: béton bitumineux.

GB: grave bitume.

GT: grave traité.

G.N.T: grave non trait.

Le dimensionnement des structures constitue une étape importante de l'étude d'un projet routier car la qualité d'un projet routier ne se limite pas à l'obtention d'un bon tracé en plan et d'un bon profil en long, en effet, une fois réalisée, la chaussée devra résister aux agressions des agents extérieurs et à la surcharge d'exploitation : action des essieux des véhicules lourds, effets des gradients thermiques pluie, neige, verglas... Etc. Pour cela il faudra non seulement assurer à la route de bonnes caractéristiques géométriques mais aussi de bonnes caractéristiques mécaniques lui permettant de résister à toutes ces charges pendant sa durée de vie. La qualité de la construction de chaussées joue à ce titre un rôle primordial, celle-ci passe d'abord par une bonne reconnaissance du sol support et un choix judicieux des matériaux à utiliser, il est ensuite indispensable que la mise en œuvre de ces matériaux soit réalisée conformément aux exigences arrêtées. Enfin, on examinera les différentes méthodes de dimensionnements avec une application au projet.

10.4 Les principales méthodes de dimensionnement.

On distingue deux familles des méthodes :

- Les méthodes empiriques dérivées des études expérimentales sur les performances des chaussées.
- Les méthodes dites « rationnelles » basées sur l'étude théorique du comportement des chaussées.

Pour cela on passera en revue les méthodes empiriques les plus utilisées

10.4.1 Method C.B.R (California – Bearing – Ratio).

C'est une méthode semi empirique qui se base sur un essai de poinçonnement sur un échantillon du sol support en compactant les éprouvettes de (90° à 100°) de l'optimum Proctor modifié sur une épaisseur d'eau moins de 15 cm.

La détermination de l'épaisseur totale du corps de chaussée à mettre en œuvre s'obtient par l'application de la formule présentée ci-après :

$$e = \frac{100 + (\sqrt{p})(75 + 50\log\frac{N}{10})}{1cbr + 5}$$

Avec:

e : épaisseur équivalente.

I: indice CBR (sol support).

N : désigne le nombre journalier de camion de plus $1500\ kg$ à vide.

P: charge par roue P = 6.5 t (essieu 13 t).

Log: logarithme décimal.

L'épaisseur équivalente est donnée par la relation suivante :

$$e = a_1 e_1 + a_2 e_2 + a_3 e_3$$

Avec:

 a_1e_1 : Couche de roulement.

 a_2e_2 : Couche de base.

 a_3e_3 : Couche de fondation.

Où:

a1, a2, a3 : coefficients d'équivalence.

e1, e2, e3: épaisseurs réelles des couches.

Pour le calcul de l'épaisseur réelle de la chaussée on fixe e1, e2,e3 et on calcul e4 tel que :

• e1 : Couche roulement 6 à 8 cm.

• e2 : Couche de liaison 6 à 10 cm.

• e3 : Couche de base 10 à 25 cm.

• e4 : Couche de fondation 15 à 35 cm.

10.4.2 Coefficient d'équivalence.

Le tableau ci-dessous indique les coefficients d'équivalence pour chaque matériau :

Tableau 10-1 Les coefficients d'équivalence pour chaque matériau.

Matériaux utilises	Coefficient d'équivalence
Béton bitumineux ou enrobe dense	2.00
Grave ciment – grave laitier	1.50
Grave bitume	1.20 à 1.70
Grave concassée ou gravier	1.00
Grave roulée – grave sableuse T.V.O	0.75
Sable ciment	1.00 à 1.20
Sable	0.50
Tuf	0.60

Lorsque le corps de chaussée est composé par des différents matériaux, on utilise le coefficient d'équivalence de chaque matériau :

$$e = \sum_{i=0}^{n} ai \cdot ei$$

10.5 Application au projet.

10.5.1 Méthode de l'indice CBR.

Données de l'étude :

- Le trafic à l'année de compactage 2017 TMJA = 13019 V/J.
- Le trafic a l'année de mise en service 2025 TMJA = 16088 v/j
- Le taux d'accroissement annuel du trafic $\tau = 3.3^{\circ}/_{o}$.
- La vitesse de base sur le tracé Vb =100 km/h.
- Le pourcentage moyen de poids lourds Z = 20 %
- L'année de mise en service sera en 2025
- Environnement (E1) Catégorie (CAT1).
- La durée de vie estimée à 20 ans.
- ICBR = 7

Calcul du trafic du VPL a l'année de mise en service :

$$N1 = TMJA2025 \times \%PL$$

$$N1 = 16880 \times 0.2 = 3376 \text{ VPL/J}$$

Calcul du trafic du VPL a l'année horizon :

$$Nn = N1 (1+\tau)'n$$

$$N20 = 3376(1 + 0.033)^{20} = 6462.62 \text{VPL/J}$$

Calcul d'épaisseur théorique :

On a
$$C.B.R = 7$$

$$e = \frac{100 + (\sqrt{p})(75 + 50\log\frac{N}{10})}{ICBR + 5}$$

$$e = \frac{100 + (\sqrt{6.5})(75 + 50\log\frac{6462.62}{10})}{7 + 5}$$

$$e = 54.12m$$

$$e \approx 54cm$$

10.5.2 Calcul des épaisseurs des différentes couches.

Lorsque le corps de la chaussée est composé par des différents matériaux, on utilise le coefficient d'équivalent de chaque matériau :

$$e = \sum_{i}^{n} Ci \ ei$$

Ci : Coefficient d'équivalence de chacun de matériau à utiliser.

ei : Épaisseur de chaque couche.

On propose les matériaux suivants de chaque couche :

Couche de roulement en « Béton bitumineux à performance modifié BBPM » :

D'après le tableau ci-dessous

$$a1 \times e1 = 2.00 \times 7 = 14 \text{ cm}$$

Couche de liaison en « Grave bitumineux » GB 0/20 :

$$a2 \times e2 = 1.2 \times 10 = 12 \text{ cm}$$

10.5.3 Epaisseur équivalente :

Pour proposer le dimensionnement de la structure de notre chaussée, il nous faut résoudre l'équation suivante :

$$e = e1 \times a1 + e2 \times a2 + e3 \times a3 + e4 \times a4$$

$$e = 7 \times 2 + 10 \times 1.2 + 22 \times 1 + e4 \times 0.6 = 54 \text{ cm}$$

$$e4 = 10$$
.

Pour notre cas l'épaisseur réelle est de :

$$7 \text{ (BB)} + 10 \text{ (GB)} + 22 \text{ (GNT)} + 15 \text{ (Tuf)}.$$

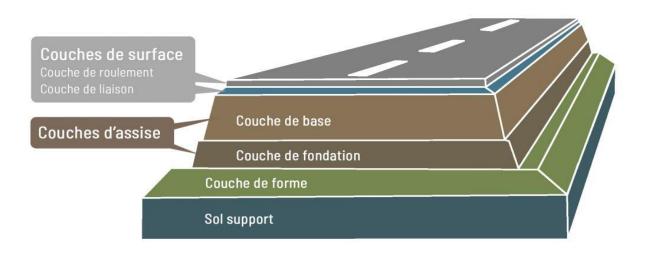


Figure 10-2 les différentes couches.

Tableau 10-2 tableau de différentes couches.

Couche	Epaisseur équivalent en cm	Epaisseur réelle cm
Couche de roulement BB	14	7
couche de liaison GB	12	10
couche de base GNT	22	22
Couche de fondation en Tuf	6	15
Total	54	54

Chapitre XI Etude Géotechnique

Chapitre 11 : Etude géotechnique.

11.1 Définition

La géotechnique routière est tout simplement l'application de la géotechnique au domaine routier.

Elle concerne:

- Les travaux de terrassement (utilisation du sol comme matériaux de construction en déblai/remblai).
- Les soutènements et stabilisation de talus.
- Les fondations des ouvrages d'art.

Un projet géotechnique se déroule de la façon suivante :

- Les reconnaissances géotechniques.
- La reconnaissance des sols.
- Les diverses études.
- La fixation des conditions de mise en place des matériaux.
- Le contrôle qualité et la réception de la plate-forme sur chantier.

11.2 Méthodologie d'une étude géotechnique routière

En géotechnique routière, la méthodologie utilisée s'apparente à la démarche employée pour les routes. Elle se décompose en 3 phases principales

> Phase 0 : les études préliminaires :

Mettre en évidence les éventuels points sensibles (points durs)

➤ Phase 1 : les études d'avant-projet :

Chiffrer / Pré-dimensionner (précèdent l'enquête d'utilité publique)

Phase 2 : les études de projet :

Dimensionner / Écrire les pièces du marché

11.3 Caractérisation des sols

La connaissance du sol et de ses caractéristiques géotechniques et morphologiques, est une étape primordiale dans le choix d'une structure de chaussée. En effet, la connaissance du sol, associée à une bonne

approche du trafic supporté et des matériaux de chaussée utilisés, permet d'optimiser les épaisseurs des couches de chaussées.

- Approcher la portance du sol support afin de dimensionner les corps de chaussée.
 Cette classification et d'autant plus importante qu'elle conditionne le choix
 D'investissement et d'entretien.
- Estimer la possibilité de l'utilisation du sol en remblai ou en couche de forme

11.4 Constituants d'un sol

Les sols sont constitués de trois phases :

- ✓ Une phase solide (les grains)
- ✓ Une phase liquide (l'eau)
- ✓ Une phase gazeuse (l'air)

On peut, par la pensée, rassembler chaque phase en un volume partiel unique de section unité :

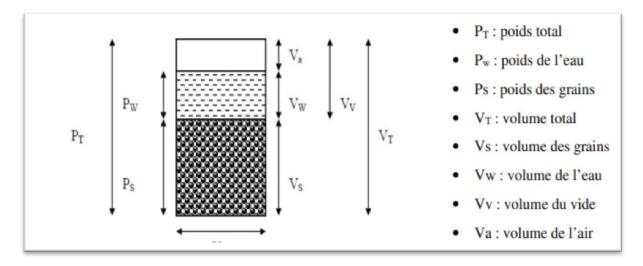


Figure 11-1 les différentes phases d'un sol

Le squelette solide est l'élément essentiel. Il influe de façon considérable sur le comportement des sols et notamment les sols à forte proportion granulaire. La nature des grains est également à considérer.

La proportion d'eau est importante à considérer notamment dans le comportement des sols fins.

La teneur en eau est exprimée par le rapport entre le poids de l'eau est le poids des grains. Elle est notée W.

$$W = \frac{p_w}{p_s} \times 100$$

Le tableau suivant présente quelques valeurs usuelles et quelques ordres de grandeurs :

Tableau 11-1:Valeurs usuelles de teneur en eau

Sols	Teneur en eau
Sable	2 à 10
Limon	10 à 30
Argile moyenne à raide	20 à 30
Argile molle	50 à 100
Vase et tourbes	80 à 300

11.5 Essais permettant de déterminer les paramètres de nature des sols

Les paramètres de nature se rapportent à des caractéristiques intrinsèques, c'est-à-dire qui ne varient pas ou peu, ni dans le temps ni au cours des différentes manipulations qui subit le sol au cours de sa mise en œuvre. Les principaux paramètres retenus pour la classification concernent :

- L'analyse granulométrique
- La détermination des limites d'Atterberg, Indice de plasticité (Ip)
- La valeur au bleu de méthylène
- L'équivalent de sable
- L'indice de portance pour l'identification des sols en vue d'un dimensionnement de chaussée.

11.5.1 Analyse granulométrique par tamisage :

11.5.1.1 But de l'essai :

- ✓ Déterminer la répartition des grains de sol suivant leur dimension dans un échantillon.
- ✓ Représentation de la répartition de la masse des particules à l'état sec en fonction de leur dimension.

11.5.1.2 Domaine d'application :

Cette opération permet de déterminer le pourcentage d'éléments fins (passant à 80µm) qui caractérise la sensibilité à l'eau du matériau d'une part et d'examiner, d'autre part, la forme de la courbe granulométrique : représentation graphique de la distribution des grains suivant leurs dimensions

11.5.1.3 Principe de l'essai :

L'essai consiste à fractionner au moyen d'une série de tamis un matériau en plusieurs classes granulaires de tailles décroissantes. Les masses des différents refus et tamisâts sont rapportées à la masse initiale du matériau. Les pourcentages ainsi obtenus sont exploités sous forme graphique.

11.5.1.4 Résultats et interprétations :

Tracé de la courbe granulométrique : Il suffit de porter les divers pourcentages des tamisâts cumulés sur une feuille semi-logarithmique :

En abscisse : les dimensions des mailles, échelle logarithmique

En ordonnée : les pourcentages sur une échelle arithmétique.

La courbe doit être tracée de manière continue.

La forme de la courbe granulométrique obtenue apporte les renseignements suivants :

- ❖ Les dimensions d et D du granulat,
- La plus ou moins grande proportion d'éléments fins,
- La continuité ou la discontinuité de la granularité.

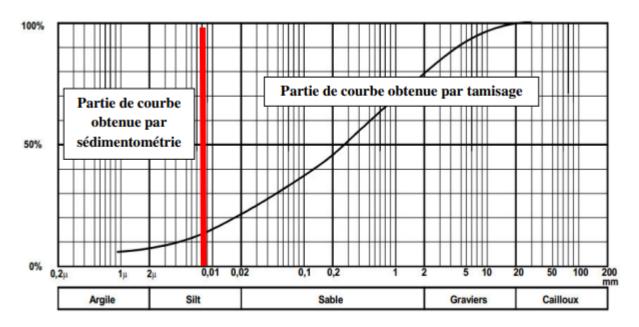


Figure 11-2 : Courbe granulométrique

Coefficient d'uniformité Cu.

Il est défini par :

$$C_u = \frac{D_{60}}{D_{10}}$$

Il sert à la description de la granulométrie. Dx est par définition le diamètre du tamis dont le tamisât cumulé est égal à x %.

Coefficient de courbure Cc.

Il est défini par :

$$C_c = \frac{D_{30}^2}{D_{60}D_{10}}$$

On considère que lorsque Cu est supérieur à 4 pour les graviers, et supérieur à 6 pour les sables, alors

1 < Cc < 3 donne une granulométrie bien étalée (faible porosité)

11.5.2 Analyse granulométrique par voie humide

11.5.2.1 But de l'essai : Tracer la courbe granulométrique des éléments fins

11.5.2.2 Principe de l'essai : La méthode consiste à mesurer le temps de sédimentation dans une colonne d'eau, c'est-à-dire la vitesse de chute des particules.

11.5.2.3 Résultats et interprétations : Le diamètre équivalent D d'une particule à une profondeur connue, après un certain intervalle de temps à partir du commencement de la sédimentation est

Donné par :

$$D = 0.005531 \sqrt{\frac{\mu.H}{(G_s - 1).t}}$$

μ : viscosité de l'eau

H: hauteur effective en mm

Gs : gravité spécifique de la particule

t : temps écoulé en minutes.

11.5.3 Limites d'Atterberg:

11.5.3.1 But de l'essai :

Caractériser l'argilosité d'un sol, et donc déterminer les teneurs en eau remarquables situées à la frontière entre ces différents états sont les « Limites d'Atterberg » :

Limite de Liquidité : WL (frontière entre état plastique et liquide)

Limite de Plasticité : WP (frontière entre état solide et plastique)

11.5.3.2 Domaine d'application : Cet essai s'applique généralement sur les sols comportant un pourcentage de fines (80µm) supérieur à 35%. La détermination de l'argilosité d'un sol par les limites d'Atterberg que par l'essai VBS (Valeur de Bleu du sol) est à privilégier dès que le sol est argileux à très argileux.

11.5.4 Valeur de Bleu du Sol (VBS)

11.5.4.1 But de l'essai :

Déterminer la propreté d'un sable, d'un granulat et plus généralement d'un sol, et les différents types d'argiles qu'il contient.

11.5.4.2 Domaine d'application :

Cet essai concerne les sols et certains matériaux rocheux. Toutefois, pour les matériaux les plus argileux, on privilégiera la réalisation des limites d'Atterberg

11.6 Les essais de détermination des paramètres de compactage 11.6.1 Essai Proctor

11.6.1.1 But de l'essai : Détermination des références de compactage d'un matériau : masse volumique et teneur en eau

11.6.1.2 Principe de l'essai :

L'essai Proctor, complètement normalisé, consiste à placer dans un moule de dimensions déterminées, un échantillon humidifié de manière homogène à une teneur en eau donnée, peu élevée au début, et à compacter cet échantillon par couches au moyen d'une dame de poids standardisé tombant d'une hauteur standardisée.

Pour chacune des teneurs en eau considérée, on détermine le poids volumique sec du sol et on établit la courbe des variations de ce poids volumique en fonction de la teneur en eau .

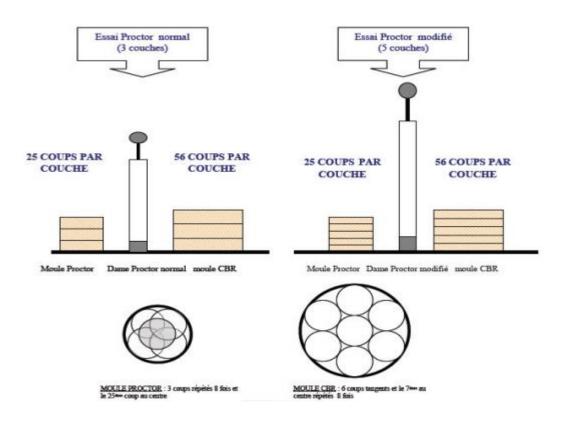


Figure 11-3: Principe de l'essai Proctor normal et modifié

11.6.2 L'indice de portance (CBR)

Les initiales CBR sont l'abréviation de California Bearing Ratio

11.6.2.1 But de l'essai :

Cet essai donne une mesure de la portance relative des sols par rapport à un sol type, constitué par des pierrailles concassées et compactées, extraites d'une carrière de Californie.

Cet essai permet de :

- ✓ Établir une classification des sols (GTR)
- ✓ Évaluer la traficabilité des engins de terrassement
- ✓ Déterminer l'épaisseur des chaussées (CBR augmente → épaisseur diminue)

11.6.2.2 Principe de l'essai :

L'indice portant californien CBR est le rapport, exprimé en % de la pression produisant un enfoncement donné au moyen d'un poinçon cylindrique normalisé (de section 19.32 cm²) se déplaçant à une vitesse déterminée (1.27 mm/min) et de la pression nécessaire pour enfoncer le même poinçon dans les mêmes conditions, dans un matériau type.

Cet indice peut être pris à différent état hydrique (soit à différent niveau de compactage) :

- ✓ A l'optimum : indice portant à la teneur en eau optimale Wopm
- ✓ A la teneur en eau naturelle (Indice Portant immédiat) à Wnat
- ✓ Après saturation : on immerge le moule pendant quatre jours dans l'eau et on enfonce le poinçon à vitesse constante.

Chapitre XII Assainissement

Chapitre 12: Assainissement

12.1. Généralités :

Tout ouvrage routier comporte un réseau d'assainissement dont le rôle est de récupérer et d'évacuer toutes les eaux de ruissellements.

L'assainissement des voies de circulation comprend l'ensemble des dispositifs à prévoir et réaliser pour récolter et évacuer toutes les eaux superficielles et les eaux souterraines.

Les différents ouvrages utilises peuvent être regroupées en :

- Réseaux longitudinaux (pieds de talus de déblai, crêtes de remblai, etc..).
- Liaisons transversales (descentes d'eau traversées sous chaussée).
- Les regards et ouvrages de raccordement.

12.2. Objectif de l'assainissement

L'assainissement des routes doit remplir les objectifs suivants :

- Assurer l'évacuation rapide des eaux tombant et s'écoulent directement sur le revêtement de la chaussée (danger d'aquaplaning).
- Le maintien de bonne condition de visibilité.
- Réduction du cout d'entretien.
- Eviter les problèmes d'érosions.
- Assurer l'évacuation des eaux d'infiltration à travers le corps de la chaussée. (Danger de ramollissement du terrain sous-jacent et effet de gel).
- Evacuation des eaux s'infiltrant dans le terrain en amant de la plate-forme (Danger de diminution de l'importance de celle-ci et effet de gel).

12.3. Assainissement de la chaussée

Les ouvrage d'assainissement doivent être conçus dans le but d'assainir la chaussée et l'emprise de la route dans les meilleures conditions possibles et avec un moindre cout.

a)Fossé de pied du talus de déblai :

Ces fossés sont prévus au pied du talus de déblai afin de drainer la plate-forme Et les talus vers les exutoires.

Ces fossés sont en terre et de section trapézoïdale. Ils seront bétonnés lorsque la pente en profile en long dépasse les 3%

b)Fossé de crête de déblai :

Ce type de fosse est toujours en béton. Il est prévu lorsque le terrain naturel de crête est penché vers l'emprise de la chaussée, afin de protéger les talus de déblais des érosions dues au ruissellement des eaux de pluie et d'empêcher ces eaux d'atteindre la plate-forme.

c)Fossé de pied du talus de remblai :

Le fossé est en terre ou en béton (en fonction de leur vitesse d'écoulement). Ils sont prévus lorsque la pente des terrains adjacents est vers la plate-forme et aussi de collecter les eaux de ruissellement de la chaussée, en remblai par l'intermédiaire des descentes d'eau.

d)Drain:

Le drainage du corps de chaussée est assuré par une tranchée drainant longeant de route.

Ce drain est constitué par un matériau graveleux comportant en son centre un tuyau circulaire en plastique perforé à sa génératrice supérieure à 150 mm de diamètre. Ce drain est positionné sous le fossé trapézoïdal et à la limite des accotements.

Les eaux collectées par le drain sont rejetées dans des regardes de drainage et en dernier lieu dans les points de rejet.

e)Descentes d'eau:

Dans les sections route en remblai, lorsque la hauteur de ces remblais dépasse les 2.50 m, les eaux de ruissellement de la chaussée sont évacuées par des descentes d'eau.

Elles sont espacées généralement tous les 50 m lorsque la pente en profil en long est supérieure à 1% Lorsque la pente est inférieure à 1%, leur espacement est varié entre 30 m et 40 m

12 .4. Définitions des termes hydrauliques

a) Bassin versant:

C'est un secteur géographique qui est limité par les lignes de crêtes ou lignes de partage des eaux. C'est la surface totale de la zone susceptible d'être alimentée en eau pluviale, d'une façon naturelle, ce qui nécessite une canalisation en un point bas considéré (exutoire).

b) Collecteur principal (canalisation):

C'est la conduite principale récolant les eaux des autres conduites (dites collecteurs secondaires), recueillant directement les eaux superficielles ou souterraines.

c) Chambre de visite (cheminée):

C'est un ouvrage placé sur les canalisations pour permettre leur contrôle et leur nettoyage. Les chambres de visites sont à prévoir aux changements de calibre, de direction ou de pentes longitudinales de la canalisation. Pour faciliter l'entretien des canalisations, la distance entre deux chambres consécutives ne devrait pas dépasser 80 à 100 m.

d) Sacs:

C'est un ouvrage placé sur les canalisations pour permettre l'introduction des eaux superficielles. Les sacs sont fréquemment équipés d'un dépotoir, destiné à retenir des déchets solides qui peuvent être entrainé, par les eaux superficielles.

e) Les ouvrages des écoulements des eaux :

En général les ouvrages d'évacuations des eaux superficielles ou sous chaussée sont nombreux, parmi lesquels ceux qui ont traversé notre route sont les suivantes :

• Les passages submersibles.

- Les fossés.
- Les dalots.
- Les buses.

f) Passages submersibles:

Les passages submersibles sont des ouvrages qui servent à protéger la chaussée contre les dégradations causées par les eaux, et qui assurent superficiellement l'écoulement des eaux lorsque leur volume est plus important.

g) Fossés:

Ces sont des tranchées creusées en longueur dans le sol et servent à délimiter les terrains ou à l'écoulement de l'eau de ruissellement.

h) Les dalots:

Les dalots ont le même rôle que les buses, ils servent à évacuer les eaux sous chaussée, leurs dimensions aussi varient suivant l'importance de la profondeur du bassin versant, généralement ils sont rectangulaires ou carrés.

Dans le cas de notre projet on a projeté des passages busés.

Chapitre XIII Signalisations

Chapitre 13: Signalisations

13.1. definition:

La signalisation routière est un moyen de communication avec les usagers.

- ✓ Bien signaler c'est bien communiquer.
- ✓ Bien signaler, c'est assurer l'écoulement du trafic dans les meilleures conditions de circulation, de gestion du trafic et de sécurité routière.

13.2 OBJECTIFS DE SIGNALISATION ROUTIERE

La signalisation routière a pour rôle :

- ✓ De rendre plus sure et plus facile la circulation routière.
- ✓ De rappeler certaines prescriptions du code de la route.
- ✓ D'indique et de rappeler les diverses prescriptions particulières.
- ✓ De donner des informations relatives à l'usage de la route.

13.3 CRITERES A RESPECTER POUR LES SIGNALISATIONS

Il est indispensable avant d'entamer la conception de la signalisation de respecter certains critères, afin que celle-ci soit bien vue, lue, et comprise :

- ✓ Homogénéité entre la géométrie de la route et la signalisation.
- ✓ Respecter les règles d'implantation
- ✓ Cohérence entre les signalisations verticales et horizontales.
- ✓ Eviter les panneaux publicitaires irréguliers.
- ✓ Eviter la multiplication des signaux et des super signaux, car la surabondance nuit à l'efficacité.

13.4. TYPES DE SIGNALISATION

On distingue deux types de signalisation :

- -Signalisation verticale.
- -signalisation horizontale.

- **A. Signalisation verticale :** Elle se fait à l'aide de panneaux, ces derniers sont des objets qui transmettent un message visuel grâce à leur emplacement, leur type, leur couleur et leur forme. Elles peuvent être classées dans quatre classes :
 - > Signaux de danger : Panneaux de forme triangulaire, ils doivent être placés à

150m en avant de l'obstacle à signaler (signalisation avancée).

- > Signaux comportant une prescription absolue : Panneaux de forme circulaire, on trouve :
- L'interdiction.
- L'obligation.
- La fin de prescription.
 - Signaux à simple indication : Panneaux en général de forme rectangulaire, des fois terminées en pointe de flèche :
- Signaux d'indication.
- Signaux de direction.
- Signaux de localisation.
- Signaux divers.
 - > Signaux de position des dangers : Toujours implantés en pré signalisation, ils sont d'un emploi peu fréquent en milieu urbain.
- **B.** Signalisation horizontale : Elle concerne uniquement les marques sur chaussées qui sont employées pour régler la circulation, avertir ou guider les usagers. Le blanc est la couleur utilisée pour les marquages sur chaussées, et pour certains marquages spéciaux, on utilise d'autres couleurs dans les conditions suivantes :
 - Le jaune pour
 - ✓ Les marques interdisant l'arrêt ou le stationnement ;
 - ✓ Les lignes zigzag indiquant les arrêts d'autobus ;
 - ✓ Le marquage temporaire.
 - **Le bleu** éventuellement pour les limites de stationnement en zone bleue.
 - Le rouge pour les damiers rouge et blanc matérialisant le début des voies de détresse.

La signalisation horizontale se divise en trois types :

Marquages longitudinales:

Lignes continues :

Elles ont un caractère impératif (non franchissables sauf du coté ou elles sont doublées par une ligne discontinue). Ces lignes sont utilisées pour indiquer les sections de route où le dépassement est interdit.

Lignes discontinues :

Ce sont des lignes utilisées pour le marquage, elles se différencient par leur module, c'est-à-dire le rapport de la longueur des traits à celle de leurs intervalles. On distingue :

- Les lignes axiales ou lignes de délimitation de voies pour lesquelles la longueur des traits est égale au tiers de leurs intervalles.
- Les lignes de rive, les lignes de délimitation des voies d'accélération, de décélération ou d'entrecroisement pour lesquelles la longueur des traits est sensiblement égale à celle de leurs intervalles.
- Les lignes d'avertissement de lignes continues, les lignes délimitant les bandes d'arrêt d'urgence, par lesquelles la longueur des traits est sensiblement triple de celle de leurs intervalles.

Les modulations des lignes discontinues sont récapitulées dans le tableau suivant :

Type de modulation	Longueur du Trait (en mètres)	Epissure 16-18	Intervalle entre deux traits successifs (mètres)	Rapport plein vide
T ₁	3.00	18 cm	10.00	Environ 3
1 1	3.00	10 CIII	10.00	Environ 5
T'1	1.50		5.00	
T2T'2	3.00	18 cm	3.50	Environ 3
	0.50		0.50	
T3T'3	3.00	18 cm	1.33	Environ 3
	20.00		6.00	

Tableau 13-1: Modulation de la ligne continue.

Largeur Des Lignes :

La largeur des lignes est définie par rapport à une largeur unité "u" différente selon Le type de route. On adopte les valeurs suivantes pour "u".

u = 7.5 cm sur les autoroutes, les routes à chaussées séparées, les routes à 4 voies de rase campagne. u = 6 cm sur les routes importantes, notamment sur les routes à grande circulation.

u = 5 cm sur toutes les autres routes;

u = 3 cm pour les lignes tracées sur les pistes cyclables.

La valeur de "u" doit être homogène sur tout un itinéraire. En particulier, elle ne doit pas varier au passage d'un département à l'autre.

Marquages transversales:

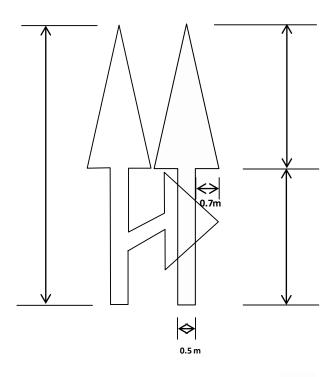
- Lignes transversales continue : éventuellement tracées à la limite où les conducteurs devraient marquer un temps d'arrêt.
- Lignes transversales discontinue : éventuellement tracées à la limite où les conducteurs devaient céder le passage aux intersections.

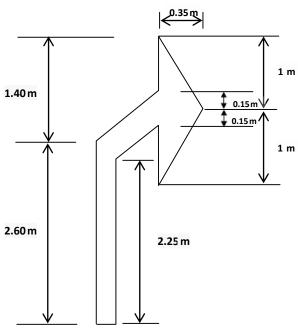
C. Autres signalisation:

• Les flèches de rabattement :

Ces flèches légèrement incurvées signalent aux usagers qu'ils doivent emprunter la voie située du côté qu'elles indiquent.

• Les flèches de sélection :


Ces flèches situées au milieu d'une voie signalent aux usagers, notamment à proximité des intersections, qu'il doive suivre la direction indiquée.


- ✓ Pour piétons,
- ✓ Pour cyclistes,
- ✓ Pour le stationnement,
- ✓ Pour les ralentisseurs de type dos d'âne.

13.5. Application au projet

A. Les signalisations horizontales :

❖ Flèche de sélection : Figure 13-1 : Flèche de sélection.

* Marque sur la chaussée :

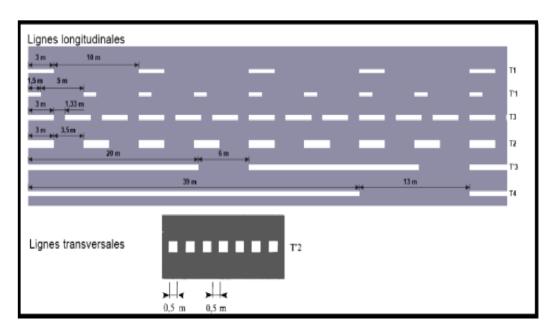


Figure 13-2 : Marque sur la chaussée.

* Flèche de rabattement :

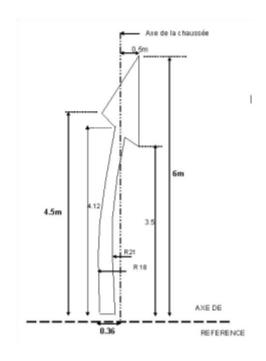


Figure 13-3 : Flèche de rabattement.

Schéma de signalisation stop sur chaussée :

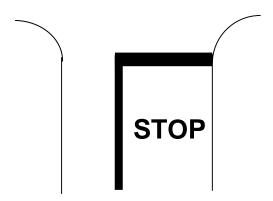


Figure 13-4 : Schéma de signalisation stop sur chaussée.

* Schémas de marquage par hachures (sur le nez d'ilot) :

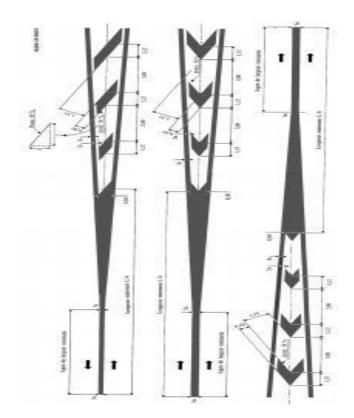
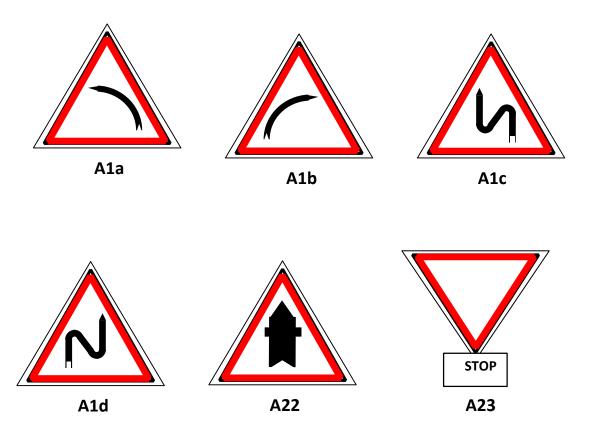
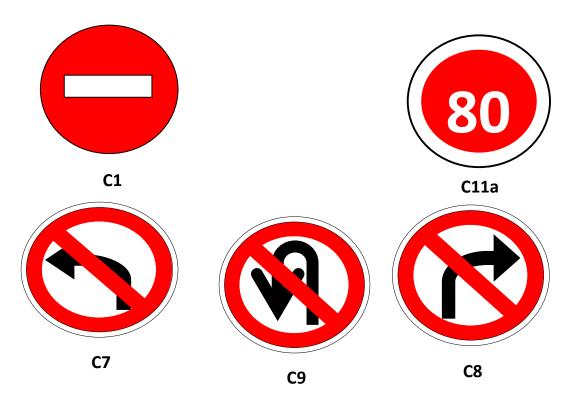
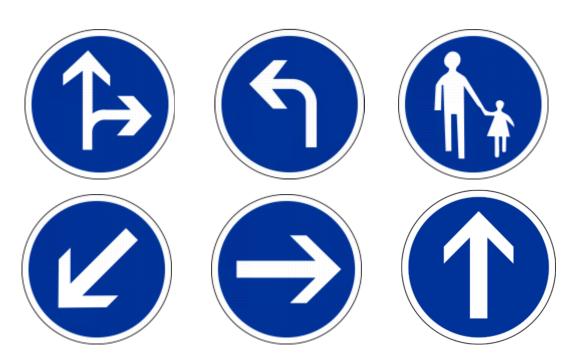



Figure 13-5 : Schémas de marquage par hachures (sur le nez d'ilot)

B. Les signalisations verticales :

Plaques de signalisation :


> Les signaux de danger type A :


Les signaux d'intersection et de priorité type B:

> Les signaux d'interdiction de type C :

> Les signaux d'obligation de type D :

* Panneaux spéciaux type A :

Figure 13-6 : Panneaux spéciaux (type A).

❖ Signaux d'identification des routes type E :

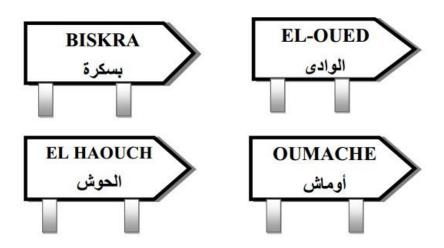


Figure 13-7: Les signaux d'identification des routes (type E).

13.2. Eclairage

Dans un trafic en augmentation constante, l'éclairage public et la signalisation nocturne des routes jouent un rôle indéniable en matière de sécurité. Leurs buts sont de permettre aux usagers de la voie de circuler la nuit avec une sécurité et confort aussi élevé que possible.

13.2.1. Catégorie d'éclairage

On distingue quatre catégories d'éclairages publics :

- 1) Catégorie A : Eclairage général d'une route ou une autoroute.
- 2) Catégorie B : Eclairage urbain (voirie artérielle et de distribution).
- 3) Catégorie C : Eclairage des voies de cercle.
- 4) Catégorie D : Eclairage d'un point singulier (carrefour, virage...) situé sur un itinéraire non éclairé.

13.2.2. Paramètres d'implantation des luminaires

- ✓ L'espacement (e) entre luminaires : qui varie en fonction du type de voie.
- ✓ La hauteur (h) du luminaire : elle est généralement de l'ordre de 8 à 10 m et parfois
 - 12 m pour les grandes largeurs de chaussée.
- ✓ La largeur (l) de la chaussée.
- ✓ Le porte-à-faux (p) du foyer par rapport au support.
- ✓ L'inclinaison, ou non, du foyer lumineux, et son surplomb (s) par rapport au bord de la chaussée.

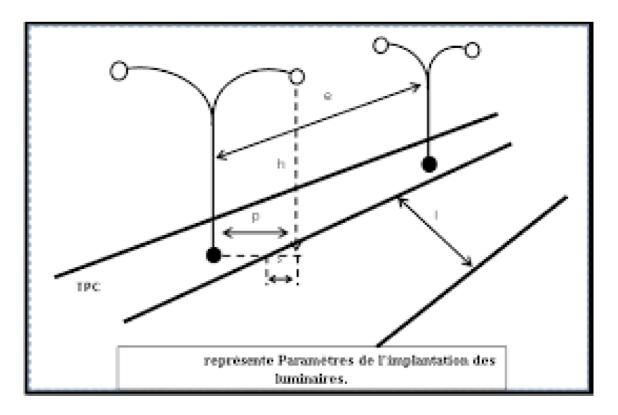


Figure 13-8 : Paramètres de l'implantation des luminaires.

13.2.3. Eclairage d'un point singulier

Les caractéristiques de l'éclairage d'un point singulier, situées sur un itinéraire non éclairé doivent être les suivant :

- ➤ Longue distance 800 à 1000 m du point singulier, tache lumineuse éveillant l'attention de l'automobiliste
- Distance moyenne 300 à 500 m, idée de la configuration du point singulier.
- > Faible distance distinguée sans ambiguïté les obstacles.
- La sortie de la zone éclairée, pas de phénomène de cécité passagère.

Chapitre XIV Impact sur l'environnement

Chapitre 14: Impact sur l'environnement

14.1. Impacts du projet sur l'environnement :

14.1.1. Les impacts négatifs :

Au niveau des impacts négatifs identifiés, on retiendra ce qui suit :

- Les problèmes de santé et de nuisances diverses liés à la pollution de l'air par les poussières et les fumées des engins de terrassement et les véhicules de liaison.
- Les déchets liquides et solides des chantiers entraînant un risque faible de pollution des eaux de surface et des eaux souterraines. Cette intrusion dans le milieu naturel (pollution, contamination ...) a également des conséquences négatives sur les conditions de vie des populations (maladies).
- La destruction des espèces ligneuses situées sur le talus et les accotements des routes, les déviations, les virages à caractère accidentel, qui sont corrigés, et les zones d'emprunt.

14.1.2. Les impacts positifs :

Au niveau des impacts positifs, l'essentiel se résume :

A la création d'emploi dans les travaux d'entretien de cette route ; au rapprochement de l'administration centrale des populations locales ; à la facilitation des évacuations sanitaires des villages vers les villes ; à la circulation qui sera améliorée ; aux activités économiques, échanges commerciaux, activités artisanales, culturelles et touristiques.

14.2. Mesures d'atténuation :

14.2.1. Mesures d'atténuation formulées des impacts négatifs et renforcer les impacts positifs :

- On peut noter un certain nombre d'atténuations citées ci-dessous : les clauses environnementales à insérer dans le cahier des charges des entreprises telles que l'arrosage des routes concernées pendant les travaux, la remise en état ou la revalorisation des sites d'emprunt si telle est la disposition retenue, la collecte et l'élimination des déchets solides et liquides des chantiers, le balisage et la mise en place des panneaux de signalisation.
- Les mesures de lutte contre l'érosion par des ouvrages de drainage (gabion, perrés maçonnés ou secs, diguettes de moellons).
- Les plantations d'arbres d'alignement à la traversée des agglomérations, la mise en place des bosquets villageois pour compenser les arbres abattus sur l'emprise des routes, des zones d'emprunt et des carrières.
- Les aménagements des carrières en mares au profit de l'élevage (abreuvement du bétail) ; de cultures de contre saison et de maraichage.

• Les mesures réglementaires concernant toute attaque visant à nuire à l'intégrité des forêts classées, des domaines protégés et des bois sacrés.

14.2.2 Les mesures de renforcement des impacts positifs qui porte sur :

- L'embauche de la main d'œuvre locale pendant les travaux.
- Le renforcement des capacités des infrastructures communautaires par des clôtures temporaires et permanentes au niveau des écoles et des Centres de santé de promotion sociale.
- L'entretien courant de la route, pour soutenir de façon durable toute action positive ci-dessus évoquée.

Chapitre VX Devis Quantitatif Et Estimatif

Chapitre 15 : Devis quantitatif et Estimatif

Réalisation de la Route la liaison autoroutière reliant la wilaya de Batna à l'autoroute Est-Ouest du Pk 31+260 au Pk 43+260

Lot1: du Pk 31+260 au Pk 37+260

N°	Désignation des Travaux	U	P.U (H.T)	Quantité	Montant
1	Installation et repliement de chantier	F	10000000,00	1	10000000,00
2	Laboratoire de chantier	F	5000000,00	1	5000000,00
3	Travaux de décapage sur 44 cm d'épaisseur	\mathbf{M}^2	100,00	84 300	8430000,00
4	Déblais mis en dépôt	M^3	700,00	219 700	153790000,00
5	Remblais d'emprunt	\mathbf{M}^3	800,00	442 000	353600000,00
6	Couche de fondation en GNT sur une épaisseur de 26 cm	M^3	2600,00	21 840	56784000,00
7	Couche de d'imprégnation 1,00 kg/ M ²	\mathbf{M}^2	84000,00	84 000	7056000000,00
8	Couche de base en GB sue une épaisseur de 12 cm	Т	200,00	23200	4640000,00
9	Couche d'accrochage en émulsioncationique 65% dosée à 0,3 kg/m2	Т	200,00	84 000	16800000,00
10	Fourniture et mise en œuvre d'une couche de roulement en béton bitumineux ép, De 06 cm	Т	7500,00	11 600	87000000,00
11	Rechargement des accotements en GNT de largeur Et une épaisseur de 20 cm	M^3	1500,00	6 000	9000000,00
12	barrière de sécurité eb béton (GBA)	ML	6500,00	12 000	78000000,00

			TOTAL EN T.T.C.		9337220760,00
			TVA 19%		1490816760
			TOTAL EN HORS TAXES		7846404000,00
15	Signalisation verticale (Panneaux)	M²	20000,00	30	600000,00
14	Signalisation horizontale	ML	90,00	24000	2160000,00
13	Fo/P Fossés trapézoïdaux en béton	ML	4000,00	1 150	4600000,00

<u>ARRETE LE MONTANT DU PRESENT DEVIS EN TTC A LA SOMME DE</u>: Neuf Milliards trois Cent Trente-sept millions Deux Cent Vingt Mille Sept Cent soixante Dinars Algériens

Conclusion Générale

Ce projet de fin d'études nous a été une opportunité pour concrétiser nos connaissances théoriques et techniques acquises pendant notre cycle de formation à l'université. Cette étude nous a permis de chercher des solutions à tous les problèmes techniques rencontrés lors de cette étude sachant qu'un projet routier dans les zones sahariennes comme la wilaya Tamanrasset a ses propres spécificités. Il était pour nous d'une part l'occasion de tirer profit des expériences des personnes qualifiées dans le domaine des routes en particulier et des travaux publics en général. Et d'autre part d'apprendre une méthodologie rationnelle à suivre pour élaborer un projet routier.

A propos de notre étude, nous avons essayé de respecter toutes les normes routières imposées par la B40 qu'on ne peut pas négliger en évitant les contraintes rencontrées sur le terrain et à prendre en considération à savoir : Le confort, la sécurité des usagers ainsi bien que l'économie et l'environnement.

Ce projet de route nous a permis non seulement d'exprimer et d'appliquer nos connaissances acquises durant les années de notre formation, de mieux maîtriser l'outil informatique en l'occurrence les logiciels AUTO CAD et COVADIS, mais aussi de mieux appréhender notre avenir dans le monde professionnel.

Bibliographie

- B40 Normes Techniques d'Aménagement des Routes.
- Les cours de routes « 3^{ème} année licence et 1^{ère} année master » de l'université d'Abdelhamid Ibn Badis de Mostaganem.
- https://www.cfmr-roches.org/sites/default/files/jngg/JNGG%202002%20B%20pp%20Morsly.pdf.
- http://dictionnaire.sensagent.leparisien.fr/Route%20transsaharienne/fr-fr/.
- Monographie wilaya batna
- https://clrtafrique.com/dossier/stage_tunisie/rts_non_revet/Les_routes_non_revetues_en_algerie.pdf.
- Mémoire de fin d'étude, Etude de la deuxième rocade sud d'Oran section Belgaid-El Kerma Lot 2 du PK 05+000 au PK 09+000 (HALLAL Mohamed & GNAOUI Omar, Promo 2020).
- Projet de fin d'étude, Etude d'un tronçon routier de la RN 51 MENIA OUARGLA (Du PK 142+000 AU PK 152+000) sur 10 Km (SOUILEM, Promo2019).
- Logiciels: Covadis, AutoCAD 2009 et Google earth.
- https://fr.slideshare.net/ademLoup/catalogue-de-dimensionnement-des-chaussees-neuves-fascicule3-r.
- Sites INTERNET: WWW. Google Earth.Com.
- Mémoire de fin d'étude, Etude géométrique et géotechnique BOURI & TIDJEDIT (ING-VOA, Promo 2013).
- Mémoire de fin d'étude, Etude d'un tronçon routier neuf évitement de la RN 17 AB
 de Sirat (DU PK 23+447 AU PK 26+400), HADDAR Med, promotion 2017.
- https://iste-editions.fr/products/les-essais-in-situ-en-geotechnique; L'auteur Ingénieur et directeur du bureau d'étude géotechnique Gaia Tech, Jacques Monnet a enseigné les essais in situ à Poly Tech' Grenoble.
- Construction en terre focus sur la fabrication et la construction en blocs de terre Compressée.
- Définition d'essai équivalent de sable, Wikipédia.
- Code de bonne pratique.
- Définition d'essai de carbonate, Wikipédia.
- Figure prise du PDF, Code de bonne pratique, R 81/10, Edité par le Centre de recherches routières,
 Etablissement reconnu par application de l'Arrêté-loi du 30 janvier 1947, Boulevard de la Woluwe 42 1200
 Bruxelles.
- Code de bonne pratique, R 81/10, Edité par le Centre de recherches routières, Etablissement reconnu par application de l'Arrêté-loi du 30 janvier 1947, Boulevard de la Woluwe 42 1200 Bruxelles.

Projet de fin d'étude ; étude d'un tronçon autoroutier sur 6 Km avec étude d'un échangeur sur la	RN03 Ain
Touta-Batna; Mehdaoui Belkacem et Reguieg Ismail promotion 2012.	
Marché N°: 22, du 31/12/2018, Opération N°: NE5.521.8.262.111.18.01, Intitule de l'opération de la route Silet - Tinzaouatine sur 367 km (2eme Tranche sur 207km), Direction des travaux pu de Tamanrasset.	
DA PROMOTION 2023-2024	Page 1