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Abstract

Understanding the growth and oscillation of solutions to differential equations, difference equations

and delay-differential equations, is crucial for predicting their behavior. Nevanlinna theory, with its

deep insight into the value distribution of meromorphic functions, provides a powerful framework

for analyzing the growth and oscillation of solutions to these equations. In this thesis, by using this

theory, we present some results regarding the growth and oscillation of solutions of linear differential

equations with analytic or meromorphic coefficients in the extended complex plane except at a finite

isolated point, we also discuss some results on the growth of solutions of linear difference equations

and linear delay-differential equations , in which the coefficients are meromorphic functions in the

complex plane.
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Keywords and phrases: Nevanlinna theory, linear differential equations, linear difference equations,

linear delay-differential equations, growth of solutions, oscillation of solutions, analytic function,

meromorphic function, isolated point, logarithmic order, logarithmic type.



Résumé

Comprendre la croissance et l’oscillation des solutions aux équations différentielles, aux équations aux

différences et aux équations différentielles retardées est crucial pour prédire leur comportement. La

théorie de Nevanlinna, avec sa profonde compréhension de la distribution des valeurs des fonctions

méromorphes, fournit un cadre puissant pour analyser la croissance et l’oscillation des solutions à ces

équations. Dans cette thèse, en utilisant cette théorie, nous présentons certains résultats concernant

la croissance et l’oscillation des solutions des équations différentielles linéaires avec des coefficients

analytiques ou méromorphes dans le plan complexe étendu, sauf en un point isolé fini. Nous discutons

également de certains résultats sur la croissance des solutions des équations aux différences linéaires

et des équations différentielles linéaires retardées, dans lesquelles les coefficients sont des fonctions

méromorphes dans le plan complexe.

Mots clés: Théorie de Nevanlinna, équations différentielles linéaires, équations aux différences

linéaires, équations différentielles linéaires retardées, croissance des solutions, oscillation des solutions,

fonction analytique, fonction méromorphe, ordre logarithmique, type logarithmique.



ملخص
لتوقع الأهمية بالغ أمر ية التأخير التفاضلية والمعادلات الفروق ومعادلات التفاضلية للمعادلات الحلول وتذبذب نمو فهم
وتذبذب نمو لتحليل قوياً إطاراً توفر الميرومورفية، الدوال قيم يع توز في العميقة رؤيتها مع نيفانلينا، ية نظر سلوكها.
حلول وتذبذب بنمو المتعلقة النتائج بعض نقدم ية، النظر هذه باستخدام الرسالة، هذه في المعادلات. لهذه الحلول
منعزلة نقطة باستثناء الموسع المركب المستوى في الميرومورفية أو التحليلية العوامل ذات الخطية التفاضلية المعادلات
الخطية، ية التأخير التفاضلية والمعادلات الخطية الفروق معادلات حلول نمو حول النتائج بعض أيضًا نناقش محدودة،

المركب. المستوى في ميرومورفية دوال المعاملات تكون حيث

التفاضلية المعادلات الخطية، الفروق معادلات الخطية، التفاضلية المعادلات نيفانلينا، ية نظر المفتاحية: الكلمات
النوع اللوغاريتمي، الترتيب منعزلة، نقطة الميرومورفية، الدوال التحليلية، الدوال الحلول، تذبذب الحلول، نمو ية، التأخير

الوغاريتمي.
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Introduction

A word on the notations: Throughout this thesis, we use N,Z,R and C to denote the set of all natural

numbers, the set of all integers, the set of the real numbers and the set of complex numbers respectively,

with C=C∪{∞}. The unit disk {z ∈C : |z|< 1} is denoted by ∆. A function f is called meromorphic,

if it is meromorphic in C entirely, while by saying f is meromorphic around (or near) a finite singular

point z0 ∈ C , then we mean that f is meromorphic in the extended complex plane except z0 (ie.,

C−{z0}).

Let f (r) be complex valued function and g(r) be real and positive. We write f (r) = O
(
g(r)

)
,

whenever there exist constants C and r0 such that, | f (r)| ≤ C|g(r)|, for all r ≥ r0. Also, we write

f (r) = o
(
g(r)

)
if f (r)

g(r) → 0 as r → ∞. We shall use the log+ notation as follows. For x ≥ 0, we write

log+ x = max{0, logx}. Moreover, we use the notation logp r for the p-th iteration of the logarithmic

function (p ∈ N), such that for all r ∈ (0,∞), log1 r := logr and logp+1 r := log(logp r). Similarly, we

use the notation expp r for the p-th iteration of the exponential function.

The linear measure of a set E ⊂ [0,+∞) is denoted by mℓ(E) =
∫

E dt, while we denote the logarithmic

measure of a set E ⊂ (0,1) by mlog(E) =
∫

E
dt
t . For those sets with infinite linear or logarithmic

measure, we reserve notation Ei i ∈ N, while we use Fi i ∈ N for sets of finite linear or logarithmic

measure. It is worth noting that adopting the same notation does not imply that the sets are identical.

Introduction

In 1929, the Finnish mathematician R. Nevanlinna introduced his theory [61], which was the complete

form of the value distribution theory, whose origins trace back to the famous theorems of Sokhotskii-

Casorati (1868), Weierstrass (1876), Picard (1879), Hadamard (1892), Borel (1897) and others, all

of which have become part of Nevanlinna theory results, but in a more refined and elucidating form,

let us say. (see [21, 34, 38, 41, 47, 60, 75, 76, 79]. Perhaps this gives a simple idea of how vast this

theory is. Its vastness can also be observed from its numerous applications in various fields such as

functional equations, differential equations, complex dynamics and Diophantine equations. Nevanlinna

theory has been applied in complex differential equations to study the properties of their solutions

(see e.g. [43, 46, 47], the pioneers in this regard were F. Nevanlinna [62], R. Nevanlinna [63] and K.

Yosida [77], but the first systematic application of this theory to solutions of differential equations

was carried out in the 1940s and 1950s by H. Wittich (see e.g. [68–70]), laying the groundwork for
2



3

further research, which was embodied through the numerous and ongoing publications that generalize

and extend H. Wittich results about the properties of meromorphic solutions of complex differential

equations in general, and specifically on the growth and oscillation of their solutions, by relating the

order of the coefficients with the order of the solutions or with the exponent of convergence of the

sequence of their zeros, which was firstly made by Bank and Laine (see [1, 2]). This was also reflected

in Nevanlinna theory, which had to undergo some extensions to different domain, such as the unit disk

∆ (see [38, 40, 46, 66]), the extended complex plane except an isolated point C−{z0} [32, 37]. The

latter occupies an important part of our thesis topic.

Although Nevanlinna theory linked to difference equations field in the 1980s by Shimomura [65]

and Yanagihara [73, 74], it did not gain that momentum of applications in this field, at least not

to the extent seen in differential equations, which has been justified by the scarcity of necessary

tools, such as those provided by Nevanlinna theory, notably, the logarithmic derivative lemma, for

studying the differential equations. This problem was largely resolved after the establishment of the

difference analogous of the logarithmic derivative by Halburd-Korhonen [35,36] and Chiang-Feng [22],

independently. The numerous subsequent works, especially those related to the growth of solutions,

are concrete evidence of this claim (see [16, 50] ).

With the significant and rapid advancement witnessed in differential equations as well as the

difference equations through the application of Nevanlinna theory, it was not difficult to anticipate that

the next step would be the difference-differential equations (also called delay-deferential equations

), especially because the groundwork of studying their meromorphic solution was already laid by

Naftalevich [57–59]. The delay-deferential equations involve both the difference operator and the

derivative, this why they can be regarded as a generalization of both difference and differential

equations, yet they have their own specific applications, which is the reason behind the growing interest

to investigate them, particularly the growth and the value distribution of their solutions (see [50]).

This thesis discusses some results that can be considered as examples regarding the application of

Nevanlinna theory in studying the growth and oscillation of solutions to these three types of equations.

Besides this introduction, this thesis contains six chapters.

In Chapter 1, we briefly recall some basic results derived from Nevanlinna theory to provide the

necessary background. In Chapters 2, 3 and 4, we consider the complex linear differential equations

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = 0,

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = F(z),

where A j(z) ( j = 0,1, . . . ,k−1) and F(z) are analytic or meromorphic functions in C−{z0}.



4 INTRODUCTION

We obtain some results on the growth and oscillation of solutions, where we use the [p,q]-order and

the logarithmic order as growth indicators. In Chapter 5, we continue making use of the logarithmic

order to estimate the growth of the complex linear difference equation

Ak(z) f (z+ ck)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = F(z),

where Ak(z), . . . ,A0(z) and F(z) are meromorphic functions of finite logarithmic order, ci(i= 1, . . . ,k,k∈
N) are distinct non-zero complex constants. Its homogeneous case is also considered.

The final Chapter 6 is devoted to considering the logarithmic order of meromorphic solutions of the

homogeneous and non-homogeneous linear delay-differential equations

n

∑
i=0

m

∑
j=0

Ai j(z) f ( j)(z+ ci) = 0,

n

∑
i=0

m

∑
j=0

Ai j(z) f ( j)(z+ ci) = F(z),

where Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) are meromorphic of finite logarithmic

order, ci(i = 0, . . . ,n) are distinct non-zero complex constants.



Chapter 1

Background

In this chapter, we briefly review some selected facts from Nevanlinna theory, chosen based on their

relevance and use as an essential material in the following chapters. The body of this chapter is

divided into three sections, the material of the first section can be found in any classic book on

Nevanlinna theory (see e.g. [3, 38, 47, 60]), while the content of the next two sections is mostly taken

from [15, 19, 32, 42, 49, 55].

1.1 Nevanlinna theory: Basic definitions and theorems

The crucial role played by the three Nevanlinna main functions: the proximity function m, the counting

function N and The characteristic function T , can be observed easily through their involvements in

the two Nevanlinna fundamental theorems and in the majority of quantities measuring the growth and

value distribution. Therefore, this theory has been described as a study of how the growth of these

functions interrelates. We begin this section by the definitions of these three main functions.

Definition 1.1. Let f (z) be a meromorphic function. For f ̸≡ a ∈ C, the proximity functions of f (z)

are defined by

m(r,a, f ) = m
(

r,
1

f −a

)
=

1
2π

∫ 2π

0
log+

∣∣∣∣ 1
f (reiϕ)−a

∣∣∣∣dϕ,

m(r,∞, f ) = m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiϕ)|dϕ.

Definition 1.2. Let f (z) be a meromorphic function. For f ̸≡ a ∈C, the counting functions of f (z) are

defined by

N(r,a, f ) = N
(

r,
1

f −a

)
=
∫ r

0

n(t,a, f )−n(0,a, f )
t

dt +n(0,a, f ) logr,

N(r,∞, f ) = N(r, f ) =
∫ r

0

n(t, f )−n(0, f )
t

dt +n(0, f ) logr,

5



6 CHAPTER 1. BACKGROUND

N(r,a, f ) = N
(

r,
1

f −a

)
=
∫ r

0

n(t,a, f )−n(0,a, f )
t

dt +n(0,a, f ) logr,

N(r,∞, f ) = N(r, f ) =
∫ r

0

n(t, f )−n(0, f )
t

dt +n(0, f ) logr,

where n(t,a, f ) = n(t,a) n(t,∞, f ) = n(t, f ), n(t,a, f ) = n(t,a) and n(t,∞, f ) = n(t, f ) denote respec-

tively the number of zeroes of f (z)−a, the number of poles of f (z) lying in |z| ≤ t, counted according

to their multiplicity, the number of distinct zeroes of f (z)−a and the number of distinct poles of f (z)

lying in |z| ≤ t.

Definition 1.3. The characteristic function of a meromorphic function f (z) is given by

T (r, f ) = m(r, f )+N(r, f ), r > 0.

Example 1.1. Let f (z) be a meromorphic function, and let P(z) and Q(z) be two polynomials of degree

p and q respectively

1. T (r, P(z)
Q(z)) = max{p,q} logr.

2. T (r,P( f )) = pT (r, f )+O(1).

3. Suppose that a,b,c,d ∈ C with ad −bc ̸= 0, then T
(

a f+b
c f+d

)
= T (r, f )+O(1).

4. Suppose Q(z) = bqzq +bq−1zq−1 + ...+b0, then T (r,eQ(z)) = m(r,eQ(z))∼ |bq|rq

π
.

5. T (r,eer
) = m(r,eer

)∼ er

2π3r .

In general, if f (z) is entire, then N(r, f )≡ 0, and so T (r, f ) = m(r, f ), and this leads to a relation-

ship between T (r, f ) and the maximum modulus M(r, f ) = max|z|=r | f (z)|, expressed through two

inequalities by the following theorem.

Theorem 1.1. Suppose f (z) is entire function and 0 < r < R < ∞, then

T (r, f )≤ log+M(r, f )≤ R+ r
R− r

T (R, f )

The functions N(r, f ) and T (r, f ) are both non-decreasing of r and convex of logr, unlike m(r, f ),

which may not necessarily satisfies these properties. Besides this, these three functions satisfy the

following properties

Proposition 1.1. Let f1, f2, ..., fn be meromorphic functions. Then

1. m
(

r,∑n
j=1 f j

)
≤ ∑

n
j=1 m(r, f j)+ logn, m

(
r,∏n

j=1 f j

)
≤ ∏

n
j=1 m(r, f j).

2. N
(

r,∑n
j=1 f j

)
≤ ∑

n
j=1 N(r, f j), N

(
r,∏n

j=1 f j

)
≤ ∏

n
j=1 N(r, f j).

3. T
(

r,∑n
j=1 f j

)
≤ ∑

n
j=1 T (r, f j)+ logn, T

(
r,∏n

j=1 f j

)
≤ ∏

n
j=1 T (r, fk).
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Theorem 1.2. (Nevanlinna’s first fundamental theorem) Let f (z) be a non-constant meromorphic

function, and let a ∈ C. Then

T (r,
1

f −a
) = T (r, f )+O(1) as r → ∞. (1.1)

Theorem 1.3. (Nevanlinna’s second fundamental theorem) Let f (z) be a non-constant meromorphic

function, and let k ≥ 2. Suppose that a1, ...,ak are distinct complex numbers. Then

m(r, f )+
k

∑
j=1

m(r,
1

f −a j
)≤ 2T (r, f )+S(r, f ), (1.2)

where

S(r, f ) = O
(

logT (r, f )+ logr
)
= o(T (r, f )) as r → ∞, (1.3)

outside of a possible exceptional set F ⊂ [0,∞) of finite linear measure.

The estimate provided by the lemma of the logarithmic derivative is the source from which the

error term S(r, f ) arises. Perhaps this fact alone should tell us about the significance of the role played

by this lemma in the Nevanlinna’s second fundamental theorem in particular, and generally this lemma

is considered as an indispensable tool is several other results in the value distribution theory and its

applications such as, the differential equations. in the following, we only state its standard version,

while some of its counterparts and their variants will be recalled and applied in the next chapters.

Theorem 1.4. (The logarithmic derivative lemma) Let f be a meromorphic function and k ≥ 1 be

integer. Then

m
(

r,
f (k)

f

)
= S(r, f ), (1.4)

where S(r, f ) satisfies (1.3).

We finish this section by recalling the definition of the central index of entire functions.

Definition 1.4. Suppose f (z) is an entire function whose Taylor expansion is f (z) = ∑
∞
n=0 anzn. The

central index of f (z) is given by

V (r, f ) = max
m≥0

{m : |am|rm = u(r, f )},

where u(r, f ) = maxn≥0 |an|rn is the maximum term, whose existence is always guaranteed by the

convergence of the power series ∑
∞
n=0 |an|rn for every r > 0.

1.2 Growth and value distribution scales of meromorphic function

In this section, we introduce some quantities, most of which are defined in terms of the three main

Nevanlinna functions, these quantities will be used to estimate the growth and value distribution of

meromorphic function
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Definition 1.5. Let f (z) be a meromorphic function. The order of the growth and the lower order of

growth are respectively defined by

ρ( f ) = limsup
r−→∞

logT (r, f )
logr

, µ( f ) = liminf
r−→∞

logT (r, f )
logr

.

If f (z) is entire, then

ρ( f )= limsup
r−→∞

logT (r, f )
logr

= limsup
r−→∞

log logM(r, f )
logr

, µ( f )= liminf
r−→∞

logT (r, f )
logr

= liminf
r−→∞

log logM(r, f )
logr

.

Definition 1.6. Let f (z) be a meromorphic function with 0 < µ( f ) ≤ ρ( f ) < ∞. The type and the

lower type are respectively given by

τ( f ) = limsup
r−→∞

T (r, f )
rρ( f )

, τ( f ) = liminf
r−→∞

T (r, f )
rµ( f )

.

If f (z) is entire, then

τM( f ) = limsup
r−→∞

logM(r, f )
rρ( f )

, τM( f ) = liminf
r−→∞

logM(r, f )
rµ( f )

.

The order and the type are both effective indicators of the growth of meromorphic functions,

but from the definition of the type, we remark that it is no longer useful for the two cases when the

functions are of zero or infinite order. For that, we need to introduce other growth indicators.

Definition 1.7. Let f (z) be a meromorphic function, and let p,q ∈ N such that p ≥ q ≥ 1. The

[p,q]-order and the lower [p,q]-order are respectively defined by

ρ[p,q]( f ) = limsup
r−→∞

logp T (r, f )
logq r

, µ[p,q]( f ) = liminf
r−→∞

logp T (r, f )
logq r

.

If f (z) is entire, then

ρ[p,q]( f ) = limsup
r−→∞

logp T (r, f )
logq r

= limsup
r−→∞

logp+1 M(r, f )
logq r

,

µ[p,q]( f ) = liminf
r−→∞

logp T (r, f )
logq r

= liminf
r−→∞

log logp+1 M(r, f )
logq r

.

Note that, for a meromorphic function f (z), it is clear that µ[p,q]( f ) ≤ ρ[p,q]( f ). If µ[p,q]( f ) =

ρ[p,q]( f ), then f (z) is said to be of regular [p,q]-growth, and if µ[p,q]( f ) < ρ[p,q]( f ), then f (z) is of

irregular [p,q]-growth. In particular, when µ[1,1]( f ) = µ( f ) = ρ( f ) = ρ[1,1]( f ), f (z) is of regular

growth, and it is of irregular growth otherwise.

Definition 1.8. Let f (z) be a meromorphic function with 0 < µ[p,q]( f )≤ ρ[p,q]( f )< ∞. The [p,q]-type

and the lower [p,q]-type are respectively given by

τ[p,q]( f ) = limsup
r−→∞

logp−1 T (r, f )

(logq−1)
ρ[p,q]( f )

, τ [p,q]( f ) = liminf
r−→∞

logp−1 T (r, f )

(logq−1)
µ[p,q]( f )

.

If f (z) is entire, then

τ[p,q],M( f ) = limsup
r−→∞

logp M(r, f )

(logq−1)
ρ( f )

, τ [p,q],M( f ) = liminf
r−→∞

logp M(r, f )

(logq−1)
µ( f )

.
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Definition 1.9. Let f (z) be a meromorphic function. The logarithmic order and the logarithmic lower

order are respectively defined by

ρlog( f ) = limsup
r−→∞

logT (r, f )
log logr

, µlog( f ) = liminf
r−→∞

logT (r, f )
log logr

.

If f (z) is entire, then

ρlog( f ) = limsup
r−→∞

logT (r, f )
log logr

= limsup
r−→∞

log logM(r, f )
log logr

,

µlog( f ) = liminf
r−→∞

logT (r, f )
log logr

= liminf
r−→∞

log logM(r, f )
log logr

.

Example 1.2. In view of Example 1.1, we have

1. ρ[p,q](
P(z)
Q(z)) = 0 for any p ≥ q ≥ 1 and ρlog(

P(z)
Q(z)) = 1.

2. ρ(eQ(z)) = q and ρlog(eQ(z)) = ∞.

3. ρ(eez
) = ρlog(eez

) = ∞ and ρ[2,1](eez
) = 1.

Among the properties of the logarithmic order we should mention that the meromorphic functions

with finite logarithmic order are of zero order. However, the reverse is not necessarily true. the

logarithmic order can not take any value between zero and one. As it is shown in the above example

the non-constant rational functions are of logarithmic order equals one. For further properties and

examples (see [19, 20])

Definition 1.10. Let f (z) be a meromorphic function with 0 < µlog( f )≤ ρlog( f )< ∞. The logarithmic

type and the logarithmic lower type are respectively given by

τlog( f ) = limsup
r−→∞

T (r, f )

(logr)ρlog( f )
, τ log( f ) = liminf

r−→∞

T (r, f )

(logr)µlog( f )
.

If f (z) is entire, then

τlog,M( f ) = limsup
r−→+∞

logM(r, f )

(logr)ρlog( f )
, τ log,M( f ) = liminf

r−→+∞

logM(r, f )

(logr)µlog( f )
.

Definition 1.11. Suppose f (z) is a meromorphic function. Then, the exponent of convergence of poles

of f (z) is defined by

λ

(
1
f

)
= limsup

r−→+∞

logn(r, f )
logr

= limsup
r−→+∞

logN(r, f )
logr

.

Definition 1.12. Suppose f (z) is a meromorphic function. Then, the logarithmic exponent of conver-

gence of poles of f (z) is defined by

λlog

(
1
f

)
= limsup

r−→+∞

logn(r, f )
log logr

= limsup
r−→+∞

logN(r, f )
log logr

−1,
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Definition 1.13. The deficiency of a ∈ C with respect to a meromorphic function f (z) is given by

δ (a, f ) = liminf
r→+∞

m
(

r, 1
f−a

)
T (r, f )

= 1− limsup
r→+∞

N
(

r, 1
f−a

)
T (r, f )

, for a ∈ C.

δ (∞, f ) = liminf
r→+∞

m(r, f )
T (r, f )

= 1− limsup
r→+∞

N(r, f )
T (r, f )

,

a value a is called a deficient or a defective value of f (z) if the above quantity is strictly greater

than zero, whereas it is obvious that 0 ≤ δ (a, f )≤ 1. Moreover, by the second fundamental theorem,

the set of the deficient values of f (z) satisfies ∑a∈C̄ δ (a, f )≤ 2.

1.3 Growth and value distribution scales of meromorphic function

around an isolated point

In this section, we list some other quantities, which are also important in studying the growth and

value distribution of meromorphic function around a singular point z0 ∈ C. For that, we first need new

definitions for the main Nevanlinna functions.

Definition 1.14. Suppose f (z) is a meromorphic function in C−{z0}. The characteristic function of

f (z) near z0 is defined by

Tz0(r, f ) = mz0(r, f )+Nz0(r, f ),

where

mz0(r, f ) =
1

2π

∫ 2π

0
log+ | f (z0 − reiφ )|dφ

is the proximity function of f (z) near z0 and

Nz0(r, f ) =−
∫ r

∞

nz0(t, f )−nz0(∞, f )
t

dt −nz0(∞, f ) logr

is its counting function near z0. Here nz0(t, f ) denotes the number of poles of f (z) in {z ∈ C : t ≤
|z− z0|} ∪ {∞}, each pole according to its multiplicity. While the number of distinct poles of f (z)

in {z ∈ C : t ≤ |z− z0|}∪{∞} is denoted by nz0(t, f ), which can be used to generate Nz0(r, f ) in an

analogous manner to Nz0(r, f ).

Lemma 1.1. Let f (z) be a non-constant meromorphic function in C−{z0} and set g(ω) = f (z0 − 1
ω
).

Then g(ω) is meromorphic in C and we have

T (R,g) = Tz0(
1
R
, f ).

From Lemma 1.1, it is easy to see that the properties of the characteristic function of meromorphic

functions are also hold for the characteristic function of meromorphic functions in C−{z0}.

Definition 1.15. The maximum modulus of a meromorphic function f (z) in C−{z0}, is given by

Mz0(r, f ) = max{| f (z)| : |z− z0|= r}

.
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Definition 1.16. Let f (z) = ∑
∞
n=0 an

1
(z−z0)n be an analytic function in C−{z0}, with the maximum

term uz0(r, f ) = maxn≥0 |an| 1
rn , where |z− z0|= r. The central index of f (z) is defined by

Vz0(r, f ) = max
m≥0

{
m : |am|

1
rm = uz0(r, f )

}
.

Remark 1.1. If f (z) is non-constant analytic function in C−{z0}, then g(ω) = f (z0 − 1
ω
) is entire

and Vz0(r, f ) =V (R,g), where R = 1
r .

Definition 1.17. The [p,q]-order and the lower [p,q]-order near z0 of a meromorphic function f (z) in

C−{z0} are respectively defined by

ρ[p,q]( f ,z0) = limsup
r−→0

log+p Tz0(r, f )

logq
1
r

, µ[p,q]( f ,z0) = liminf
r−→0

log+p Tz0(r, f )

logq
1
r

.

For an analytic function f (z) in C−{z0}, the [p,q]-order and the lower [p,q]-order of f (z) near z0

are given by

ρ[p,q]( f ,z0) = limsup
r−→0

log+p Tz0(r, f )

logq
1
r

= limsup
r−→0

log+p+1 Mz0(r, f )

logq
1
r

,

µ[p,q]( f ,z0) = liminf
r−→0

log+p Tz0(r, f )

logq
1
r

= liminf
r−→0

log+p+1 Mz0(r, f )

logq
1
r

.

Note that ρ[1,1]( f ,z0) = ρ( f ,z0) and µ[1,1]( f ,z0) = µ( f ,z0) are just the order and the lower order

near z0 of the meromorphic function f (z). ρ[2,1]( f ,z0) and ρ[p,1]( f ,z0) are called, respectively, the

hyper-order and the iterated p-order near z0.

Definition 1.18. The [p,q]-type and the lower [p,q]-type near z0 of a meromorphic function f (z) in

C−{z0} with 0 < µ[p,q]( f ,z0)≤ ρ[p,q]( f ,z0)< ∞, are respectively defined by

τ[p,q]( f ,z0) = limsup
r−→0

log+p−1 Tz0(r, f )

(logq−1
1
r )

ρ[p,q]( f ,z0)
, τ [p,q]( f ,z0) = liminf

r−→0

log+p−1 Tz0(r, f )

(logq−1
1
r )

µ[p,q]( f ,z0)
.

For an analytic function f (z) in C−{z0}, the [p,q]-type and the lower [p,q]-type of f (z) near z0 are

given by

τ[p,q],M( f ,z0) = limsup
r−→0

log+p Mz0(r, f )

(logq−1
1
r )

ρ[p,q]( f ,z0)
, τ [p,q],M( f ,z0) = liminf

r−→0

log+p Mz0(r, f )

(logq−1
1
r )

µ[p,q]( f ,z0)

Definition 1.19. The logarithmic order and the lower logarithmic order near z0 of a meromorphic

function f (z) in C−{z0} are respectively defined by

ρlog( f ,z0) = limsup
r−→0

log+Tz0(r, f )
log log 1

r

, µlog( f ,z0) = liminf
r−→0

log+Tz0(r, f )
log log 1

r

.

If f (z) is an analytic function in C−{z0}, then

ρlog( f ,z0) = limsup
r−→0

log+Tz0(r, f )
log log 1

r

= limsup
r−→0

log+ log+Mz0(r, f )
log log 1

r

,

µlog( f ,z0) = liminf
r−→0

log+Tz0(r, f )
log log 1

r

= liminf
r−→0

log+ log+Mz0(r, f )
log log 1

r

,
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Notice that, from Lemma 1.1 ρlog( f ,z0) = ρlog(g). Therefore, all what can be said about the prop-

erties of the logarithmic order of meromorphic functions is also valid for those which are meromorphic

in C−{z0}.

Definition 1.20. The logarithmic type and the lower logarithmic type near z0 of a meromorphic

function f (z) in C−{z0} with 0 < µlog( f ,z0)≤ ρlog( f ,z0)< ∞, are respectively defined by

τlog( f ,z0) = limsup
r−→0

Tz0(r, f )

(log 1
r )

ρlog( f ,z0)
, τ log( f ,z0) = liminf

r−→0

Tz0(r, f )

(log 1
r )

µlog( f ,z0)
.

If f (z) is an analytic function in C−{z0}, then

τlog,M( f ,z0) = limsup
r−→0

log+Mz0(r, f )

(log 1
r )

ρlog( f ,z0)
, τ log,M( f ,z0) = liminf

r−→0

log+Mz0(r, f )

(log 1
r )

µlog( f ,z0)
.

Definition 1.21. The [p,q]-exponent of convergence of zeros and distinct zeros near z0 of a meromor-

phic function f (z) in C−{z0} are respectively defined by

λ[p,q]( f ,z0) = limsup
r−→0

log+p Nz0(r,
1
f )

logq
1
r

, λ [p,q]( f ,z0) = limsup
r−→0

log+p Nz0(r,
1
f )

logq
1
r

,

In particular, λ[p,1]( f ,z0) = λp( f ,z0) is the iterated p-exponent of convergence of zeros near z0 of

f (z) and λ [p,1]( f ,z0) = λ p( f ,z0) is the iterated p-exponent of convergence of distinct zeros.

Definition 1.22. The logarithmic exponent of convergence of zeros and distinct zeros near z0 of a

meromorphic function f (z) in C−{z0} are given by

λlog( f ,z0) = limsup
r−→0

log+Nz0(r,
1
f )

log log 1
r

−1, λ log( f ,z0) = limsup
r−→0

log+Nz0(r,
1
f )

log log 1
r

−1.



Chapter 2

Linear differential equations with finite or
infinite order analytic coefficients in C−{z0}

2.1 Introduction

In this chapter, we study the growth of the following complex linear differential equation

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = 0, (2.1)

where k ≥ 2 and the coefficients A0(z), ...,Ak−1(z) are analytic functions in C−{z0}. It is well known

that if these coefficients are entire functions, then so are all solutions of (2.1). Unfortunately that is not

the case in C−{z0}, in other words, if the coefficients A0(z), ...,Ak−1(z) are analytic in C−{z0}, then

the equation (2.1) may have an non-analytic function in C−{z0} as a solution, that can be illustrated

by the following example

Example 2.1. Consider the linear differential equation

f ′′+
(

exp2

{
1

z0 − z

}
+

1
z0 − z

)
f ′+

2
z0 − z

exp2

{
1

z0 − z

}
f = 0. (2.2)

The function f (z) = (z0 − z)2 solves (2.2), and f (z) is not analytic in C−{z0}.

Fettouch and Hamouda were behind the idea of investigating the growth of solution of (2.1) in

C−{z0}, such that they discussed the relationship between the growth of solutions and that of the

coefficients in term of the order and the hyper order [32], they obtained the following result

Theorem 2.1 ( [32]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ(A j,z0) : j = 1, . . . ,k−1}< ρ(A0,z0)<+∞.

Then every solution f (z) ̸≡ 0 that is analytic in C−{z0} of (2.1), satisfies ρ2( f ,z0) = ρ(A0,z0).

The above result is a C−{z0} counterpart to previous theorem obtained in the complex plane by

Chen and Yang [18]. The concepts of [p,q]-order and the [p,q]-type of entire functions were firstly
13
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introduced by Juneja and his coauthors [44, 45], they have been used later as more general growth

indicators to estimate the growth of solutions of differential equations (see e.g. [14, 30, 31, 51, 64, 78]).

In [51], J. Liu and his coauthors extended the theorem of Chen and Yang for the cases when there

are some coefficients of infinite order or when there are multiple coefficients with maximal finite

[p,q]-order. This inspired Long and Zeng to prove similar results in C−{z0}, by which they extended

Theorem 2.1, such that they proved the following theorems.

Theorem 2.2 ( [55]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ[p,q](A j,z0) : j = 1, . . . ,k−1}< ρ[p,q](A0,z0)<+∞.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1), satisfies ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).

Theorem 2.3 ( [55]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ[p,q](A j,z0) : j = 1, . . . ,k−1} ≤ ρ[p,q](A0,z0)<+∞

and

max{τ[p,q](A j,z0) : ρ[p,q](A j,z0) = ρ[p,q](A0,z0)> 0}< τ[p,q](A0,z0)<+∞.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1), satisfies ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).

Observe that in the above theorems, the dominance of the coefficient A0(z) is assumed in term of

the [p,q]-order or the [p,q]-type. So, it is natural to ask what can be said about the growth of solutions

of (2.1), if the dominance of A0(z) is assumed in term of the lower [p,q]-order or the lower [p,q]-type

instead ? The aim of this chapter is to answer this question by proving the following theorems, which

are also considered as extensions to the results obtained in [53].

2.2 Main Results

Theorem 2.4 ( [25]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ[p,q](A j,z0) : j = 1, . . . ,k−1}< µ[p,q](A0,z0)≤ ρ[p,q](A0,z0)<+∞.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1), satisfies

µ[p,q](A0,z0) = µ[p+1,q]( f ,z0)≤ ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).

Theorem 2.5 ( [25]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ[p,q](A j,z0) : j = 1, . . . ,k−1} ≤ µ[p,q](A0,z0)≤ ρ[p,q](A0,z0) = ρ <+∞

and

τ1 = max{τ[p,q](A j,z0) : ρ[p,q](A j,z0) = µ[p,q](A0,z0)> 0}

< τ [p,q](A0,z0) = τ <+∞.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1) satisfies µ[p,q](A0,z0) = µ[p+1,q]( f ,z0)≤
ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).
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Theorem 2.6 ( [25]). Let A0(z), . . . ,Ak−1(z) be analytic functions in C−{z0}. Assume that

max{ρ[p,q](A j,z0) : j = 1, . . . ,k−1} ≤ µ[p,q](A0,z0)<+∞

and

limsup
r−→0

∑
k−1
j=1 mz0(r,A j)

mz0(r,A0)
< 1.

Then every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1), satisfies

µ[p,q](A0,z0) = µ[p+1,q]( f ,z0)≤ ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).

2.3 Lemmas

The following lemmas are important to prove our results.

Lemma 2.1 ( [32]). Let f be non-constant analytic function in C−{z0}, let κ > 0 be given real

constant and j ∈ N. Then there exists a set F1 ⊂ (0,1) having finite logarithmic measure and a

constant C > 0 that depends on κ and j such that for all |z− z0|= r ∈ (0,1)\F1, we have∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣≤C
[

1
r2 Tz0(κr, f ) logTz0(κr, f )

] j

,

Lemma 2.2 ( [55]). Let g : (0,1)→ R, h : (0,1)→ R be monotone decreasing functions such that

g(r)≥ h(r) possibly outside an exceptional set F2 ⊂ (0,1) that has finite logarithmic measure. Then for

any given δ > 1, there exists a constant 0 < r0 < 1, such that for all r ∈ (0,r0), we have g(rδ )≥ h(r).

Lemma 2.3 ( [37]). Let f be non-constant analytic function in C−{z0}. Then, there exists a set

F3 ⊂ (0,1) that has finite logarithmic measure, such that for all j = 0,1, . . . ,k, we have

f ( j)(zr)

f (zr)
= (1+o(1))

(
Vz0(r, f )
z0 − zr

) j

,

as r −→ 0, r /∈ F3, where zr is a point in the circle |z− z0| = r that satisfies | f (zr)| = max{| f (z)| :

|z− z0|= r}.

Lemma 2.4. Let f be non-constant analytic function in C−{z0} with µ[p,q]( f ,z0) = µ < ∞. Then

there exists a set E1 ⊂ (0,1) having infinite logarithmic measure such that for all |z− z0|= r ∈ E1, we

have

µ = lim
r−→0

logp Tz0(r, f )

logq
1
r

= lim
r−→0

logp+1 Mz0(r, f )

logq
1
r

,

and for any given ε > 0 and all |z− z0|= r ∈ E1

Mz0(r, f )≤ expp

{(
logq−1

1
r

)µ+ε
}
.



16 CHAPTER 2. LINEAR DIFFERENTIAL EQUATIONS PART 1

Proof. By the definition of the lower [p,q]-order, there exists a sequence {rn}∞
n=1 tending to 0 satisfying

rn+1 <
n

n+1rn and

lim
n−→∞

logp+1 Mz0(rn, f )

logq
1
rn

= µ.

Therefore, there exists an integer n0 ≥ 1 such that for all n ≥ n0 and for any r ∈ [ n
n+1rn,rn], we get

lim
n−→∞

logp+1 Mz0(rn, f )

logq
1

n
n+1 rn

≤ lim
n−→∞

logp+1 Mz0(r, f )

logq
1
r

≤ lim
n−→∞

logp+1 Mz0(
n

n+1rn, f )

logq
1
rn

.

Since

lim
n−→∞

logp+1 Mz0(rn, f )

logq
1

n
n+1 rn

= lim
n−→∞

logp+1 Mz0(
n

n+1rn, f )

logq
1
rn

= µ,

then for any r ∈
[ n

n+1rn,rn
]
, we get

lim
n−→∞

logp+1 Mz0(r, f )

logq
1
r

= µ.

Set E1 =
+∞⋃

n=n0

[ n
n+1rn,rn

]
. Then for any given ε > 0 and |z− z0|= r ∈ E1

Mz0(r, f )≤ expp

{(
logq−1

1
r

)µ+ε
}
,

where

mlog(E1) =
+∞

∑
n=n0

∫ rn

n
n+1 rn

1
t

dt =
+∞

∑
n=n0

log
(

1+
1
n

)
=+∞.

Similarly, we can prove the other result.

Lemma 2.5 ( [55]). Let f be non-constant analytic function in C−{z0}. Then

ρ[p,q]( f ,z0) = limsup
r−→0

log+p Vz0(r, f )

logq
1
r

,

Lemma 2.6 ( [44]). Let f be entire function. Then

µ[p,q]( f ) = liminf
r−→∞

logpV (r, f )
logq r

.

Lemma 2.7. Let f be non-constant analytic function in C−{z0}. Then

µ[p,q]( f ,z0) = liminf
r−→0

log+p Vz0(r, f )

logq
1
r

,

Proof. Set g(ω) = f (z0 − 1
ω
). From Remark 1.1, g is entire and we have

Vz0(r, f ) =V (R,g), where R =
1
r

this and Lemma 2.6 lead to

µ[p,q](g) = liminf
r−→∞

logpV (R,g)
logq r

= liminf
r−→0

log+p Vz0(r, f )

logq
1
r

.
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On the other hand, by Lemma 1.1, we have T (R,g) = Tz0(r, f ), which implies that µ[p,q](g) =

µ[p,q]( f ,z0). Therefore, we get

µ[p,q]( f ,z0) = liminf
r−→0

log+p Vz0(r, f )

logq
1
r

Lemma 2.8. Let f be non-constant analytic function in C−{z0} with 0 < µ[p,q]( f ,z0) = µ < ∞ and

0 < τ [p,q]( f ,z0) = τ < ∞. Then there exists a set E2 ⊂ (0,1) having infinite logarithmic measure such

that for all |z− z0|= r ∈ E2, we have

Mz0(r, f )< expp

{
(τ + ε)

(
logq−1

1
r

)µ}
.

Proof. By the definition of lower [p,q]-order and lower [p,q]-type, there exists a sequence {rm}∞
m=1

tending to 0 satisfying rm+1 <
m

m+1rm and

lim
m→+∞

log+p Mz0(rm, f )(
logq−1

1
rm

)µ = τ.

For any r ∈
[ m

m+1rm,rm
]
, we have

log+p Mz0(r, f )(
logq−1

1
r

)µ ≤
log+p Mz0(

m
m+1rm, f )(

logq−1
1

rm

)µ

=
log+p Mz0(

m
m+1rm, f )(

logq−1
1

m
m+1 rm

)µ ·

(
logq

1
m

m+1 rm

)µ

(
logq−1

1
rm

)µ −→
m→+∞

τ.

Then, for any given ε > 0, there exists a positive integer m0 such that for all m ≥ m0 and for all

r ∈
[ m

m+1rm,rm
]
, we have

Mz0(r, f )< expp

{
(τ + ε)

(
logq−1

1
r

)µ}
.

Set E2 =
+∞⋃

m=m0

[ m
m+1rm,rm

]
. Then for any given ε > 0 and all |z− z0|= r ∈ E2

Mz0(r, f )< expp

{
(τ + ε)

(
logq−1

1
r

)µ}
,

where

mlog(E2) =
+∞

∑
m=m0

∫ rm

m
m+1 rm

dt
t
=

+∞

∑
m=m0

log
(

1+
1
m

)
=+∞.

Lemma 2.9 ( [55]). Let f be a non-constant meromorphic function in C\{z0}. Then the following

statements hold



18 CHAPTER 2. LINEAR DIFFERENTIAL EQUATIONS PART 1

(i) Tz0(r,
1
f ) = Tz0(r, f )+O(1);

(ii) Tz0(r, f ′)< O
(
Tz0(r, f )+ log 1

r

)
, r ∈ (0,r0]\F4, where F4 ⊂ (0,r0] with mlog(F4)< ∞.

Lemma 2.10 ( [55]). Let f be non-constant analytic function in C−{z0} with ρ[p,q]( f ,z0) = ρ < ∞.

Then there exists a set E3 ⊂ (0,1) having infinite logarithmic measure such that for all |z−z0|= r ∈ E3,

we have

ρ = lim
r−→0

logp Tz0(r, f )

logq
1
r

= lim
r−→0

logp+1 Mz0(r, f )

logq
1
r

,

and for any given ε > 0 and all |z− z0|= r ∈ E3

Tz0(r, f )≥ expp

{
(ρ − ε) logq

1
r

}
.

2.4 Proofs of the theorems

Proof of Theorem 2.4

Proof. We only need to prove that every solution f ̸≡ 0 that is analytic in C−{z0} of (2.1) sat-

isfies µ[p+1,q]( f ,z0) = µ[p,q](A0,z0), because we already have from Theorem 2.2, ρ[p+1,q]( f ,z0) =

ρ[p,q](A0,z0). We rewrite (2.1) as

|A0(z)| ≤

∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣+ |Ak−1(z)|

∣∣∣∣∣ f (k−1)(z)
f (z)

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′(z)

f (z)

∣∣∣∣ . (2.3)

Set max{ρ[p,q](A j,z0) : j = 1, . . . ,k − 1} = ρ1 < µ[p,q](A0,z0). Then for any given ε (0 < 2ε <

µ[p,q](A0,z0)−ρ1), there exists r1 ∈ (0,1) such that for all |z− z0|= r ∈ (0,r1), we have

Mz0(r,A0)≥ expp

{(
logq−1

1
r

)µ[p,q](A0,z0)−ε
}

(2.4)

and

Mz0(r,A j)≤ expp

{(
logq−1

1
r

)ρ1+ε
}
, ( j = 1,2, · · · ,k−1). (2.5)

By Lemma 2.1, there exists a set F1 ⊂ (0,1) that has a finite logarithmic measure and a constant C > 0

that depends on κ > 0 and j ∈ N such that for all r = |z− z0| satisfying r ∈ (0,1)\F1, we obtain∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣≤C
[

1
r2 Tz0(κr, f ) logTz0(κr, f )

] j

, ( j = 1,2, · · · ,k). (2.6)

Substituting (2.4)-(2.6) into (2.3), for the above ε and r ∈ (0,r1)\F1, we have

expp

{(
logq−1

1
r

)µ[p,q](A0,z0)−ε
}

≤Ck expp

{(
logq−1

1
r

)ρ1+ε
}[

1
r2 Tz0(αr, f ) logTz0(κr, f )

]k

.

(2.7)
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By (2.7), we get

expp

{(
logq−1

1
r

)µ[p,q](A0,z0)−ε
}

≤Ck expp

{(
logq−1

1
r

)ρ1+ε
}[

1
r

Tz0(κr, f )
]2k

, (2.8)

for all |z − z0| = r ∈ (0,r1) \F1 and |A0(z)| = Mz0(r,A0). By (2.8) and Lemma 2.2, we obtain

µ[p+1,q]( f ,z0)≥ µ[p,q](A0,z0)− ε . Since ε > 0 is arbitrary, we get

µ[p+1,q]( f ,z0)≥ µ[p,q](A0,z0). (2.9)

By (2.1), we have∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣≤ |Ak−1(z)|

∣∣∣∣∣ f (k−1)(z)
f (z)

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′(z)

f (z)

∣∣∣∣+ |A0(z)|. (2.10)

By Lemma 2.3, there exists a set F3 ⊂ (0,1) that has a finite logarithmic measure, such that for all

j = 0,1, ...,k and r ̸∈ E3, we have∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣= |1+o(1)|
(

Vz0(r, f )
r

) j

, r −→ 0, (2.11)

where z is a point in the circle |z− z0|= r that satisfies | f (z)|= Mz0(r, f ).

By Lemma 2.4, there exists a set E1 ⊂ (0,1) having infinite logarithmic measure, such that for any

given ε > 0 and for all |z− z0|= r ∈ E1, we have

|A0(z)| ≤ Mz0(r,A0)≤ expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
. (2.12)

By substituting (2.5), (2.11) and (2.12) into (2.10), for any given ε > 0 and for all |z− z0| = r ∈
E1 ∩ (0,r1)\F3, we get

|1+o(1)|(Vz0(r, f ))k ≤ kr expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
|1+o(1)|(Vz0(r, f ))k−1 , (2.13)

then we obtain

Vz0(r, f )≤ kr expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
|1+o(1)|, r ∈ E1 ∩ (0,r1)\F3. (2.14)

By Lemma 2.2, Lemma 2.7 and (2.14), we get µ[p+1,q]( f ,z0) ≤ µ[p,q](A0,z0)+ ε . Since ε > 0 is

arbitrary, we obtain

µ[p+1,q]( f ,z0)≤ µ[p,q](A0,z0), (2.15)

from (2.9) and (2.15), we obtain µ[p+1,q]( f ,z0) = µ[p,q](A0,z0).
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Proof of Theorem 2.5

Proof. By Theorem 2.3, we have ρ[p+1,q]( f ,z0)= ρ[p,q](A0,z0). We only need to prove that µ[p+1,q]( f ,z0)=

µ[p,q](A0,z0).

We set ρ2 = max{ρ[p,q](A j,z0),ρ[p,q](A j,z0) < µ[p,q](A0,z0) : j = 1, . . . ,k − 1}. If ρ[p,q](A j,z0) <

µ[p,q](A0,z0), then for any given ε (0 < 2ε < min{µ[p,q](A0,z0)−ρ2,τ − τ1}, there exists r2 ∈ (0,1)

such that for all |z− z0|= r ∈ (0,r2), we have

Mz0(r,A j)≤ expp

{(
logq−1

1
r

)ρ2+ε
}

≤ expp

{(
logq−1

1
r

)µ[p,q](A0,z0)−ε
}
, ( j = 1,2, ...,k−1). (2.16)

If ρ[p,q](A j,z0) = µ[p,q](A0,z0), τ[p,q](A j,z0)≤ τ1 < τ = τ [p,q](A0,z0), then there exists r3 ∈ (0,1) such

that for all |z− z0|= r ∈ (0,r3), we have

Mz0(r,A j)≤ expp

{
(τ1 + ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}

(2.17)

and

Mz0(r,A0)≥ expp

{
(τ − ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}
. (2.18)

By substituting (2.6) and (2.16) -(2.18) into (2.10), we obtain

expp

{
(τ − ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}

≤ kC expp

{
(τ1 + ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}[

1
r

Tz0(κr, f )
]2k

,

(2.19)

for all |z− z0|= r ∈ (0,r2)∩ (0,r3)\F1, r −→ 0 and |A0(z)|= Mz0(r,A0), where C > 0 is a constant.

By Lemma 2.2 and (2.19), we have

µ[p+1,q]( f ,z0)≥ µ[p,q](A0,z0). (2.20)

By Lemma 2.8, there exists a set E2 ⊂ (0,1) having infinite logarithmic measure, such that for all

|z− z0|= r ∈ E2, we have

|A0(z)| ≤ Mz0(r,A0)≤ expp

{
(τ + ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}
. (2.21)

By combining (2.10), (2.11), (2.16), (2.17) and (2.21), for all |z− z0|= r ∈ E2 ∩ (0,r2)∩ (0,r3)\F3,

r −→ 0, we have

|1+o(1)|(Vz0(r, f ))k

≤ kr expp

{
(τ + ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}
|1+o(1)|(Vz0(r, f ))k−1 ,
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so

Vz0(r, f )≤ kr expp

{
(τ + ε)

(
logq−1

1
r

)µ[p,q](A0,z0)
}
|1+o(1)|. (2.22)

By Lemma 2.2, Lemma 2.7 and (2.10), we obtain

µ[p+1,q]( f ,z0)≤ µ[p,q](A0,z0). (2.23)

Thus, from (2.20) and (2.23) we have

µ[p+1,q]( f ,z0) = µ[p,q](A0,z0).

Proof of Theorem 2.6

Proof. By (1.1), we have

mz0(r,A0)≤
k−1

∑
j=1

mz0(r,A j)+
k

∑
j=1

mz0

(
r,

f ( j) (z)
f (z)

)
+O(1) . (2.24)

By Lemma 2.9, for a constant r0 ∈ (0,1) , there exists a set F4 ⊂ (0,r0] with ml(F4)<+∞ such that

for all |z− z0|= r ∈ (0,r0]\F4, we have

k

∑
j=1

mz0

(
r,

f ( j) (z)
f (z)

)
≤ O

(
Tz0 (r, f )+ log

1
r

)
. (2.25)

Setting limsupr−→0
∑

k−1
j=1 mz0(r,A j)

mz0(r,A0)
< σ < 1. Then for r → 0, we have

k−1

∑
j=1

mz0(r,A j)< σmz0(r,A0). (2.26)

By substituting (2.25) and (2.26) into (2.24), we obtain for all |z− z0|= r ∈ (0,r0]\F4, r → 0

(1−σ)mz0(r,A0)≤ O
(

Tz0 (r, f )+ log
1
r

)
. (2.27)

By the definition of lower [p,q]−order, for any given ε > 0, there exists r4 ∈ (0,1) such that for all

|z− z0|= r ∈ (0,r4), we have

mz0(r,A0) = Tz0(r,A0)≥ expp

{(
µ[p,q](A0,z0)− ε

)
logq

1
r

}
. (2.28)

By (2.27) and (2.28), for any given ε > 0 and |z− z0|= r ∈ (0,r0]∩ (0,r4)\F4, r → 0, we obtain

(1−σ)expp

{(
µ[p,q](A0,z0)− ε

)
logq

1
r

}
≤ O

(
Tz0 (r, f )+ log

1
r

)
. (2.29)

By Lemma 2.2 and (2.29), we have µ[p+1,q]( f ,z0) ≥ µ[p,q](A0,z0)− ε . Since ε > 0 is arbitrary, we

obtain

µ[p+1,q]( f ,z0)≥ µ[p,q](A0,z0). (2.30)
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Set max{ρ[p,q](A j,z0) : j = 1, . . . ,k − 1} = ρ3 ≤ µ[p,q](A0,z0) ≤ ρ[p,q](A0,z0). Then for any given

ε > 0, there exists r5 ∈ (0,1) such that for all |z− z0|= r ∈ (0,r5), we have

Mz0(r,A j)≤ expp

{(
logq−1

1
r

)ρ3+ε
}

≤ expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
, ( j = 1,2, · · · ,k−1). (2.31)

By substituting (2.11), (2.12) and (2.31) into (2.10), for any given ε > 0 and for all |z− z0| = r ∈
E1 ∩ (0,r5)\F3, we get

|1+o(1)|(Vz0(r, f ))k ≤ kr expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
|1+o(1)|(Vz0(r, f ))k−1 , (2.32)

By (2.32), for above ε , we get

Vz0(r, f )≤ kr expp

{(
logq−1

1
r

)µ[p,q](A0,z0)+ε
}
|1+o(1)|, (2.33)

where |z− z0|= r ∈ E1 ∩ (0,r5)\F3 and | f (z)|= Mz0(r, f ). By (2.33), Lemma 2.2 and Lemma 2.4,

we obtain µ[p+1,q]( f ,z0)≤ µ[p,q](A0,z0)+ ε . Since ε > 0 is arbitrary, we get

µ[p+1,q]( f ,z0)≤ µ[p,q](A0,z0). (2.34)

Thus, from (2.30) and (2.34) we have

µ[p+1,q]( f ,z0) = µ[p,q](A0,z0).

By using similar method, from (2.27) we have for |z− z0|= r ∈ (0,r0]\F4, r → 0

(1−σ)Tz0(r,A0) = (1−σ)mz0(r,A0)≤ O
(

Tz0 (r, f )+ log
1
r

)
. (2.35)

By Lemma 2.10, there exists a set E3 ⊂ (0,1) having infinite logarithmic measure such that for any

given ε > 0 and all |z− z0|= r ∈ E3

Tz0(r, f )≥ expp

{(
ρ[p,q](A0,z0)− ε

)
logq

1
r

}
. (2.36)

By substituting (2.36) into (2.35), we obtain for any given ε > 0 and all |z− z0|= r ∈ E3 ∩ (0,r0]\F4,

r → 0

(1−σ)expp

{(
ρ[p,q](A0,z0)− ε

)
logq

1
r

}
≤ (1−σ)Tz0(r,A0)≤ O

(
Tz0 (r, f )+ log

1
r

)
. (2.37)

Making use of Lemma 2.2 and Lemma 2.4, from (2.37), we get

ρ[p+1,q]( f ,z0)≥ ρ[p,q](A0,z0). (2.38)
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By the definition of the [p,q]-order of ρ[p,q](A0,z0) for any given ε > 0, there exists r6 ∈ (0,1) such

that for all |z− z0|= r ∈ (0,r6), we have

Mz0(r,A0)≤ expp

{(
logq−1

1
r

)ρ[p,q](A0,z0)+ε
}
. (2.39)

Also by substituting (2.11), (2.31) and (2.39) into (2.10), for any given ε > 0 and for all |z− z0|= r ∈
(0,r5)∩ (0,r6)\F3, we can find that

Vz0(r, f )≤ kr expp

{(
logq−1

1
r

)ρ[p,q](A0,z0)+ε
}
|1+o(1)|. (2.40)

By using Lemma 2.5, Lemma 2.2 and (2.40), we get

ρ[p+1,q]( f ,z0)≤ ρ[p,q](A0,z0), (2.41)

from (2.38) and (2.41), we conclude that

ρ[p+1,q]( f ,z0) = ρ[p,q](A0,z0).

2.5 Examples

Example 2.1 f (z) = exp3

{
1

(z0−z)2n+1

}
solves the following equation

f ′′+A1(z) f ′+A0(z) f = 0, (2.42)

where

A0(z) =− (2n+1)2

(z0 − z)4n+4 exp
{

2exp
(

1
(z0 − z)2n+1 +

2
(z0 − z)2n+1

)}
and

A1(z) =
2n+1

(z0 − z)2n+2 exp
{

1
(z− z0)2n+1

}
+

2n+1
(z0 − z)2n+2 +

2n+2
z0 − z

.

We have

ρ[2,1](A1,z0) = 0 < µ[2,1](A0,z0) = ρ[2,1](A0,z0) = 2n+1

Obviously, the conditions of Theorem 2.4 are satisfied and we see that

µ[2,1](A0,z0) = ρ[2,1](A0,z0) = µ[3,1]( f ,z0) = ρ[3,1]( f ,z0) = 2n+1.

Example 2.2 f (z) = 1
(z0−z)n exp2

{
1

(z0−z)n+1

}
solves the following equation

f ′′′+A2(z) f ′′+A1(z) f ′+A0(z) f = 0, (2.43)

where

A0(z) =
n(n+1)2

(z0 − z)3n+6 exp
{

3
(z0 − z)n+1

}
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+

(
(n+1)2(3n+2)
(z0 − z)3n+6 +

(n+1)
(
5n2 +7n+3

)
(z0 − z)2n+5

)
exp
{

2
(z0 − z)n+1

}

+

(
(n+1)3

(z0 − z)3n+6 +
6(n+1)3

(z0 − z)2n+5 +
6(n+1)3

(z0 − z)n+4

)
exp
{

1
(z0 − z)n+1

}
+

n(n+1)(n+2)
(z0 − z)3 ,

A1(z) =− (n+1)2

(z0 − z)n+3 exp
{

1
(z0 − z)n+1

}
and

A2(z) =
1

(z0 − z)n+2 exp
{

1
(z0 − z)n+1

}
.

We have

max
{

ρ[1,1](A2,z0),ρ[1,1](A1,z0)
}
= max{n+1,n+1}= n+1

= µ[1,1](A0,z0) = ρ[1,1](A0,z0)

and

max
{

τ[1,1](A2,z0),τ[1,1](A1,z0)
}
= 1 < τ [1,1](A0,z0) = 3.

It is clear that the conditions of Theorem 2.5 are satisfied and we see that

µ[1,1](A0,z0) = ρ[1,1](A0,z0) = µ[2,1]( f ,z0) = ρ[2,1]( f ,z0) = n+1.

Example 2.3 f (z) = exp2

{
1

2(z0−z)

}
is a solution to equation (2.43) for the following coefficients

A0(z) =
1

8(z0 − z)6 exp
{

3
2(z0 − z)

}
,

A1(z) =
(
− 3
(z0 − z)3 −

1
2(z0 − z)4

)
exp
{

1
2(z0 − z)

}
− 2

(z0 − z)3 −
6

(z0 − z)2

and

A2(z) =
1

2(z0 − z)2 .

We have

maxρ[1,1]
{
(A2,z0),ρ[1,1](A1,z0)

}
= max{0,1}= 1

= µ[1,1](A0,z0) = ρ[1,1](A0,z0),

limsup
r−→0

mz0(r,A2)+mz0(r,A1)

mz0(r,A0)
=

1
3
< 1.

Obviously the conditions of Theorem 2.6 are verified and we see that

µ[1,1](A0,z0) = ρ[1,1](A0,z0) = µ[2,1]( f ,z0) = ρ[2,1]( f ,z0) = 1.



Chapter 3

Linear differential equations with zero order
analytic or meromorphic coefficients in
C−{z0} part 1

3.1 Introduction

In this chapter, we discuss another case where the order fails to estimate the growth of solutions of

equation (2.1), which requires to use different growth indicators. Furthermore, we will also consider

the growth and oscillation of the following non-homogeneous differential equation

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = F(z), (3.1)

where A j(z) ( j = 0,1, . . . ,k−1) and F(z) are analytic functions in C−{z0}. Under different hypotheses

on the coefficients of equation (2.1), Fettouch and Hamouda obtained the following results on the

iterated order

Theorem 3.1 ( [33]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} of finite iterated order

with max
{

ρp(A j,z0) : j ̸= 0
}
≤ ρp(A0,z0) = ρ <+∞, 1 < p < ∞ and E ⊂ (0,1) be a set of infinite

logarithmic measure such that for some constants 0 ≤ β < α and any given ε > 0, we have

|A0(z)| ≥ expp

{
α

rρ−ε

}
,

|A j(z)| ≤ expp

{
β

rρ−ε

}
, j = 1, ...,k−1,

as r → 0 with r ∈ E. Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies ρp+1( f ,z0) =

ρp(A0,z0) = ρ.

Cherief and Hamouda in [18] considered (2.1) for the case when the coefficients are meromorphic

functions in C−{z0}, where they obtained the following theorem on the hyper order.
25
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Theorem 3.2 ( [18]). Let A0(z), ...,Ak−1(z) be meromorphic functions in C−{z0} satisfying max
{

ρ(A j,z0) :

j ̸= 0
}
< ρ(A0,z0) with

liminf
r−→0

mz0(r,A0)

Tz0(r,A0)
> 0.

Then, every meromorphic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρ(A0,z0)≤ ρ2( f ,z0).

As a generalization to Theorem 3.1 to the non-homogeneous case and also as C−{z0} counterpart

of a theorem obtained by Jin and his coauthors in [67], Fettouch and Hamouda proved the following

theorem on the iterated order and the iterated exponent of convergence of zeroes of solutions to

equation (3.1)

Theorem 3.3 ( [33]). Let A0(z), ...,Ak−1(z) satisfy the hypotheses of Theorem 3.1, and let F(z) ̸≡ 0

be an analytic function in C\{z0} with i(F) = q.

i) If q < p+1 or q = p+1, ρp+1(F,z0) < ρp(A0,z0), then every analytic solution f (z)(̸≡ 0) in

C\{z0} of (2.1) satisfies λ p+1( f ,z0) = λp+1( f ,z0) = ρp+1( f ,z0) = ρp(A0,z0), with at most

one exceptional solution f0 satisfying i( f0)< p+1 or ρp+1( f ,z0)< ρp(A0,z0)

ii) If q > p+1 or q = p+1, ρp(A0,z0)< ρp+1(F,z0)<+∞, then every analytic solution f (z)(̸≡ 0)

in C\{z0} of (3.1) satisfies i( f ) = q and ρq( f ,z0) = ρq(F,z0).

It is obvious that the above results do not include the case when the coefficients are analytic or

meromorphic functions in C−{z0} of order zero, , in fact not even in the results of the precedent

chapter. The main purpose of this chapter is to consider this case, such that we use the logarithmic

order and the logarithmic lower order as growth indicators, our results are extensions of the above

theorems and also C\{z0} counterparts to some previous results in the complex plane C (see [15, 29]).

3.2 Main Results

Theorem 3.4 ( [27]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} such that for real constants

α,β ,υ ,θ1 and θ2 with 0 ≤ β < α,υ ≥ 1,θ1 < θ2 satisfying

|A0(z)| ≥ exp
{

α

(
log

1
r

)υ}
,

|A j(z)| ≤ exp
{

β

(
log

1
r

)υ}
, j = 1, ...,k−1,

where arg(z0 − z) = θ ∈ (θ1,θ2) and |z0 − z| = r → 0. Then, every analytic solution f (z)(̸≡ 0) in

C\{z0} of (2.1) satisfies ρ[2,2]( f ,z0)≥ υ −1 with ρ[2,2]( f ,z0)≥ υ > 1.

Theorem 3.5 ( [27]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} and E ⊂ (0,1) be a set of

infinite logarithmic measure such that

|A0(z)| ≥ exp
{

α

(
log

1
r

)υ}
,
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|A j(z)| ≤ exp
{

β

(
log

1
r

)υ}
, j = 1, ...,k−1,

with 0 ≤ β < α,υ ≥ 1 and |z0− z|= r → 0, r ∈ E. Then, every analytic solution f (z)(̸≡ 0) in C\{z0}
of (2.1) satisfies ρ[2,2]( f ,z0)≥ υ −1 with ρ[2,2]( f ,z0)≥ υ > 1

Theorem 3.6 ( [27]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} of finite logarithmic

order with max
{

ρlog(A j,z0) : j ̸= 0
}
≤ ρlog(A0,z0) = ρ and E ⊂ (0,1) be a set of infinite logarithmic

measure such that for some constants 0 ≤ β < α and any given ε > 0, we have

|A0(z)| ≥ exp
{

α

(
log

1
r

)ρ−ε}
,

|A j(z)| ≤ exp
{

β

(
log

1
r

)ρ−ε}
, j = 1, ...,k−1,

as r → 0 with r ∈ E. Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies ρlog(A0,z0)−
1 ≤ ρ[2,2]( f ,z0)≤ ρlog(A0,z0) = ρ with ρ[2,2]( f ,z0) = ρlog(A0,z0) = ρ > 1

Theorem 3.7 ( [27]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order

with max
{

ρlog(A j,z0) : j ̸= 0
}
< ρlog(A0,z0) = ρ. Then, every analytic solution f (z)(̸≡ 0) in C\{z0}

of (2.1) satisfies ρlog(A0,z0)−1 ≤ ρ[2,2]( f ,z0)≤ ρlog(A0,z0) with ρ[2,2]( f ,z0) = ρlog(A0,z0)> 1

Theorem 3.8 ( [27]). Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order

with

max
{

ρlog(A j,z0) : j ̸= 0
}
≤ ρlog(A0,z0) = ρ,

max
{

τlog,M(A j,z0) : ρlog(A j,z0) = ρ, j ̸= 0
}
< τlog,M(A0,z0) = τ ≤+∞,

Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies ρlog(A0,z0)−1 ≤ ρ[2,2]( f ,z0)≤
ρlog(A0,z0) with ρ[2,2]( f ,z0) = ρlog(A0,z0)> 1

Theorem 3.9. Let A0(z), ...Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order with

max
{

σlog(A j,z0) : j ̸= 0
}
≤ µlog(A0,z0)≤ σlog(A0,z0) and

∑
σlog(A j,z0)=µlog(A0,z0), j ̸=0

τlog(A j,z0)< τ log(A0,z0).

Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 0≤ µlog(A0,z0)−1≤ µ[2,2]( f ,z0)≤
µlog(A0,z0), with 1 < µlog(A0,z0) = µ[2,2]( f ,z0) ≤ σ[2,2]( f ,z0) = σlog(A0,z0) = λ [2,2]( f −ϕ,z0) =

λ[2,2]( f −ϕ,z0), where ϕ(z)(̸≡ 0) is an analytic function in C\{z0} satisfying σ[2,2](ϕ,z0)< µlog(A0,z0).

Theorem 3.10. Let A0(z), ...Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order with

max
{

σlog(A j,z0) : j ̸= s
}
≤ µlog(A0,z0)≤ σlog(A0,z0) and

limsup
r−→0

∑ j ̸=0 mz0(r,A j)

mz0(r,A0)
< 1.

Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 0≤ µlog(A0,z0)−1≤ µ[2,2]( f ,z0)≤
µlog(A0,z0), with 1 < µlog(A0,z0) = µ[2,2]( f ,z0) ≤ σ[2,2]( f ,z0) = σlog(A0,z0) = λ [2,2]( f −ϕ,z0) =

λ[2,2]( f −ϕ,z0), where ϕ(z)(̸≡ 0) is an analytic function in C\{z0} satisfying σ[2,2](ϕ,z0)< µlog(A0,z0).
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Theorem 3.11. Let A0(z), ...Ak−1(z) be meromorphic functions in C\{z0} of finite logarithmic order

with liminfr−→0
mz0(r,A0)

Tz0(r,A0)
= δ > 0, max

{
σlog(A j,z0) : j ̸= 0

}
≤ µlog(A0,z0)≤ σlog(A0,z0) and

∑
σlog(A j,z0)=µlog(A0,z0), j ̸=0

τlog(A j,z0)< δτ log(A0,z0).

Then, every meromorphic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 0 ≤ µlog(A0,z0)− 1 ≤
µ[2,2]( f ,z0), with 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0).

Theorem 3.12. Let A0(z), ...Ak−1(z) be meromorphic functions in C\{z0} of finite logarithmic order

with liminfr−→0
mz0(r,A0)

Tz0(r,A0)
= δ > 0 and

limsup
r−→0

∑ j ̸=s mz0(r,A j)

mz0(r,A0)
< 1.

Then, every meromorphic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 0 ≤ µlog(A0,z0)− 1 ≤
µ[2,2]( f ,z0), with 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0).

Theorem 3.13. Let A0(z), ...Ak−1(z) be meromorphic functions in C\{z0} of finite logarithmic order

with λlog(
1

A0
,z0)+1 < µlog(A0,z0), max

{
σlog(A j,z0) : j ̸= 0

}
≤ µlog(A0,z0)≤ σlog(A0,z0) and

∑
σlog(A j,z0)=µlog(A0,z0), j ̸=0

τlog(A j,z0)< τ log(A0,z0).

Then, every meromorphic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 1< µlog(A0,z0)≤ µ[2,2]( f ,z0).

Theorem 3.14 ( [27]). Let A0(z), ...,Ak−1(z) satisfy the hypotheses of Theorem 3.7 and let F(z)(̸≡ 0)

be an analytic function in C\{z0}.

i) If ρlog(A0,z0)< ρ[2,2](F,z0)<+∞, then, every analytic solution f (z) in C\{z0} of (3.1) satisfies

ρ[2,2]( f ,z0) = ρ[2,2](F,z0).

ii) If ρlog(A0,z0) > ρ[2,2](F,z0), then every analytic solution f (z) in C\{z0} of (3.1) satisfies

ρ[2,2]( f ,z0)≤ ρlog(A0,z0), and that ρ[2,2]( f ,z0)≥ ρlog(A0,z0)−1 with at most one exceptional

solution, and that λ [2,2]( f ,z0) = λ[2,2]( f ,z0) = ρ[2,2]( f ,z0) holds for every solution f which

satisfies ρ[2,2]( f ,z0) = ρlog(A0,z0).

Theorem 3.15 ( [27]). Let A0(z), ...,Ak−1(z) satisfy the hypotheses of Theorem 3.8 and let F(z)(̸≡ 0)

be an analytic function in C\{z0}.

i) If ρlog(A0,z0)< ρ[2,2](F,z0)<+∞, then, every analytic solution f (z) in C\{z0} of (3.1) satisfies

ρ[2,2]( f ,z0) = ρ[2,2](F,z0).

ii) If ρlog(A0,z0) > ρ[2,2](F,z0), then every analytic solution f (z) in C\{z0} of (3.1) satisfies

ρ[2,2]( f ,z0)≤ ρlog(A0,z0), and that ρ[2,2]( f ,z0)≥ ρlog(A0,z0)−1 with at most one exceptional

solution, and that λ [2,2]( f ,z0) = λ[2,2]( f ,z0) = ρ[2,2]( f ,z0) holds for every solution f which

satisfies ρ[2,2]( f ,z0) = ρlog(A0,z0).



3.3. LEMMAS 29

3.3 Lemmas

Lemma 3.1. Let f be a non-constant analytic function in C\{z0} with ρlog( f ) = ρ . Then there exists

a subset E1 of (0,1) that has infinite logarithmic measure such that for all |z− z0|= r ∈ E1, we have

ρ = lim
r−→0

log logMz0(r, f )
log log 1

r

and for any given ε > 0

Mz0(r, f )> exp
{(

log
1
r

)ρ−ε}
.

Proof. By the definition of the logarithmic order, there exists a sequence {rn}∞
n=1 tending to 0 satisfying

rn+1 <
n

n+1rn and

ρ = lim
n−→∞

log logMz0(rn, f )
log log 1

rn

.

Then, for any given ε > 0, there exists an n0 ∈ N+ such that for all n ≥ n0 and for any r ∈ [ n
n+1rn,rn],

we obtain
loglogMz0(rn, f )

log log 1
n

n+1 rn

≤ log logMz0(r, f )
log log 1

r

≤
log logMz0(

n
n+1rn, f )

log log 1
rn

.

Since

lim
n−→∞

log logMz0(rn, f )
log log 1

n
n+1 rn

= lim
n−→∞

log logMz0(
n

n+1rn, f )

log log 1
rn

= ρ,

then for any r ∈ [ n
n+1rn,rn], we get

lim
r−→0

log logMz0(r, f )
log log 1

r

= ρ. (3.2)

Setting E1 =
∞⋃

n=n0

[ n
n+1rn,rn], then mlog(E1) =

∞

∑
n=n0

∫ rn
n

n+1 rn

dt
t =

∞

∑
n=n0

log
(
1+ 1

n

)
= ∞. It follows from

(3.2), for any given ε > 0

Mz0(r, f )> exp
{(

log
1
r

)ρ−ε}
.

Lemma 3.2. Let A0(z), ...,Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order with

max
{

ρlog(A j,z0) : j = 0, ...,k−1
}
≤ α1 <+∞. Then, every analytic solution f (z)(̸≡ 0) in C\{z0} of

(2.1) satisfies ρ[2,2]( f ,z0)≤ α1.

Proof. Let f (z)(̸≡ 0) be an analytic solution of (2.1) in C\{z0}. By Lemma 2.3, there exists a set

F3 ⊂ (0,1) of finite logarithmic measure such that, for all r ̸∈ F3 and r → 0, we have

f ( j)(zr)

f (zr)
=

(
Vz0(r, f )
z0 − zr

) j(
1+o(1)

)
, j = 0, ...,k. (3.3)

Setting

Mz0(r) = max
|z0−z|=r

{
|A j(z)| : j = 0,1, ...,k−1

}
. (3.4)
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Since max
{

ρlog(A j,z0) : j = 0, ...,k−1
}
≤ α1 < +∞, then for any given ε > 0, there exists r0 > 0

such that for r0 > r > 0, we get

Mz0(r)≤ exp
{(

log
1
r

)α1+ε}
. (3.5)

Now, we may rewrite (2.1) as∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣≤ ∣∣Ak−1(z)
∣∣∣∣∣∣ f (k−1)(z)

f (z)

∣∣∣∣+ · · ·+
∣∣A1(z)

∣∣∣∣∣∣ f ′(z)
f (z)

∣∣∣∣+ ∣∣A0(z)
∣∣. (3.6)

Then, by substituting (3.3) and (3.4) into (3.6), we obtain(
Vz0(r, f )

r

)k∣∣∣∣1+o(1)
∣∣∣∣≤ kMz0(r)

(
Vz0(r, f )

r

)k−1∣∣∣∣1+o(1)
∣∣∣∣. (3.7)

It follows by (3.5) and (3.7)

Vz0(r, f )≤ kr exp
{(

log
1
r

)α1+ε}∣∣∣∣1+o(1)
∣∣∣∣. (3.8)

Therefore, by Lemma 2.5 we get ρ[2,2]( f ,z0)≤ α1.

Lemma 3.3. Let f be a non-constant analytic function in C\{z0} with finite logarithmic order

1 ≤ ρlog( f ,z0) = ρ < +∞ and finite logarithmic type 0 < τlog,M( f ,z0) < +∞. Then there exists a

subset E2 of (0,1) that has infinite logarithmic measure such that for all |z− z0|= r ∈ E2, we have

τlog,M( f ,z0) = lim
r−→0

logMz0(r, f )
(log 1

r )
ρ

and for any given β < τlog,M( f ,z0)

Mz0(r, f )> exp
{

β

(
log

1
r

)ρ}
.

Proof. Similarly, as in the proof of Lemma 3.1. By the definition of the logarithmic type, there exists

a sequence {rn}∞
n=1 tending to 0 satisfying rn+1 <

n
n+1rn and

lim
n−→∞

logMz0(rn, f )
(log 1

rn
)ρ

= τlog,M( f ,z0).

So, for any given ε > 0, there exists an integer n0 such that for all n ≥ n0 and for any r ∈ [ n
n+1rn,rn],

we have
logMz0(rn, f )
(log 1

n
n+1 rn

)ρ
≤ logMz0(r, f )

(log 1
r )

ρ
≤

logMz0(
n

n+1rn, f )

(log 1
rn
)ρ

.

Since

lim
n−→∞

logMz0(rn, f )
(log 1

n
n+1 rn

)ρ
= lim

n−→∞

logMz0(
n

n+1rn, f )

(log 1
rn
)ρ

= τlog( f ,z0),

then for any r ∈ [ n
n+1rn,rn], we obtain

lim
r−→0

logMz0(r, f )
(log 1

r )
ρ

= τlog,M( f ,z0). (3.9)
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By (3.9), for any given β < τlog,M( f ,z0), we get

Mz0(r, f )> exp
{

β

(
log

1
r

)ρ}
.

Set E2 =
∞⋃

n=n0

[ n
n+1rn,rn], then mlog(E2) =

∞

∑
n=n0

∫ rn
n

n+1 rn

dt
t =

∞

∑
n=n0

log
(
1+ 1

n

)
= ∞.

Lemma 3.4 ( [18]). Let f be a non-constant meromorphic function in C\{z0} and let k ∈ N. Then

mz0

(
r,

f (k)(z)
f (z)

)
= O

(
logTz0(r, f )+ log

1
r

)
, for all r ∈ (0,1)\F1 with mlog(F1)< ∞.

If f is of finite order, then

mz0

(
r,

f (k)(z)
f (z)

)
= O

(
log

1
r

)
, r ̸∈ F1.

Lemma 3.5. Let f be a non-constant analytic function in C\{z0} with µ = µlog( f ). Then there exists

a set E3 of (0,1) that has infinite logarithmic measure such that for all |z− z0|= r ∈ E3, we have

lim
r−→0

log logMz0(r, f )
log log 1

r

= µ.

Proof. The proof is similar to the proof of Lemma 2.4. Here we omit it.

Lemma 3.6. Let A0(z), ...Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order . If there

exists an integer (0 ≤ l ≤ k−1) such that 1 ≤ max
{

µlog(Al,z0),ρlog(A j,z0) : j ̸= l
}
≤ α2. Then, every

analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies µ[2,2]( f ,z0)≤ α2.

Proof. Suppose that f (z)(̸≡ 0) is an analytic solution of (2.1) in C\{z0}. By (2.1), we have∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣= ∣∣Ak−1(z)
∣∣∣∣∣∣ f (k−1)(z)

f (z)

∣∣∣∣+ · · ·+
∣∣Al(z)

∣∣∣∣∣∣ f (l)(z)
f (z)

∣∣∣∣+ · · ·+
∣∣A0(z)

∣∣. (3.10)

Since max
{

ρlog(A j,z0) : j = 0, ...,k−1, j ̸= l
}
≤ α2 < +∞. Then for any given ε > 0, there exists

r1 ∈ (0,1) such that for all |z− z0|= r ∈ (0,r1), we have

∣∣A j(z)
∣∣≤ Mz0(r,A j)≤ exp

{(
log

1
r

)ρlog(A j,z0)+ε}
≤ exp

{(
log

1
r

)α2+ε}
, j ̸= l. (3.11)

By Lemma 3.5, there exists a set E3 ⊂ (0,1) that has infinite logarithmic measure such that, for any

given ε > 0 and for all r ∈ E3 we get

∣∣Al(z)
∣∣≤ Mz0(r,Al)≤ exp

{(
log

1
r

)µlog(Al ,z0)+ε}
≤ exp

{(
log

1
r

)α2+ε}
. (3.12)

Substituting (3.3), (3.11) and (3.12) into (3.10), for any given ε > 0 and for all r ∈ E3 ∩ (0,r1)\F3,

we obtain

Vz0(r, f )≤Cr exp
{(

log
1
r

)α+ε}(
1+o(1)

)
, C > 0. (3.13)

It follows by (3.13) and Lemma 2.7 that, µ[2,2]( f ,z0)≤ α2.
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Lemma 3.7 ( [72]). Assume f ̸≡ 0 is a solution of (2.1), set g = f −ϕ, then g satisfies

g(k)+Ak−1g(k−1)+ · · ·+A1g′+A0g =−
[

ϕ
(k)+Ak−1ϕ

(k−1)+ · · ·+A1ϕ
′+A0ϕ

]
. (3.14)

Lemma 3.8. [6] Let f be a meromorphic function in C with p ≥ q ≥ 1. Then

ρ[p,q]( f ′) = ρ[p,q]( f ).

Lemma 3.9. Let f be a non-constant analytic function in C\{z0} with p ≥ q ≥ 1. Then

ρ[p,q]( f (n),z0) = ρ[p,q]( f ,z0), n ∈ N.

Proof. It is sufficient to prove that ρ[p,q]( f ′,z0) = ρ[p,q]( f ,z0). By Lemma 1.1 , g(ω) = f (z0 − 1
ω
) is

meromorphic in C and ρ[p,q](g) = ρ[p,q]( f ,z0). By Lemma 3.8 we have ρ[p,q](g′) = ρ[p,q](g) where

f ′(z) = 1
ω2 g′(ω). Set h(ω) = 1

ω2 g′(ω). Clearly ρ[p,q](h) = ρ[p,q](g′). In the other hand by Lemma 1.1,

we have ρ[p,q](h) = ρ[p,q]( f ′,z0). So, we deduce that ρ[p,q]( f ,z0) = ρ[p,q]( f ′,z0).

Lemma 3.10. Let F(z) ̸≡ 0, A0(z), ...,Ak−1(z) be analytic functions in C\{z0} and let f be a non-

constant analytic solution in C\{z0} of (3.1) satisfying

max
{

ρ[2,2](F,z0),ρ[2,2](A j,z0) : ( j = 0, ...,k−1)
}
< ρ[2,2]( f ,z0).

Then λ [2,2]( f ,z0) = λ[2,2]( f ,z0) = ρ[2,2]( f ,z0) = ρlog(A0,z0).

Proof. We may rewrite (3.1) as

1
f (z)

=
1

F(z)

(
f (k)(z)
f (z)

+Ak−1(z)
f (k−1)(z)

f (z)
+ · · ·+A1(z)

f ′(z)
f (z)

+A0(z)
)
. (3.15)

By Lemma 2.9 and (3.15) we get

Tz0(r, f ) =Tz0

(
r,

1
f

)
+O(1)

=mz0

(
r,

1
f

)
+Nz0

(
r,

1
f

)
+O(1)

≤
k−1

∑
j=0

mz0(r,A j)+
k

∑
j=1

mz0

(
r,

f ( j)

f

)
+mz0

(
r,

1
F

)
+Nz0

(
r,

1
f

)
+O(1).

(3.16)

From (3.1), it is easy to see that if f has a zero at z1 of order m(m > k), then F must have a zero at z1

of order at least m− k. Hence

n
(
r,

1
f

)
≤ kn

(
r,

1
f

)
+n
(
r,

1
F

)
and

Nz0

(
r,

1
f

)
≤ kNz0

(
r,

1
f

)
+Nz0

(
r,

1
F

)
. (3.17)

Again by Lemma 2.9, there exists a set F4 ⊂ (0,r0] that has a finite logarithmic measure such for all

|z0 − z|= r ∈ (0,r0]\ F4, we obtain

k

∑
j=1

mz0

(
r,

f ( j)

f

)
= O

(
Tz0(r, f )+ log

1
r

)
≤ 1

2
Tz0(r, f ). (3.18)
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Substituting (3.17) and (3.18) into (3.16), we get

1
2

Tz0(r, f )≤ kNz0

(
r,

1
f

)
+Tz0(r,F)+

k−1

∑
j=0

Tz0(r,A j)+O(1). (3.19)

This implies that ρ[2,2]( f ,z0)≤ max
{

λ [2,2]( f ,z0),ρ[2,2](F,z0),ρ[2,2](A j,z0) : ( j = 0, ...,k−1)
}
. Since

max
{

ρ[2,2](F,z0),ρ[2,2](A j,z0) : ( j = 0, ...,k−1)
}
< ρ[2,2]( f ,z0),

then we obtain ρ[2,2]( f ,z0) ≤ λ [2,2]( f ,z0). On the other hand, by definition we have λ [2,2]( f ,z0) ≤
λ[2,2]( f ,z0)≤ ρ[2,2]( f ,z0), therefore

ρ[2,2]( f ,z0) = λ [2,2]( f ,z0) = λ[2,2]( f ,z0).

3.4 Proofs of the theorems

Proof of Theorem 3.4

Proof. We assume that f is a non constant analytic solution of (2.1) in C\{z0}. By the hypotheses of

Theorem 3.4, for real constants 0 ≤ β < α,υ ≥ 1 and arg(z0− z) = θ ∈ (θ1,θ2) with |z0− z|= r → 0,

we have

|A0(z)| ≥ exp
{

α

(
log

1
r

)υ}
(3.20)

and

|A j(z)| ≤ exp
{

β

(
log

1
r

)υ}
, j = 1, ...,k−1. (3.21)

By Lemma 2.1, there exists a subset F1 ⊂ (0,1) having finite logarithmic measure and a constant

C > 0 that depends only on κ , such for all r ̸∈ F1, we have∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣≤C
[

1
r

Tz0(κr, f )
]2 j

, j = 1, ...,k. (3.22)

Substituting (3.20) - (3.22) into (2.3), for all r ̸∈ F1 and r → 0, we obtain

exp
{

α

(
log

1
r

)υ}
≤ kC

[
1
r

Tz0(κr, f )
]2k

exp
{

β

(
log

1
r

)υ}
. (3.23)

From (3.23), it follows

exp
{
(α −β )

(
log

1
r

)υ}
≤ kC

[
1
r

Tz0(κr, f )
]2k

. (3.24)

We conclude from (3.24) that ρ[2,2]( f ,z0)≥ υ −1 with ρ[2,2]( f ,z0)≥ υ > 1.
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Proof of Theorem 3.5

Proof. By the hypotheses of Theorem 3.5, there exists a set E ⊂ (0,1) of infinite logarithmic measure

such that, for all r ∈ E and r → 0, (3.20) and (3.21) hold. Then, similarly as in (3.20)-(3.24) in the proof

of Theorem 3.1, for all r ∈ E \F1 and r → 0, we get (3.24) holds which implies ρ[2,2]( f ,z0)≥ υ −1

with ρ[2,2]( f ,z0)≥ υ > 1.

Proof of Theorem 3.6

Proof. First, by Theorem 3.5, we can obtain ρ[2,2]( f ,z0) ≥ ρ − 1− ε and ρ[2,2]( f ,z0) ≥ ρ − ε > 1.

Since ε > 0 is arbitrary, we have

ρ[2,2]( f ,z0)≥ ρlog(A0,z0)−1 = ρ −1 and ρ[2,2]( f ,z0)≥ ρlog(A0,z0) = ρ > 1 (3.25)

By the definition of ρlog(A j,z0), for any given ε > 0 and r → 0, we have

|A j(z)| ≤ exp
{(

log
1
r

)ρ+ε}
, j = 0, ...,k−1. (3.26)

By Lemma 2.3, there exists a set F3 ⊂ (0,1) of finite logarithmic measure such that, for all r ̸∈ F3 and

r → 0, we have
f ( j)(zr)

f (zr)
=

(
Vz0(r)
z0 − zr

) j(
1+o(1)

)
, j = 0, ...,k, (3.27)

where | f (zr)|= Mz0(r, f ) = max|z−z0|=r | f (z)|. Substituting (3.26) and (3.27) into (2.10), we get(
Vz0(r)

r

)k∣∣∣∣1+o(1)
∣∣∣∣≤ k exp

{(
log

1
r

)ρ+ε}(Vz0(r)
r

)k−1∣∣∣∣1+o(1)
∣∣∣∣, (3.28)

it follows

Vz0(r)≤ kr exp
{(

log
1
r

)ρ+ε}∣∣∣∣1+o(1)
∣∣∣∣. (3.29)

This implies that

ρ[2,2]( f ,z0)≤ ρlog(A0,z0) = ρ. (3.30)

From (3.25) and (3.30), we obtain

ρlog(A0,z0)−1 ≤ ρ[2,2]( f ,z0)≤ ρlog(A0,z0) with ρ[2,2]( f ,z0) = ρlog(A0,z0)> 1. (3.31)

Proof of Theorem 3.7

Proof. Set max
{

ρlog(A j,z0) : j ̸= 0
}
< ρ0 < ρ1 < ρlog(A0,z0). For any given ε > 0, there exists a

r0 > 0 such that for all r0 ≥ r > 0, we have

|A j(z)| ≤ exp
{(

log
1
r

)ρ0+ε}
, j = 1, ...,k−1. (3.32)
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For ρ0 + ε < ρ1 < ρlog(A0,z0), by Lemma 3.1, there exists a set E1 ⊂ (0,1) of infinite logarithmic

measure such that, for all r ∈ E1 and |A0(z)|= Mz0(r,A0), we have

|A0(z)|> exp
{(

log
1
r

)ρ1
}
. (3.33)

Substituting (3.22), (3.31) and (3.32) into (2.3), for all r ∈ E1\F1, we obtain

exp
{(

log
1
r

)ρ1
}
≤ kC

[
1
r

Tz0(λ r, f )
]2k

exp
{(

log
1
r

)ρ0+ε}
. (3.34)

From (3.34), we get

ρ[2,2]( f ,z0)≥ ρ1 −1 ≥ 0 with ρ[2,2]( f ,z0)≥ ρ1 > 1. (3.35)

Further, by (3.35) and Lemma 3.2, we have 0 ≤ ρ1 − 1 ≤ ρ[2,2]( f ,z0) ≤ ρlog(A0,z0) with 1 < ρ1 ≤
ρ[2,2]( f ,z0)≤ ρlog(A0,z0) which hold for each ρ1 < ρlog(A0,z0). Thus, we obtain ρlog(A0,z0)−1 ≤
ρ[2,2]( f ,z0)≤ ρlog(A0,z0) and 1 < ρlog(A0,z0) = ρ[2,2]( f ,z0).

Proof of Theorem 3.8

Proof. Let β0 and β1 be two constants such that max
{

τlog,M(A j,z0) : ρlog(A j,z0) = ρlog(A0,z0) =

ρ, j ̸= 0
}
< β0 < β1 < τlog,M(A0,z0). If ρlog(A j,z0)< ρlog(A0,z0) = ρ , then there exists a r0 such that

for all r0 ≥ r > 0 and for any given ε > 0, (3.32) holds. If ρlog(A j,z0) = ρlog(A0,z0) = ρ , then by the

definition of τlog,M(A j,z0) for any given ε > 0 and for sufficiently small r, we get

|A j(z)| ≤ exp
{

β0

(
log

1
r

)ρ}
, j = 1, ...,k−1. (3.36)

By Lemma 3.3, there exists a set E2 ⊂ (0,1) of infinite logarithmic measure such that, for all r ∈ E2

and |A0(z)|= Mz0(r,A0), we obtain

|A0(z)| ≥ exp
{

β1

(
log

1
r

)ρ}
. (3.37)

Substituting (3.22), (3.32), (3.36) and (3.37) into (2.3), for all r ∈ E2\F1, we get

exp
{

β1

(
log

1
r

)ρ}
≤ kC

[
1
r

Tz0(λ r, f )
]2k

exp
{

β0

(
log

1
r

)ρ}
. (3.38)

This implies that

ρ[2,2]( f ,z0)≥ ρ −1 = ρlog(A0,z0)−1 with ρ[2,2]( f ,z0)≥ ρ = ρlog(A0,z0)> 1. (3.39)

Then, by (3.39) and Lemma 3.2, we have ρlog(A0,z0)− 1 ≤ ρ[2,2]( f ,z0) ≤ ρlog(A0,z0) and 1 <

ρlog(A0,z0) = ρ[2,2]( f ,z0).
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Proof of Theorem 3.9

Proof. Suppose that f (z) is an analytic solution of (2.1) in C\{z0}. By (2.24) and Lemma 3.4, there

exists a set F1 ⊂ (0,1), having finite logarithmic measure , such that for all r ∈ (0,1)\F1 , we have

mz0(r,A0(z))≤ O
(

logTz0(r, f (z))+ log
1
r

)
+

k−1

∑
j=1

mz0(r,A j(z)), (3.40)

which means

Tz0(r,A0(z)) = mz0(r,A0(z))≤ O
(

logTz0(r, f (z))+ log
1
r

)
+

k−1

∑
j=1

Tz0(r,A j(z)). (3.41)

First, we assume ρ = max
{

ρlog(A j,z0) : j = 1, ...,k − 1
}
< µlog(A0,z0) = µ. Then for any given

0 < 2ε < µ −ρ, there exists r1 ∈ (0,1) such that for all |z0 − z|= r ∈ (0,r1), we get

Tz0(r,A0)≥
(

log
1
r

)µ−ε

(3.42)

and

Tz0(r,A j)≤
(

log
1
r

)ρ+ε

, j = 1, ...,k−1. (3.43)

Substituting (3.42) and (3.43) into (3.41), for the above ε and for all |z0 − z| = r ∈ (0,r1) \F1, we

obtain (
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
+(k−1)

(
log

1
r

)ρ+ε

. (3.44)

Then, by 0 < 2ε < µ −ρ , we have

(
1−o(1)

)(
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
. (3.45)

This implies that, µ − 1− ε ≤ µ[2,2]( f ,z0). Since ε is arbitrary, we obtain 0 ≤ µlog(A0,z0)− 1 ≤
µ[2,2]( f ,z0). On the other hand, by Lemma 3.6, we have µ[2,2]( f ,z0) ≤ µlog(A0,z0). Thus, we get

that every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies µlog(A0,z0)− 1 ≤ µ[2,2]( f ,z0) ≤
µlog(A0,z0). Furthermore, If µlog(A0,z0)> 1 then, by (3.45) and Lemma 3.6, we obtain µ[2,2]( f ,z0) =

µlog(A0,z0). Now we prove that λ [2,2]( f −ϕ,z0) = λ[2,2]( f −ϕ,z0) = ρ[2,2]( f ,z0) = ρlog(A0,z0)> 1.

Set g = f −ϕ. By Theorem 3.7 and since ϕ(z)(̸≡ 0) satisfies ρ[2,2](ϕ,z0)< µlog(A0,z0)≤ ρlog(A0,z0),

then we have ρ[2,2](g,z0) = ρ[2,2]( f ,z0) = ρlog(A0,z0) ≥ µlog(A0,z0) > 1. By Lemma 3.7 g satisfies

(3.14), Set G= ϕ(k)+Ak−1ϕ(k−1)+ · · ·+A1ϕ ′+A0ϕ. If G≡ 0, then by the first part of the proof (or by

Theorem 3.7, we get ρ[2,2](ϕ,z0)≥ µ[2,2](ϕ,z0) = µlog(A0,z0), which is a contradiction, thus G ̸≡ 0.

Since G ̸≡ 0 then by Lemma 3.9, we have ρ[2,2](G,z0)≤ ρ[2,2](ϕ,z0)< µlog(A0,z0)≤ ρlog(A0,z0) =

ρ[2,2](g,z0). By Lemma 3.10, we obtain λ [2,2](g,z0) = λ[2,2](g,z0) = ρ[2,2](g,z0). Then, we deduce

that λ [2,2]( f −ϕ,z0) = λ[2,2]( f −ϕ,z0) = ρ[2,2]( f ,z0) = ρlog(A0,z0).

Now we assume that max
{

ρlog(A j,z0) : j ̸= 0
}
= µlog(A0,z0) = µ and

τ1 = ∑
ρlog(A j,z0)=µlog(A0,z0), j ̸=0

τlog(A j,z0)< τ log(A0,z0) = τ.
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Then, there exists a set J ⊆ { j = 1, ...,k}, such that for j ∈ J, we get ρlog(A j,z0) = µlog(A0,z0) = µ

with τ1 = ∑ j∈J τlog(A j,z0)< τ log(A0,z0) = τ, where for j ∈ { j = 1, ...,k}\ J, we have ρlog(A j,z0)<

µlog(A0,z0) = µ. Hence, for any given ε
(
0 < ε < τ−τ1

k

)
, there exists a constant r2 ∈ (0,1), such that

for all |z0 − z|= r ∈ (0,r2), we have

Tz0(r,A j)≤
(
τlog(A j,z0)+ ε

)(
log

1
r

)µ

, j ∈ J, (3.46)

Tz0(r,A j)≤
(

log
1
r

)ρ0

, j ∈ { j = 1, ...,k}\ J, 0 < ρ0 < µ (3.47)

and

Tz0(r,A0)≥
(
τ − ε

)(
log

1
r

)µ

. (3.48)

By substituting (3.46)-(3.48) into (3.41), for the above ε and for all |z0 − z|= r ∈ (0,r2)\F1, we get

(
τ − ε

)(
log

1
r

)µ

≤O
(

logTz0(r, f )+ log
1
r

)
+ ∑

j∈J

(
τlog(A j,z0)+ ε

)(
log

1
r

)µ

+ ∑
j∈{ j=1,...,k}\J

(
log

1
r

)ρ0

≤O
(

logTz0(r, f )+ log
1
r

)
+
(
τ1 +(k−1)ε

)(
log

1
r

)µ

+(k−1)
(

log
1
r

)ρ0

(3.49)

and so (
1−o(1)

)(
τ − τ1 − kε

)(
log

1
r

)µ

≤ O
(

logTz0(r, f )+ log
1
r

)
. (3.50)

By (3.50), it follows that

0 ≤ µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0). (3.51)

From (3.51) and Lemma 3.6, we conclude that every analytic solution f (z)(̸≡ 0) in C\{z0} of (2.1)

satisfies µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0)≤ µlog(A0,z0). Furthermore, If µlog(A0,z0)> 1 then, by (3.50)

and Lemma 3.6, we get µ[2,2]( f ,z0) = µlog(A0,z0). We prove that λ [2,2]( f −ϕ,z0) = λ[2,2]( f −ϕ,z0) =

ρ[2,2]( f ,z0) = ρlog(A0,z0)> 1, similarly as in the proof for the first case.

Proof of Theorem 3.10

Proof. We assume that limsupr−→0
∑

k−1
j=1 mz0(r,A j)

mz0(r,A0)
< σ < 1. Then for r → 0, we have

k−1

∑
j=0, j ̸=s

mz0(r,A j)< σmz0(r,A0). (3.52)

Substituting (3.52) into (3.40), for all r ∈ (0,1)\F1, we obtain

(1−σ)Tz0(r,A0) = (1−σ)mz0(r,A0)≤ O
(

logTz0(r, f )+ log
1
r

)
. (3.53)
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By the definition of µlog(A0,z0) = µ, for any given ε > 0 there exists r3 ∈ (0,1) such that for all

|z0 − z|= r ∈ (0,r3), (3.42) holds. Then by Substituting (3.42) into (3.53), for any given ε > 0 and for

all r ∈ (0,r3)\F1, we get (
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
, (3.54)

which implies that, µ −1− ε ≤ µ[2,2]( f ,z0). Since ε is arbitrary, we obtain

0 ≤ µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0). (3.55)

It follows by (3.55) and Lemma 3.6 that µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0) ≤ µlog(A0,z0). Moreover, If

µlog(A0,z0)> 1 then, by (3.54) and Lemma 3.6, we get µ[2,2]( f ,z0) = µlog(A0,z0). Similarly as in the

proof of Theorem 3.9 we prove that λ [2,2]( f −ϕ,z0) = λ[2,2]( f −ϕ,z0) = ρ[2,2]( f ,z0) = ρlog(A0,z0)>

1.

Proof of Theorem 3.11

Proof. Suppose that f (z) is a meromorphic solution of (2.1) in C\{z0}. As in the proof of Theorem

3.9, first, if ρ = max
{

ρlog(A j,z0) : j = 1, ...,k−1
}
< µlog(A0,z0) = µ. Then for any given 0 < 2ε <

µ −ρ, there exists r4 ∈ (0,1), such that for all |z0 − z| = r ∈ (0,r4), (3.43) holds. By the condition

liminfr−→0
mz0(r,A0)

Tz0(r,A0)
= δ > 0 and the definition of µlog(A0,z0) = µ , for the above ε , there exists

r5 ∈ (0,1) such that for all |z0 − z|= r ∈ (0,r5), we have

mz0(r,A0)≥
δ

2
Tz0(r,A0)≥

δ

2

(
log

1
r

)µ− ε

2

≥
(

log
1
r

)µ−ε

. (3.56)

By substituting (3.43) and (3.56) into (3.41), for any given ε (0 < 2ε < µ −ρ), and for all |z0 − z|=
r ∈ (0,r4)∩ (0,r5)\F1, we obtain(

log
1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
+(k−1)

(
log

1
r

)ρ+ε

. (3.57)

that is (
1−o(1)

)(
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
. (3.58)

It follows that, 0 ≤ µ −1− ε ≤ µ[2,2]( f ,z0) and 1 < µ − ε ≤ µ[2,2]( f ,z0). Since ε is arbitrary, we get

0 ≤ µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0) with 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0). Next if max
{

ρlog(A j,z0) : j ̸=
0
}
= µlog(A0,z0) = µ and τ1 = ∑ρlog(A j,z0)=µlog(A0,z0), j ̸=0 τlog(A j,z0) < δτ log(A0,z0) = δτ. Then, by

the condition liminfr−→0
mz0(r,A0)

Tz0(r,A0)
= δ > 0 and the definition of τ log(A0,z0) = τ, for any given ε > 0,

there exists a constant r6 ∈ (0,1) such that for all |z0 − z|= r ∈ (0,r6), we have

mz0(r,A0)≥
(
δ − ε

)
Tz0(r,A0)≥

(
δ − ε

)(
τ − ε

)(
log

1
r

)µ

≥
(
δτ − (τ +1)ε

)(
log

1
r

)µ

.

(3.59)
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For any given ε
(
0 < (τ +k)ε < δτ −τ1

)
, there exists r7 ∈ (0,1), such that for all |z0−z|= r ∈ (0,r7),

(3.46) and (3.47) hold. Then, by substituting (3.46), (3.47) and (3.21) into (3.59), for the above ε and

for all |z0 − z|= r ∈ (0,r6)∩ (0,r7)\F1, we get

(
δτ − (τ +1)ε

)(
log

1
r

)µ

≤O
(

logTz0(r, f )+ log
1
r

)
+ ∑

j∈J

(
τlog(A j,z0)+ ε

)(
log

1
r

)µ

+ ∑
j∈{ j=1,...,k}\J

(
log

1
r

)ρ0

≤O
(

logTz0(r, f )+ log
1
r

)
+
(
τ1 +(k−1)ε

)(
log

1
r

)µ

+(k−1)
(

log
1
r

)σ0

.

(3.60)

So (
1−o(1)

)(
δτ − τ1 − (τ + k)ε

)(
log

1
r

)µ

≤ O
(

logTz0(r, f )+ log
1
r

)
. (3.61)

By (3.61), we obtain 0 ≤ µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0) with 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0).

Proof of Theorem 3.12

Proof. Let f (z) be a meromorphic solution of (2.1) in C\{z0}. For any given ε > 0, there exists

r8 ∈ (0,1), such that for all |z0 − z|= r ∈ (0,r8), (3.52) and (3.56) hold. Then, by combining (3.40)

(3.52) and (3.56),for any given ε > 0 and for all |z0 − z|= r ∈ (0,r8)\F1, we have(
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
, (3.62)

It follows that 0 ≤ µlog(A0,z0)−1 ≤ µ[2,2]( f ,z0) and 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0).

Proof of Theorem 3.13

Proof. Let f (z) be a meromorphic solution of (2.1) in C\{z0}. By (3.40), for all r ∈ (0,1)\F1 , we

obtain
Tz0(r,A0(z)) = mz0(r,A0(z))+Nz0(r,A0(z))

≤ O
(

logTz0(r, f )+ log
1
r

)
+

k−1

∑
j=1

Tz0(r,A j)+Nz0(r,A0(z)).
(3.63)

Also as in the proof of Theorem 3.9, first, if ρ =max
{

ρlog(A j,z0) : j = 1, ...,k−1
}
< µlog(A0,z0)= µ.

Then for any given ε
(
0 < 2ε < µ −ρ

)
, there exists r9 ∈ (0,1), such that for all |z0 − z|= r ∈ (0,r9),

(3.42) and (3.43) hold. By the definition of λlog(
1

A0
,z0) = λ , for any given ε

(
0 < 2ε < µ −λ −1

)
,

there exists r10 ∈ (0,1), such that for all |z0 − z|= r ∈ (0,r10), we have

Nz0(r,A0)≤
(

log
1
r

)λlog(
1

A0
,z0)+1+ε

. (3.64)
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By substituting (3.42), (3.43) and (3.64) into (3.63), for sufficiently small ε satisfying 0 < 2ε <

min
{

µ −σ ,µ −λ −1
}

and for all |z0 − z|= r ∈ (0,r9)∩ (0,r10)\F1, we get

(
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )+ log
1
r

)
+(k−1)

(
log

1
r

)ρ+ε

+

(
log

1
r

)λ+1+ε

. (3.65)

It follows that (
1−o(1)

)(
log

1
r

)µ−ε

≤ O
(

logTz0(r, f )
)
, (3.66)

that is 1 < µlog(A0,z0) ≤ µ[2,2]( f ,z0). Now, if max
{

ρlog(A j,z0) : j ̸= 0
}
= µlog(A0,z0) = µ and

τ1 = ∑ρlog(A j,z0)=µlog(A0,z0), j ̸=0 τlog(A j,z0) < τ log(A0,z0) = τ. Then, for any given ε
(
0 < ε < τ−τ1

k

)
,

there exists a constant r11 ∈ (0,1), such that for all |z0 − z| = r ∈ (0,r11), (3.46), (3.47) and (3.48)

hold. By substituting (3.46)-(3.48) and (3.64) into (3.63), for sufficiently small ε satisfying 0 < ε <

min
{

τ−τ1
k , µ−λ−1

2

}
and for all |z0 − z|= r ∈ (0,r10)∪ (0,r11)\F1, we obtain

(
τ − ε

)(
log

1
r

)µ

≤O
(

logTz0(r, f )+ log
1
r

)
+ ∑

j∈J

(
τlog(A j,z0)+ ε

)(
log

1
r

)µ

+ ∑
j∈{ j=1,...,k}\J

(
log

1
r

)ρ0

+

(
log

1
r

)λ+1+ε

≤O
(

logTz0(r, f )+ log
1
r

)
+
(
τ1 +(k−1)ε

)(
log

1
r

)µ

+(k−1)
(

log
1
r

)ρ0

+

(
log

1
r

)λ+1+ε

.

(3.67)

So (
1−o(1)

)(
τ − τ1 − kε

)(
log

1
r

)µ

≤ O
(

logTz0(r, f )
)
. (3.68)

From (3.68), we deduce that 1 < µlog(A0,z0)≤ µ[2,2]( f ,z0).

Proof of Theorem 3.14

Proof. Let f be an analytic solution in C\{z0} of (3.1). Then f can be represented as

f (z) = B1(z) f1(z)+B2(z) f2(z)+ ...+Bk(z) fk(z), (3.69)

where f1, f2, ..., fk is solution base of (2.1) (the homogeneous corresponding equation of (3.1) ) and

B1,B2, ...,Bk are suitable analytic functions in C\{z0} determined by the following system of equations

B′
1(z) f1(z)+B′

2(z) f2(z)+ · · ·+B′
k(z) fk(z) = 0

B′
1(z) f ′1(z)+B′

2(z) f ′2(z)+ · · ·+B′
k(z) f ′k(z) = 0

...

B′
1(z) f (k−1)

1 (z)+B′
2(z) f (k−1)

2 (z)+ · · ·+B′
k(z) f (k−1)

k (z) = F.

(3.70)
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By (3.70), for j = 1, ...,k, we obtain

B′
j = F.G j( f1, f2, ..., fk).W ( f1, f2, ..., fk)

−1, (3.71)

where

W ( f1, f2, ..., fk) =

∣∣∣∣∣∣∣∣∣∣∣

f1(z) f2(z) · · · fk(z)

f ′1(z) f ′2(z) · · · f ′k(z)
...

...
...

...

f (k−1)
1 (z) f (k−1)

2 (z) · · · f (k−1)
k (z)

∣∣∣∣∣∣∣∣∣∣∣
is the Wronksian of f1, f2, ..., fk and G j( f1, f2, ..., fk) is differential polynomial of f1, f2, ..., fk and

their derivatives with constant coefficients.

From (3.71) and Lemma 3.9, for j = 1, ...,k, we get

ρ[2,2](C j,z0)= ρ[2,2](C
′
j,z0)≤max

{
ρ[2,2](F,z0),ρ[2,2](G j( f1, f2, ..., fk),z0),ρ[2,2](W ( f1, f2, ..., fk),z0)

}
.

(3.72)

By Theorem 3.7 and the fact that G j( f1, f2, ..., fk) and W ( f1, f2, ..., fk) are both differential polynomial

of f1, f2, ..., fk and their derivatives with constant coefficients, we have

max
{

ρ[2,2](G j( f1, f2, ..., fk),z0),ρ[2,2](W ( f1, f2, ..., fk),z0)
}
≤ ρ[2,2]( f j,z0)≤ ρlog(A0,z0). (3.73)

By (3.69), (3.72) and (3.73), for j = 1, ...,k, we obtain

ρ[2,2]( f ,z0)≤ max
{

ρ[2,2]( f j,z0),ρ[2,2](C j,z0)
}

≤ max
{

ρ[2,2](F,z0),ρlog(A0,z0)
}
.

(3.74)

i) If ρ[2,2](F,z0)> ρlog(A0,z0), then from (3.1) and (3.74), we deduce that ρ[2,2]( f ,z0)= ρ[2,2](F,z0).

ii) If ρ[2,2](F,z0)< ρlog(A0,z0), then it follows by (3.74) that ρ[2,2]( f ,z0)≤ ρlog(A0,z0). Now, we

assert that all solutions f of the equation (3.1) satisfy ρ[2,2]( f ,z0)≥ ρlog(A0,z0)−1 with at most

one exception. In fact, if there exist two distinct analytic solutions g1 and g2 of (3.1) satisfying

ρ[2,2](g j,z0) < ρlog(A0,z0)− 1, ( j = 1,2), then g = g1 − g2 is a nonzero analytic solution of

(2.1) and satisfies ρ[2,2](g,z0) = ρ[2,2](g1 −g2,z0)< ρlog(A0,z0)−1. But by Theorem 3.7, we

have ρ[2,2](g,z0) = ρ[2,2](g1 −g2,z0)≥ ρlog(A0,z0)−1. This is a contradiction. Further, if f is

an analytic solution of (3.1) that satisfies ρ[2,2]( f ,z0) = ρlog(A0,z0), then

max
{

ρ[2,2](F,z0),ρ[2,2](A j,z0) : j = 0,1, ...,k−1
}
< ρ[2,2]( f ,z0).

So, the assumption of Lemma 3.10 also holds and therefore λ [2,2]( f ,z0) = λ[2,2]( f ,z0) =

ρ[2,2]( f ,z0) = ρlog(A0,z0).

Proof of Theorem 3.15

Proof. By using similar discussions as in the proof of Theorem 3.14, we obtain the assertions of

Theorem 3.15.
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3.5 Examples

Here we give some examples to illustrate the sharpness of some assertions in our theorems.

Example 3.1. For Theorem 3.7, we consider the analytic function in C\{z0}

f (z) =
1

(z− z0)2n+1 , n ∈ N, (3.75)

which is a solution to the following homogeneous complex differential equation

f ′′′(z)+A2(z) f ′′(z)+A1(z) f ′(z)+A0(z) f (z) = 0, (3.76)

where A0(z) =
(2n+1)(2n+2)(2n+3)

(z−z0)3 − (2n+1)(2n+2)(3−7i)
(z−z0)2 + (2n+1)(3+7i)

(z−z0)
, A1(z) = 3+7i and A2(z) = 3−7i.

The coefficients A j(z), j = 0,1,2 satisfy the conditions of Theorem 3.7, such that

max{ρlog(A1),ρlog(A2)}= 0 < ρlog(A0) = 1.

We see that f satisfies

ρlog(A0)−1 = ρ[2,2]( f ) = 0 ≤ ρlog(A0).

Example 3.2. For Theorem 3.8, we consider the analytic function in C\{z0}

f (z) = e
1

(z−z0)
2n+1 , n ∈ N. (3.77)

Note that f is a solution to the homogeneous complex differential equation (3.76), for

A0(z) =
4(n+1)(2n+1)2

(z− z0)4n+5 ,A1(z) =−(2n+2)(2n+3)
(z− z0)2

and A2(z) = 2n+1
(z−z0)2n+2 . The coefficients A j(z), j = 0,1,2 satisfy the conditions of Theorem 3.8, such

that

max{ρlog(A1),ρlog(A2)}= ρlog(A0) = 1

and

max{τlog(A1),τlog(A2)}= 2n+2 < τlog(A0) = 4n+5.

We remark that f satisfies

ρ[2,2]( f ) = 1 = ρlog(A0).

Example 3.3. For Theorem 3.15, the function f in (3.75) is an analytic solution in C\{z0} to the

following non-homogeneous linear differential equation

f ′′′(z)+A2(z) f ′′(z)+A1(z) f ′(z)+A0(z) f (z) = F(z), (3.78)

where A0(z) =
2n(2n+2)(2n+3)

(z−z0)3 , A1(z) =
√

2 (2n+2)
(z−z0)

, A2(z) =
√

2 and F(z) = 2n(2n+2)(2n+3)
(z−z0)3 . As we see

A j(z), i = 0,1,2 and F(z) satisfy the conditions of Theorem 3.15 in case (ii), such that

max{ρlog(A1),ρlog(A2)}= ρlog(A0) = 1,
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max{τlog(A1),τlog(A2)}= 1 < τlog(A0) = 3

and

ρ[2,2](F) = 0 < ρlog(A0) = 1.

Then f satisfies

ρ[2,2]( f ) = 0 < ρlog(A0) = 1.



Chapter 4

Linear differential equations with zero order
analytic or meromorphic coefficients in
C−{z0} part 2

4.1 Introduction

In this chapter, we will extend the investigations of the previous chapters to the case when arbitrary

coefficient is dominating the other coefficients in the differential equations (2.1) and (3.1). This case

was firstly considered by Long and Zeng in [55], such that they assumed the dominance of the arbitrary

coefficient is in term of the [p,q]-order, and they obtained the following result

Theorem 4.1 ( [55]). Let A0(z), ...,Ak−1(z) be analytic functions in C−{z0} . If there exists an integer

s(0 ≤ s ≤ k−1) such that Al(z) satisfies max
{

ρ[p,q](A j,z0) : j ̸= l
}
< ρ[p,q](Al,z0)<+∞. Then, every

analytic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρ[p+1,q]( f ,z0)≤ ρ[p,q](Al,z0)≤ ρ[p,q]( f ,z0).

As we have shown before the effectiveness of the logarithmic order and the logarithmic lower order

in estimating the growth for the case when the coefficients of (2.1) and (3.1) are zero order analytic or

meromorphic functions in C−{z0}, here we also make use of them to extend the above theorem. Our

results are on the logarithmic order, the logarithmic lower order and the exponent of convergence of

the solutions, where the dominance of the arbitrary coefficient Al(z) is assumed in five different terms:

mz0(r,Al),ρlog(Al,z0),µlog(Al,z0),τlog(Al,z0) and τ log(Al,z0). These results are also generalizations

to previous results obtained in the precedent chapter, and they are also C−{z0} counterparts to some

of those obtained in (see [15, 29]).
44
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4.2 Main Results

Theorem 4.2 ( [26]). Let A0(z), ...,Ak−1(z) be meromorphic functions in C−{z0} of finite logarithmic

order. If there exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies

limsup
r−→0

∑ j ̸=l mz0(r,A j)

mz0(r,Al)
< 1 and liminf

r−→0

mz0(r,Al)

Tz0(r,Al)
= δ > 0.

Then, every meromorphic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρlog(Al,z0)−1 ≤ ρlog( f ,z0)

and ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1.

Theorem 4.3 ( [26]). Let A0(z), ...,Ak−1(z) be meromorphic functions in C−{z0} of finite logarithmic

order. If there exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies max
{

ρlog(A j,z0) : j ̸= l
}
≤

ρlog(Al,z0),

liminf
r−→0

mz0(r,Al)

Tz0(r,Al)
= δ > 0

and

∑
ρlog(A j,z0)=ρlog(Al ,z0)≥1, j ̸=l

τlog(A j,z0)< δτlog(Al,z0)<+∞.

Then, every meromorphic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρlog(Al,z0)−1 ≤ ρlog( f ,z0)

and ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1.

Theorem 4.4 ( [26]). Let A0(z), ...,Ak−1(z) be meromorphic functions in C−{z0} of finite logarithmic

order. If there exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies λlog(
1
Al
,z0)+1 < ρlog(Al,z0),

max
{

ρlog(A j,z0) : j ̸= l
}
≤ ρlog(Al,z0) and

∑
ρlog(A j,z0)=ρlog(Al ,z0), j ̸=l

τlog(A j,z0)< τlog(Al,z0)<+∞.

Then, every meromorphic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρlog(Al,z0)≤ ρlog( f ,z0).

Theorem 4.5. Let A0(z), ...Ak−1(z) be meromorphic functions in C\{z0} of finite logarithmic order.

If there exists an integer l (0 ≤ l ≤ k − 1) such that Al(z) satisfies liminfr−→0
mz0(r,Al)

Tz0(r,Al)
= δ > 0,

max
{

ρlog(A j,z0) : j ̸= l
}
≤ µlog(Al,z0) and

∑
ρlog(A j,z0)=µlog(Al ,z0), j ̸=l

τlog(A j,z0)< δτ log(Al,z0).

Then, every meromorphic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies 0 ≤ µlog(Al,z0)− 1 ≤
µlog( f ,z0) with 1 < µlog(Al,z0)≤ µlog( f ,z0).

Remark 4.1. The conditions max
{

ρlog(A j,z0) : j ̸= l
}
≤ µlog(Al,z0) = µ <+∞ and

∑
ρlog(A j,z0)=ρlog(Al ,z0), j ̸=l

τlog(A j,z0)< δτ log(Al,z0)

in Theorem 4.5 can be replaced by limsupr−→0
∑ j ̸=l mz0(r,A j)

mz0(r,Al)
< 1 or we replace the condition

liminf
r−→0

mz0(r,Al)

Tz0(r,Al)
= δ > 0

by λlog(
1
Al
,z0)+1 < µlog(Al,z0), which clearly includes the assumption that µlog(Al,z0)> 1.
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Theorem 4.6 ( [26]). Let A0(z), ...,Ak−1(z) be analytic functions in C−{z0} of finite logarithmic

order. If there exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies max
{

ρlog(A j,z0) : j ̸= l
}
≤

ρlog(Al,z0) = ρ and

limsup
r−→0

∑ j ̸=l mz0(r,A j)

mz0(r,Al)
< 1.

Then, every analytic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρ[2,2]( f ,z0)−1 ≤ ρlog(Al,z0)−
1≤ ρlog( f ,z0). Furthermore, if ρlog(Al,z0)> 1, then f (z) satisfies ρ[2,2]( f ,z0)≤ ρlog(Al,z0)≤ ρlog( f ,z0).

Theorem 4.7 ( [26]). Let A0(z), ...,Ak−1(z) be analytic functions in C−{z0} of finite logarithmic

order. If there exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies max
{

ρlog(A j,z0) : j ̸= l
}
≤

ρlog(Al,z0) = ρ and

∑
ρlog(A j,z0)=ρlog(Al ,z0), j ̸=l

τlog(A j,z0)< τlog(Al,z0)<+∞.

Then, every analytic solution f (z)(̸≡ 0) in C−{z0} of (2.1) satisfies ρ[2,2]( f ,z0)−1 ≤ ρlog(Al,z0)−
1≤ ρlog( f ,z0). Furthermore, if ρlog(Al,z0)> 1, then f (z) satisfies ρ[2,2]( f ,z0)≤ ρlog(Al,z0)≤ ρlog( f ,z0).

Theorem 4.8. Let A0(z), ...Ak−1(z) be analytic functions in C\{z0} of finite logarithmic order. If there

exists an integer l (0 ≤ l ≤ k−1) such that Al(z) satisfies max
{

ρlog(A j,z0) : j ̸= l
}
≤ µlog(Al,z0) and

∑
ρlog(A j,z0)=µlog(Al ,z0), j ̸=l

τlog(A j,z0)< τ log(Al,z0).

Then, every meromorphic solution f (z)(̸≡ 0) in C\{z0} of (2.1) satisfies µ[2,2]( f ,z0)−1≤ µlog(Al,z0)−
1 ≤ µlog( f ,z0). Further, if µlog(Al,z0)> 1 then, µ[2,2]( f ,z0)≤ µlog(Al,z0)≤ µlog( f ,z0).

Remark 4.2. We can replace the condition

∑
ρlog(A j,z0)=µlog(Al ,z0), j ̸=l

τlog(A j,z0)< τ log(Al,z0)

in Theorem 4.8 by limsupr−→0
∑ j ̸=l mz0(r,A j)

mz0(r,Al)
< 1.

Theorem 4.9 ( [26]). Let A0(z), ...,Ak−1(z) satisfy the hypotheses of Theorem 4.7 and let F(z)(̸≡ 0)

be analytic function in C−{z0}

i) If ρlog(Al,z0)≤ ρ[2,2](F,z0)<+∞, then every analytic solution f (z) in C−{z0} of (3.1) satisfies

ρ[2,2]( f ,z0) = ρ[2,2](F,z0).

ii) If ρlog(Al,z0) > ρ[2,2](F,z0), then every analytic solution f (z) in C−{z0} of (3.1) satisfies

ρ[2,2]( f ,z0)≤ ρlog(Al,z0) and λ [2,2]( f ,z0) = λ[2,2]( f ,z0) = ρ[2,2]( f ,z0) holds for every solution

satisfies ρ[2,2]( f ,z0) = ρlog(Al,z0).
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4.3 Lemmas

Lemma 4.1. Let f be a non-constant meromorphic function in C\{z0} with ρlog( f ) = ρ . Then there

exists a subset E1 of (0,1) that has infinite logarithmic measure such that for all |z− z0|= r ∈ E1, we

have

ρ = lim
r−→0

logTz0(r, f )
log log 1

r

and for any given ε > 0

Tz0(r, f )>
(

log
1
r

)ρ−ε

.

Proof. Replacing logMz0(r, f ) by Tz0(r, f ) in the proof of Lemma 3.1, we get the proof of Lemma

4.1.

Lemma 4.2. Let f1, f2 be two meromorphic functions in C−{z0} satisfying ρ1 = ρlog( f1,z0) >

ρlog( f2,z0) = ρ2. Then there exists a set E2 ⊂ (0,1) of infinite logarithmic measure such that for all

|z− z0|= r ∈ E2, we have

lim
r−→0

Tz0(r, f2)

Tz0(r, f1)
= 0.

Proof. By the definition of the logarithmic order, for any given 0 < ε < ρ1−ρ2
2 , there exists r2 ∈ (0,1)

such that for all |z− z0|= r ∈ (0,r2), we obtain

Tz0(r, f2)≤
(

log
1
r

)ρ2+ε

. (4.1)

By Lemma 4.1, there exists a set E1 ⊂ (0,1) of infinite logarithmic measure such that, for the above ε

and for all |z− z0|= r ∈ E1, we have

Tz0(r, f1)≥
(

log
1
r

)ρ1−ε

. (4.2)

By (4.1) and (4.2), for the above ε and for all |z− z0|= r ∈ E2 = E1 ∩ (0,r2), we get

0 ≤ Tz0(r, f2)

Tz0(r, f1)
≤

(
log 1

r

)ρ2+ε

(
log 1

r

)ρ1−ε
=

1(
log 1

r

)ρ1−ρ2−2ε
−→ 0, as r −→ 0.

Lemma 4.3. Let f be a non-constant meromorphic function in C−{z0} with finite logarithmic order

1 ≤ ρlog( f ,z0) = ρ <+∞ and finite logarithmic type 0 < τlog( f ,z0)<+∞. Then there exists a set E3

of (0,1) that has infinite logarithmic measure such that for all |z− z0|= r ∈ E3, we have

lim
r−→0

Tz0(r, f )
(log 1

r )
ρ
= τlog( f ,z0).

Proof. The proof can easily obtained by replacing logMz0(r, f ) by Tz0(r, f ) in the proof of Lemma

3.3.
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4.4 Proofs of the theorems

Proof of Theorem 4.2

Proof. Let f (̸≡ 0) be a meromorphic solution of (2.1) in C−{z0}. If ρlog( f ,z0) = ∞, then the result

is trivial . So, we suppose that ρlog( f ,z0)< ∞. By (2.1), we have

−Al(z) =
f (k)(z)
f (l)(z)

+Ak−1(z)
f (k−1)(z)

f (l)(z)
+ · · ·+Al+1(z)

f (l+1)(z)
f (l)(z)

+Al−1(z)
f (l−1)(z)
f (l)(z)

+ · · ·+A0(z)
f (z)

f (l)(z)
.

(4.3)

It follows that

mz0(r,Al(z))≤
k

∑
j=0, j ̸=l

mz0

(
r,

f ( j)(z)
f (l)(z)

)
+

k−1

∑
j=0, j ̸=l

mz0

(
r,A j(z)

)
+O(1). (4.4)

By Lemma 2.9, for a constant r0 ∈ (0,1), there exists a set F4 ⊂ (0,r0] of finite logarithmic measure

such that for all |z− z0|= r ∈ (0,r0]\F4 and for any given ε > 0, we have

k

∑
j=0, j ̸=l

mz0

(
r,

f ( j)(z)
f (l)(z)

)
≤ O

(
Tz0(r, f )+ log

1
r

)
. (4.5)

Suppose that limsupr−→0
∑

k−1
j=0, j ̸=l mz0(r,A j)

mz0(r,Al)
< σ < 1. Then for r → 0, we get

k−1

∑
j=0, j ̸=l

mz0(r,A j)< σmz0(r,Al). (4.6)

Substituting (4.5) and (4.6) into (4.4), for all |z− z0|= r ∈ (0,r0]\F4 and r → 0, we obtain

(1−σ)mz0(r,Al)≤ O
(

Tz0(r, f )+ log
1
r

)
. (4.7)

By the assumption liminfr−→0
mz0(r,Al)

Tz0(r,Al)
= δ > 0, there exists r1 ∈ (0,1) such that, for all |z− z0|= r ∈

(0,r1), we have

mz0(r,Al)≥
δ

2
Tz0(r,Al). (4.8)

By Lemma 4.1, there exists a set E1 ⊂ (0,1) of infinite logarithmic measure such that for any given

ε > 0 and for all |z− z0|= r ∈ E1, we have

Tz0(r,Al)≥
(

log
1
r

)ρlog(Al ,z0)−ε

. (4.9)

Combining (4.7), (4.8) and (4.9), for any given ε > 0 and for all |z−z0|= r ∈ E1∩(0,r0]∩(0,r1)\F4,

we get
δ

2
(
1−σ

)(
log

1
r

)ρlog(Al ,z0)−ε

≤ O
(

Tz0(r, f )+ log
1
r

)
. (4.10)

This implies that ρlog(Al,z0)− 1− ε ≤ ρlog( f ,z0) and ρlog(Al,z0)− ε ≤ ρlog( f ,z0) if ρlog(Al,z0) >

1. Since ε > 0 is arbitrary, we obtain ρlog(Al,z0)− 1 ≤ ρlog( f ,z0) and ρlog(Al,z0) ≤ ρlog( f ,z0) if

ρlog(Al,z0)> 1.
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Proof of Theorem 4.3

Proof. Let f (̸≡ 0) be a meromorphic solution of (2.1) in C−{z0}. First, we suppose that max
{

ρlog(A j,z0) :

j ̸= l
}
< ρlog(Al,z0) = ρ . Then, as in the proof of Theorem 4.2, by substituting (4.5) and (4.8) into

(4.4), for all |z− z0|= r ∈ (0,r0]∩ (0,r1)\F4, we obtain

δ

2
Tz0(r,Al)≤ O

(
Tz0(r, f )+ log

1
r

)
+

k−1

∑
j=0, j ̸=l

Tz0(r,A j). (4.11)

By Lemma 4.2, there exists a set E2 ⊂ (0,1) of infinite logarithmic measure such that for all |z− z0|=
r ∈ E2, we have

max
{

Tz0(r,A j)

Tz0(r,Al)
, j ̸= l

}
−→ 0, as r −→ 0. (4.12)

Then, by (4.11) and (4.12) for all r ∈ E2 ∩ (0,r0]∩ (0,r1)\F4 and r −→ 0, we get(
δ

2
−o(1)

)
Tz0(r,Al)≤ O

(
Tz0(r, f )+ log

1
r

)
. (4.13)

From (4.13), we deduce that ρlog(Al,z0)−1 ≤ ρlog( f ,z0) and ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)>

1. Now we suppose that max
{

ρlog(A j,z0) : j ̸= l
}
= ρlog(Al,z0) = ρ and

τ1 = ∑
ρlog(A j,z0)=ρlog(Al ,z0)≥1, j ̸=l

τlog(A j,z0)< δτlog(Al,z0) = δτ.

So, there exists a set J1 ⊆{0,1, ...,k−1}\{l} such that for j ∈ J1, we have ρlog(A j,z0)= ρlog(Al,z0)=

ρ with τ1 = ∑ j∈J1 τlog(A j,z0)< τlog(Al,z0) = τ and for j ∈ J2 = {0,1, ...l−1, l+1, ...,k−1}\J1, we

have ρlog(A j,z0)< ρlog(Al,z0) = ρ. Then, there exists r3 ∈ (0,1), such that for all |z− z0|= r ∈ (0,r3)

and for any given ε
(
0 < (τ + k)ε < δτ − τ1

)
, we obtain

Tz0(r,A j)≤
(
τlog(A j,z0)+ ε

)(
log

1
r

)ρlog(A j,z0)

=
(
τlog(A j,z0)+ ε

)(
log

1
r

)ρlog(Al ,z0)

, j ∈ J1

(4.14)

and

Tz0(r,A j)≤
(

log
1
r

)ρlog(A j,z0)+ε

≤
(

log
1
r

)ρ0

, j ∈ J2, (4.15)

where max
{

ρlog(A j,z0) : j ∈ J2
}
< ρ0 < ρ. By the assumption liminfr−→0

mz0(r,Al)

Tz0(r,Al)
= δ > 0 and

Lemma 4.3, there exists a set E3 ⊂ (0,1) of infinite logarithmic measure such that for the above ε and

for all |z− z0|= r ∈ E3, we have

mz0(r,Al)≥
(
δ − ε

)
Tz0(r,Al)≥

(
δ − ε

)(
τ − ε

)(
log

1
r

)ρlog(Al ,z0)

≥
(
δτ − (τ +1)ε

)(
log

1
r

)ρlog(Al ,z0)

.

(4.16)
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By substituting (4.5) and (4.14)-(4.16) into (4.4), for the above ε and for all |z− z0|= r ∈ E3∩ (0,r0]∩
(0,r3)\F4, we obtain

(
δτ − (τ +1)ε

)(
log

1
r

)ρlog(Al ,z0)

≤O
(

Tz0(r, f )+ log
1
r

)
+

k−1

∑
j=0, j ̸=l

Tz0(r,A j)

≤O
(

Tz0(r, f )+ log
1
r

)
+ ∑

j∈J1

(
τlog(A j,z0)+ ε

)(
log

1
r

)ρ

+ ∑
j∈J2

(
log

1
r

)ρ0

≤O
(

Tz0(r, f )+ log
1
r

)
+
(
τ1 +(k−1)ε

)(
log

1
r

)ρ

+(k−1)
(

log
1
r

)ρ0

.

(4.17)

It follows that (
1−o(1)

)(
δτ − τ1 − (τ + k)ε

)(
log

1
r

)ρ

≤ O
(

Tz0(r, f )+ log
1
r

)
, (4.18)

which implies that, ρlog(Al,z0)− 1 ≤ ρlog( f ,z0) and 1 < ρlog(Al,z0) ≤ ρlog( f ,z0) if ρlog(Al,z0) >

1.

Proof of Theorem 4.4

Proof. By (4.4) and (4.5), for all r ∈ (0,r0]\F4, we have

Tz0

(
r,Al(z)

)
=mz0

(
r,Al(z)

)
+Nz0

(
r,Al(z)

)
≤

k

∑
j=0, j ̸=l

mz0

(
r,

f ( j)(z)
f (l)(z)

)
+

k−1

∑
j=0, j ̸=l

mz0

(
r,A j(z)

)
+Nz0

(
r,Al(z)

)
+O(1)

≤O
(

Tz0(r, f )+ log
1
r

)
+

k−1

∑
j=0, j ̸=l

Tz0

(
r,A j(z)

)
+Nz0

(
r,Al(z)

)
.

(4.19)

If ρ1 = max
{

ρlog(A j,z0) : j ̸= l
}
< ρlog(Al,z0) = ρ, then there exists r4 ∈ (0,1) such that for any

given ε (0 < 2ε < ρ −ρ1) and for all |z− z0|= r ∈ (0,r4), we obtain

Tz0(r,A j)≤
(

log
1
r

)ρlog(A j,z0)+ε

≤
(

log
1
r

)ρ1+ε

, j = 0, ...,k−1, j ̸= l. (4.20)

By Lemma 4.1, there exists a set E1 ⊂ (0,1) of infinite logarithmic measure such that for the above ε

and for all |z− z0|= r ∈ E1, the assumption (4.9) holds. By the definition of λlog
( 1

Al
,z0
)
= λ , there

exists r5 ∈ (0,1) such that for any given ε (0 < 2ε < ρ −λ −1) and for all |z− z0|= r ∈ (0,r5), we

get

Nz0(r,Al)≤
(

log
1
r

)λlog

(
1

Al
,z0

)
+1+ε

. (4.21)

By substituting (4.9), (4.20) and (4.21) into (4.19), for sufficiently small ε satisfying 0 < 2ε <

min{ρ −ρ1,ρ −λ −1} and for all r ∈ E1 ∩ (0,r0]∩ (0,r4)∩ (0,r5)\F4, we have(
log

1
r

)ρ−ε

≤ O
(

Tz0(r, f )+ log
1
r

)
+(k−1)

(
log

1
r

)ρ1+ε

+

(
log

1
r

)λ+1+ε

, (4.22)
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then (
1−o(1)

)(
log

1
r

)ρ−ε

≤ O
(

Tz0(r, f )+ log
1
r

)
. (4.23)

Thus, 1 < ρ − ε ≤ ρlog( f ,z0). Since ε > 0 is arbitrary, we obtain 1 < ρlog(Al,z0)≤ ρlog( f ,z0). Now,

if max
{

ρlog(A j,z0) : j ̸= l
}
= ρlog(Al,z0) = ρ and

τ1 = ∑
ρlog(A j,z0)=ρlog(Al ,z0)≥1, j ̸=l

τlog(A j,z0)< τlog(Al,z0) = τ,

then as in the proof of Theorem 4.3, we assume that there exists a set J1 ⊆ {0,1, ...,k−1}\{l} such

that for j ∈ J1, we have ρlog(A j,z0) = ρlog(Al,z0) = ρ with τ1 = ∑ρlog(A j,z0)=ρlog(Al ,z0), j ̸=l τlog(A j,z0)<

τlog(Al,z0) = τ and for j ∈ J2 = {0,1, ...l−1, l+1, ...,k−1}\J1, we have ρlog(A j,z0)< ρlog(Al,z0) =

ρ. Then, there exists a r3 ∈ (0,1), such that for any given ε
(
0 < ε < τ−τ1

k

)
and for all |z− z0|= r ∈

(0,r3), the assumptions (4.14) and (4.15) hold. By Lemma 4.3, there exists a set E3 ⊂ (0,1) of infinite

logarithmic measure such that for the above ε and for all |z− z0|= r ∈ E3, we obtain

Tz0(r,Al)≥
(
τ − ε

)(
log

1
r

)ρ

. (4.24)

By substituting (4.14), (4.15) and (4.24) into (4.19), for sufficiently small ε satisfying 0 < ε <

min
{

ρ−λ−1
2 , τ−τ1

k

}
and for all r ∈ E3 ∩ (0,r0]∩ (0,r3)∩ (0,r5)\F4, we get

(
τ − ε

)(
log

1
r

)ρ

≤O
(

Tz0(r, f )+ log
1
r

)
+ ∑

j∈J1

(
τlog(A j,z0)+ ε

)(
log

1
r

)ρ

+ ∑
j∈J2

(
log

1
r

)ρ0

+

(
log

1
r

)λ+1+ε

≤O
(

Tz0(r, f )+ log
1
r

)
+
(
τ1 +(k−1)ε

)(
log

1
r

)ρ

+(k−1)
(

log
1
r

)ρ0

+

(
log

1
r

)λ+1+ε

.

(4.25)

So (
1−o(1)

)(
τ − τ1 − kε

)(
log

1
r

)ρ

≤ O
(

Tz0(r, f )+ log
1
r

)
, (4.26)

which implies that 1 < ρlog(Al,z0)≤ ρlog( f ,z0).

Proof of Theorem 4.5

Proof. Let f be a meromorphic solution in C\{z0} of (2.1) with µlog( f ,z0)< ∞, otherwise, the result

is trivial. First, if ρ1 = max
{

ρlog(A j,z0) : j = 0, ...,k− 1, j ̸= l
}
< µlog(Al,z0) = µ. Then for any

given 0 < 2ε < µ −ρ1, there exists r4 ∈ (0,1) such that for all |z0 − z| = r ∈ (0,r4), (4.20) holds.

By liminfr−→0
mz0(r,Al)

Tz0(r,Al)
= δ > 0 and the definition of µlog(Al,z0) = µ , for the above ε, there exists

r6 ∈ (0,1) such that for all |z0 − z|= r ∈ (0,r6), we have

mz0(r,Al)≥
δ

2
Tz0(r,Al)≥

δ

2

(
log

1
r

)µlog(Al ,z0)− ε

2

≥
(

log
1
r

)µlog(Al ,z0)−ε

. (4.27)
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Substituting (4.5), (4.20) and (4.26) into (4.4), for the above ε and for all |z0−z|= r ∈ (0,r0]∩(0,r4)∩
(0,r6)\F4, we get (

log
1
r

)µ−ε

≤O
(

Tz0(r, f )+ log
1
r

)
+

k−1

∑
j=0, j ̸=s

Tz0(r,A j)

≤O
(

Tz0(r, f )+ log
1
r

)
+(k−1)

(
log

1
r

)ρ1+ε

.

(4.28)

Thus, (
1−o(1)

)(
log

1
r

)µ−ε

≤ O
(

Tz0(r, f )+ log
1
r

)
. (4.29)

It follows that, 0 ≤ µ −1− ε ≤ µlog( f ,z0). Since ε > 0 is arbitrary, we obtain 0 ≤ µlog(Al,z0)−1 ≤
µlog( f ,z0). Now if max

{
ρlog(A j,z0) : j = 0, ...,k−1, j ̸= l

}
= µlog(Al,z0) = µ and

τ2 =∑ρlog(A j,z0)=µlog(Al ,z0), j ̸=l τlog(A j,z0)< δτ log(Al,z0)= δτ. Then, there exists a set J1 ⊆{0,1, ...,k−
1} \ {l} such that for j ∈ J1, we have ρlog(A j,z0) = µlog(Al,z0) = µ with τ2 = ∑ j∈J1 τlog(A j,z0) <

τ log(Al,z0) = τ and for j ∈ J2 = {0,1, ...l−1, l+1, ...,k−1}\J1, we have ρlog(A j,z0)< µlog(Al,z0) =

µ. Hence, for any given ε
(
0 < (τ + k)ε < δτ − τ2

)
, there exists r7 ∈ (0,1), such that for all

|z0 − z|= r ∈ (0,r7), we obtain

Tz0(r,A j)≤
(
τlog(A j,z0)+ ε

)(
log

1
r

)ρlog(A j,z0)

=
(
τlog(A j,z0)+ ε

)(
log

1
r

)µlog(Al ,z0)

, j ∈ J1

(4.30)

and

Tz0(r,A j)≤
(

log
1
r

)ρlog(A j,z0)+ε

≤
(

log
1
r

)ρ0

, j ∈ J2, (4.31)

where max
{

ρlog(A j,z0) : j ∈ J2
}
< ρ0 < µ. By liminfr−→0

mz0(r,Al)

Tz0(r,Al)
= δ > 0 and the definition of

τ log(Al,z0) = τ, for the above ε > 0, there exists r8 ∈ (0,1) such that for all |z0 − z|= r ∈ (0,r8), we

have

mz0(r,Al)≥
(
δ − ε

)
Tz0(r,Al)≥

(
δ − ε

)(
τ − ε

)(
log

1
r

)µlog(Al ,z0)

≥
(
δτ − (τ +1)ε

)(
log

1
r

)µlog(Al ,z0)

.

(4.32)

By substituting (4.5), (4.30), (4.31) and (4.32) into (4.4), for the above ε and for all |z0 − z| = r ∈
(0,r0]∩ (0,r7)∩ (0,r8)\F4, we obtain

(
δτ − (τ +1)ε

)(
log

1
r

)µ

≤O
(

Tz0(r, f )+ log
1
r

)
+

k−1

∑
j=0, j ̸=l

Tz0(r,A j)

≤O
(

Tz0(r, f )+ log
1
r

)
+ ∑

j∈J1

(
τlog(A j,z0)+ ε

)(
log

1
r

)µ

+ ∑
j∈J2

(
log

1
r

)ρ0

≤O
(

Tz0(r, f )+ log
1
r

)
+
(
τ2 +(k−1)ε

)(
log

1
r

)µ

+(k−1)
(

log
1
r

)ρ0

,

(4.33)
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that is (
1−o(1)

)(
δτ − τ2 − (τ + k)ε

)(
log

1
r

)µ

≤ O
(

Tz0(r, f )+ log
1
r

)
. (4.34)

This implies that 0 ≤ µlog(Al,z0)−1 ≤ µlog( f ,z0) and 1 < µlog(Al,z0)≤ µ[log( f ,z0).

Proof of Theorem 4.6

Proof. We assume that f (̸≡ 0) is an analytic solution of (2.1) in C−{z0}. By Theorem 4.2, we have

0 ≤ ρlog(Al,z0)−1 ≤ ρlog( f ,z0) and ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1. On the other hand, by

Lemma 3.2, we have ρ[2,2]( f ,z0)≤ ρlog(Al,z0). Hence, ρ[2,2]( f ,z0)−1 ≤ ρlog(Al,z0)−1 ≤ ρlog( f ,z0)

and ρ[2,2]( f ,z0)≤ ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1.

Proof of Theorem 4.7

Proof. We assume that f (̸≡ 0) is an analytic solution of (2.1) in C−{z0}. By Theorem 4.3, we

get 0 ≤ ρlog(Al,z0)−1 ≤ ρlog( f ,z0) and ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1. Then, by using

Lemma 3.2, we conclude that, ρ[2,2]( f ,z0)− 1 ≤ ρlog(Al,z0)− 1 ≤ ρlog( f ,z0) and ρ[2,2]( f ,z0) ≤
ρlog(Al,z0)≤ ρlog( f ,z0) if ρlog(Al,z0)> 1.

Proof of Theorem 4.8

Proof. By Theorem 4.5 and Lemma 3.6, we get the assertions of Theorem 4.8.

Proof of Theorem 4.9

Proof. Here we use a similar discussion as in the proof of Theorem 3.14. We suppose f (z) is an

analytic solution in C−{z0} of (3.1), then f can be represented in the form (3.69). Hence, the

assumptions (3.70)-(3.72) hold. By Theorem 4.7 and the fact that G j( f1, f2, ..., fk) and W ( f1, f2, ..., fk)

are both differential polynomial of f1, f2, ..., fk and their derivatives with constant coefficients, we have

max
{

ρ[2,2](G j( f1, f2, ..., fk),z0),ρ[2,2](W ( f1, f2, ..., fk),z0)
}
≤ ρ[2,2]( f j,z0)≤ ρlog(Al,z0). (4.35)

By (3.69), (3.72) and (4.35), for j = 1, ...,k, we get

ρ[2,2]( f ,z0)≤ max
{

ρ[2,2]( f j,z0),ρ[2,2](B j,z0)
}

≤ max
{

ρ[2,2](F,z0),ρlog(Al,z0)
}
.

(4.36)

i) If ρ[2,2](F,z0)≥ ρlog(Al,z0), then by (3.1) and (4.36), we deduce that ρ[2,2]( f ,z0) = ρ[2,2](F,z0).

ii) If ρ[2,2](F,z0) < ρlog(Al,z0), then by (4.36) , we obtain ρ[2,2]( f ,z0) ≤ ρlog(Al,z0). Further,

assume that a solution f of (3.1) satisfies ρ[2,2]( f ,z0) = ρlog(Al,z0). Then, there holds

max
{

ρ[2,2](F,z0),ρ[2,2](A j,z0) : ( j = 0, ...,k−1)
}
< ρ[2,2]( f ,z0).

By Lemma 3.10, we conclude that λ [2,2]( f ,z0) = λ[2,2]( f ,z0) = ρ[2,2]( f ,z0) = ρlog(Al,z0).



Chapter 5

Linear difference equations with zero order
meromorphic coefficients

5.1 Introduction

This chapter is devoted to study the growth of the meromorphic solutions of homogeneous and

non-homogeneous linear difference equations

Ak(z) f (z+ ck)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = 0, (5.1)

Ak(z) f (z+ ck)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = F(z), (5.2)

where A0(z), . . . ,Ak(z) and F(z) are meromorphic functions of finite logarithmic order, ci(i= 1, . . . ,k,k∈
N) are distinct non-zero complex constants. In [81], Zhou and Zheng considered the growth of the

difference equation (5.2) , and proved the following result.

Theorem 5.1 ( [81]). Let A j(z)( j = 0,1, ...,k) and F(z) be meromorphic functions. Suppose there

exists an integer l(0 ≤ l ≤ k) such that Al(z) satisfies

λ (
1
Al
)< ρ(Al)< ∞,

max{ρ(A j) : j = 0,1...k, j ̸= l} ≤ ρ(Al),

∑
ρ(A j)=ρ(Al), j ̸=l

τ(A j)< τ(Al)< ∞.

1. If ρ(F)< ρ(Al), or ρ(F) = ρ(Al) and ∑ρ(A j)=ρ(Al), j ̸=l τ(A j)+τ(F)< τ(Al), or ρ(F) = ρ(Al)

and ∑ρ(A j)=ρ(Al),
τ(A j) < τ(F), then every meromorphic solution f (z)(̸≡ 0) of (5.2) satisfies

ρ( f )≥ ρ(Al) .

2. If ρ(F)> ρ(Al), then every meromorphic solution f (z) of (5.2) satisfies ρ( f )≥ ρ(F) .

There are many other results have been obtained by many different mathematicians on studying the

growth of solutions of the linear difference equations, where their coefficients are entire or meromorphic
54
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functions (see e.g. [5,7,10,48,54,56,80] ). However, a few of them concentrated on the case when the

coefficients are of zero order entire or meromorphic functions. In [4], Belaı̈di considered this case for

the special homogeneous case of (5.1)

Ak(z) f (z+ k)+ · · ·+A1(z) f (z+1)+A0(z) f (z) = 0, (5.3)

where Ak(z), . . . ,A0(z) are entire or meromorphic functions of finite logarithmic order, and obtained

the following results on the logarithmic order and the logarithmic lower order of solutions.

Theorem 5.2 ( [4]). Let A j(z)( j = 0,1, . . . ,k) be meromorphic functions. Suppose there exists an

integer l(0 ≤ l ≤ k) such that Al(z) satisfies

λlog(
1
Al
)< ρlog(Al)< ∞,

max{ρlog(A j) : j = 0,1, . . . ,k, j ̸= l} ≤ ρlog(Al),

∑
ρlog(A j)=ρlog(Al), j ̸=l

τlog(A j)< τlog(Al)< ∞.

If f is a meromorphic solution of (5.3), then ρlog( f )≥ ρlog(Al)+1 .

Theorem 5.3 ( [4]). Let A j(z)( j = 0,1, . . . ,k) be entire functions. Suppose there exists an integer

l(0 ≤ l ≤ k) such that Al(z) satisfies

max{ρlog(A j) : j = 0,1, . . . ,k, j ̸= l} ≤ µlog(Al),

max{τlog(A j) : ρlog(A j) = µlog(Al) : j = 0,1, . . . ,k, j ̸= l}< τ log(Al)< ∞.

Then every meromorphic solution f (z) ̸≡ 0 of (5.3) satisfies µlog( f )≥ µlog(Al)+1 .

The main aim of this chapter, by using the logarithmic lower order, we extend Theorem 5.1 to the

case when the coefficients are zero order meromorphic functions and thus we generalize Theorem 5.2

and Theorem 5.3 to the non-homogeneous case.

5.2 Main Results

Theorem 5.4 ( [24]). Let A j(z)( j = 0,1, . . . ,k) be meromorphic functions. Suppose there exists an

integer l(0 ≤ l ≤ k) such that Al(z) satisfies δ (∞,Al)> 0 and

limsup
r−→+∞

∑
k
j=0, j ̸=l m(r,A j)

m(r,Al)
< 1.

Then every meromorphic solution f (z)(̸≡ 0) of (5.1) satisfies µlog( f )≥ µlog(Al)+1.

Theorem 5.5 ( [24]). Let A j(z)( j = 0,1, . . . ,k) be meromorphic functions. Suppose there exists an

integer l(0 ≤ l ≤ k) such that Al(z) satisfies δ (∞,Al)> 0 and max{ρlog(A j) : j = 0,1, . . . ,k, j ̸= l}<
µlog(Al) ≤ ρlog(Al) < ∞. Then every meromorphic solution f (z)(̸≡ 0) of (5.1) satisfies µlog( f ) ≥
µlog(Al)+1.
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Theorem 5.6 ( [24]). Let A j(z)( j = 0,1, . . . ,k) and F(z) be meromorphic functions. Suppose there ex-

ists an integer l(0≤ l ≤ k) such that Al(z) satisfies δ (∞,Al)> 0 and max{ρlog(A j) : j = 0,1, . . . ,k, j ̸=
l}< µlog(Al)≤ ρlog(Al)< ∞.

1. If µlog(F) < µlog(Al), then every meromorphic solution f (z)(̸≡ 0) of (5.2) satisfies ρlog( f ) ≥
µlog(Al) . Further, if F(z)≡ 0, then µlog( f )≥ µlog(Al)+1.

2. If µlog(F)> µlog(Al), then every meromorphic solution f (z) of (5.2) satisfies ρlog( f )≥ µlog(F)

.

5.3 Lemmas

For the proof of our results we need the following lemmas.

Lemma 5.1 ( [8,9]). Let f be a meromorphic function with finite logarithmic lower order 1≤ µlog( f )<

+∞. Then there exists a subset E1 of [1,+∞) that has infinite logarithmic measure such that for all

r ∈ E1, we have

T (r, f )< (logr)µlog( f )+ε .

Lemma 5.2 ( [22]). Let α,R,R′ be real numbers such that 0<α < 1, R> 0 and let η non-zero complex

number. Then, there is a positive constant Cα depending only α such that for a given meromorphic

function f we have, when |z|= r, max{1,r+ |η |}< R < R′, the estimate

m
(

r,
f (z+η)

f (z)

)
+m

(
r,

f (z)
f (z+η)

)
≤ 2|η |R
(R− r−|η |)2

(
m
(
R, f
)
+m

(
R,

1
f

))
+

2R′

R′−R

(
|η |

R− r−|η |
+

Cα |η |α

(1−α)rα

)
×
(

N
(
R′, f

)
+N

(
R′,

1
f

))
.

Lemma 5.3. Let η1, η2 be two arbitrary complex numbers such that η1 ̸= η2 and let f be finite

logarithmic lower order meromorphic function. Let µ be the logarithmic lower order of f . Then for

each ε > 0, there exists a subset E2 ⊂ (1,+∞) of infinite logarithmic measure such that for all r ∈ E2,

we have

m
(

r,
f (z+η1)

f (z+η2)

)
= O

(
(logr)µ−1+ε

)
.

Proof. We have

m
(

r,
f (z+η1)

f (z+η2)

)
≤m

(
r,

f (z+η1)

f (z)

)
+m

(
r,

f (z)
f (z+η2)

)
≤m

(
r,

f (z+η1)

f (z)

)
+m

(
r,

f (z)
f (z+η1)

)
+m

(
r,

f (z+η2)

f (z)

)
+m

(
r,

f (z)
f (z+η2)

)
.

(5.4)
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Since f has finite logarithmic lower order µlog( f ) = µ < ∞, so by Lemma 5.1, for any given ε
(
0 <

ε < 2
)
, there exists a subset E2 of infinite logarithmic measure such that for all r ∈ E2, we have

T (r, f )≤ (logr)µ+ ε

2 . (5.5)

By Lemma 5.2, we obtain from (5.4)

m
(

r,
f (z+η1)

f (z+η2)

)
≤ 2|η1|R

(R− r−|η1|)2

(
m
(
R, f
)
+m

(
R,

1
f

))
+

2R′

R′−R

(
|η1|

R− r−|η1|
+

Cα |η1|α

(1−α)rα

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
+

2|η2|R
(R− r−|η2|)2

(
m
(
R, f
)
+m

(
R,

1
f

))
+

2R′

R′−R

(
|η2|

R− r−|η2|
+

Cα |η2|α

(1−α)rα

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
=

(
2|η1|R

(R− r−|η1|)2 +
2|η2|R

(R− r−|η2|)2

)(
m
(
R, f
)
+m

(
R,

1
f

))
+

2R′

R′−R

(
|η1|

R− r−|η1|
+

Cα |η1|α

(1−α)rα
+

|η2|
R− r−|η2|

+
Cα |η2|α

(1−α)rα

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
.

(5.6)

We choose α = 1− ε

2 , R = 2r, R′ = 3r and r > max{|η1|, |η2|, 1
2} in (5.6), we obtain

m
(

r,
f (z+η1)

f (z+η2)

)
≤
(

4|η1|r
(r−|η1|)2 +

4|η2|r
(r−|η2|)2

)(
m
(
2r, f

)
+m

(
2r,

1
f

))
+6
(

|η1|
r−|η1|

+
2Cα |η1|1−

ε

2

εr1− ε

2
+

|η2|
r−|η2|

+
2Cα |η2|1−

ε

2

εr1− ε

2

)
×
(

N
(
3r, f

)
+N

(
3r,

1
f

))
≤4
[

4|η1|r
(r−|η1|)2 +

4|η2|r
(r−|η2|)2 +6

(
|η1|

r−|η1|
+

|η2|
r−|η2|

+
2Cα

(
|η1|1−

ε

2 + |η2|1−
ε

2
)

εr1− ε

2

)]
T
(
3r, f

)
.

(5.7)

Using the estimate (5.5), we get

m
(

r,
f (z+η1)

f (z+η2)

)
≤4K

[
4|η1|r

(r−|η1|)2 +
4|η2|r

(r−|η2|)2 +6
(

|η1|
r−|η1|

+
|η2|

r−|η2|

+
2Cα

(
|η1|1−

ε

2 + |η2|1−
ε

2
)

εr1− ε

2

)](
log3r

)µ+ ε

2

≤M
(

logr
)µ+ε−1

,

where K > 0, M > 0 are some constants. The proof is completed.

Lemma 5.4 ( [4]). Let c1, c2 be two arbitrary complex numbers such that c1 ̸= c2 and let f be finite

logarithmic order meromorphic function. Let ρ be the logarithmic order of f . Then for each ε > 0, we

have

m
(

r,
f (z+ c1)

f (z+ c2)

)
= O

(
(logr)ρ−1+ε

)
.
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Lemma 5.5 ( [34]). Let f be a meromorphic function, c be a non-zero complex constant. Then we

have that for r −→ ∞(
1+o(1)

)
T (r−|c|, f )≤ T (r, f (z+ c))≤

(
1+o(1)

)
T (r+ |c|, f ).

It follows that ρlog( f (z+ c)) = ρlog( f ) and µlog( f (z+ c)) = µlog( f ).

5.4 Proofs of the theorems

In our proofs, we suppose always that f is of finite logarithmic order
(
ρlog( f )< ∞

)
, otherwise the

results are trivial.

Proof of Theorem 5.4

Proof. Let f (z)(̸≡ 0) be a meromorphic solution of (5.1). We divide (5.1) by f (z+ cl) to get

−Al(z) =
k

∑
j=1, j ̸=l

A j(z)
f (z+ c j)

f (z+ cl)
+A0(z)

f (z)
f (z+ cl)

, (5.8)

it follows

m(r,Al(z))≤
k

∑
j=0, j ̸=l

m(r,A j(z))+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1). (5.9)

By (5.9) and Lemma 5.3, for any given ε > 0 , there exists a subset E2 ⊂ (1,+∞) of infinite logarithmic

measure such that for all r ∈ E2, we have

m(r,Al(z))≤
k

∑
j=0, j ̸=l

m(r,A j(z))+
k

∑
j=1, j ̸=l

O
(
(logr)µlog( f )−1+ε

)
+O

(
(logr)µlog( f )−1+ε

)
+O(1)

≤
k

∑
j=0, j ̸=l

m(r,A j(z))+O
(
(logr)µlog( f )−1+ε

)
.

(5.10)

Assume that mlimsupr−→+∞

∑
k
j=0, j ̸=l m(r,A j)

m(r,Al)
< β < 1, then for sufficiently large r, we have

k

∑
j=0, j ̸=l

m(r,A j)< βm(r,Al). (5.11)

Combining (5.10) and (5.11), for any given ε > 0 and for all r ∈ E2, we obtain

(1−β )m(r,Al(z))≤ O
(
(logr)µlog( f )−1+ε

)
. (5.12)

Setting

liminf
r−→+∞

m(r,Al)

T (r,Al)
= δ (∞,Al) = δ > 0. (5.13)
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By (5.12) and the definition of µlog(Al), for any given ε and sufficiently large r, we have

m(r,Al)≥
δ

2
T (r,Al)≥

δ

2
(logr)µlog(Al)− ε

2 ≥ (logr)µlog(Al)−ε . (5.14)

Substituting (5.14) into (5.12), for any given ε > 0 and for all r ∈ E2, we get

(1−β )(logr)µlog(Al)−ε ≤ O
(
(logr)µlog( f )−1+ε

)
, (5.15)

which implies that µlog(Al)+ 1− 2ε ≤ µlog( f ). Since ε > 0 is arbitrary, we obtain µlog(Al)+ 1 ≤
µlog( f ).

Proof of Theorem 5.5

Proof. By (5.9), for any given ε > 0 and for all r ∈ E2, we have

m(r,Al(z))≤
k

∑
j=0, j ̸=l

T (r,A j(z))+O
(
(logr)µlog( f )−1+ε

)
. (5.16)

Suppose that max{ρlog(A j) : j = 0,1, . . . ,k, j ̸= l}= ρ < µlog(Al). Then, by the definition of ρlog(A j),

j = 0,1, . . . ,k, j ̸= l, for any given ε

(
0 < ε <

µlog(Al)−ρ

2

)
and sufficiently large r, we have

T (r,A j)≤ (logr)ρ+ε , j = 0,1, . . . ,k, j ̸= l. (5.17)

Substituting (5.12) and (5.17) into (5.16), for any given ε

(
0 < ε <

µlog(Al)−ρ

2

)
and for all r ∈ E2, we

obtain

(logr)µlog(Al)−ε ≤ k(logr)ρ+ε +O
(
(logr)µlog( f )−1+ε

)
. (5.18)

Then

(1−o(1))(logr)µlog(Al)−ε ≤ O
(
(logr)µlog( f )−1+ε

)
. (5.19)

It follows that µlog(Al)+1−2ε ≤ µlog( f ). Since ε > 0 is arbitrary, we obtain µlog(Al)+1 ≤ µlog( f ).

Proof of Theorem 5.6

Proof. Let f (z)(̸≡ 0) be a meromorphic solution of (5.2). We divide (5.2) by f (z+ cl) to get

−Al(z) =
k

∑
j=1, j ̸=l

A j(z)
f (z+ c j)

f (z+ cl)
+A0(z)

f (z)
f (z+ cl)

− F(z)
f (z+ cl)

, (5.20)

it follows

m(r,Al(z))≤
k

∑
j=0, j ̸=l

m(r,A j(z))+
k

∑
j=1, j ̸=l

m
(

r,
f (z+ c j)

f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+m(r,F(z))+m

(
r,

1
f (z+ cl)

)
+O(1).

(5.21)
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By (5.21), Lemma 5.4 and Lemma 5.5, for any given ε > 0 , we have

m(r,Al(z))≤
k

∑
j=0, j ̸=l

T (r,A j(z))+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+T (r, f (z+ cl))+O(1)

≤
k

∑
j=0, j ̸=l

T (r,A j(z))+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+

(
1+o(1)

)
T (r+ |cl|, f (z))

≤
k

∑
j=0, j ̸=l

T (r,A j(z))+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+2T (2r, f (z)).

(5.22)

Setting liminfr−→+∞
m(r,Al)
T (r,Al)

= δ (∞,Al) = δ > 0 and max{ρlog(A j) : j = 0,1, . . . ,k, j ̸= l} = ρ <

µlog(Al). Then, for any given ε

(
0 < ε <

µlog(Al)−ρ

2

)
and sufficiently large r, the assumptions (5.14)

and (5.17) hold.

(1) If µlog(F) < µlog(Al), then by Lemma 5.1, there exists a subset E1 with infinite logarithmic

measure such that for any given ε

(
0 < ε <

µlog(Al)−µlog(F)
2

)
and for all r ∈ E1, we have

T (r,F)≤ (logr)µlog(F)+ε . (5.23)

By substituting (5.14), (5.17) and (5.23) into (5.22), for any given ε satisfying

0 < ε < min
{

µlog(Al)−ρ

2
,

µlog(Al)−µlog(F)

2

}
and for all r ∈ E1, we obtain

(logr)µlog(Al)−ε ≤ k(logr)ρ+ε +O
(
(logr)ρlog( f )−1+ε

)
+(logr)µlog(F)+ε +O

(
(logr)ρlog( f )+ε

)
,

(5.24)

which implies that

(1−o(1))(logr)µlog(Al)−ε ≤ O
(
(logr)ρlog( f )+ε

)
. (5.25)

By (5.25), we get µlog(Al)−2ε ≤ ρlog( f ). Since ε > 0 is arbitrary, we deduce that µlog(Al)≤
ρlog( f ).

(2) Let f be a meromorphic solution of (5.2). If µlog(F)> µlog(Al), then for any given ε

(
0 < ε <

µlog(F)−µlog(Al)
2

)
and sufficiently large r, we have

T (r,F)≥ (logr)µlog(F)−ε . (5.26)

By Lemma 5.1, there exists a subset E1 with infinite logarithmic measure such that for the above

ε and for all r ∈ E1, we obtain

T (r,Al)≤ (logr)µlog(Al)+ε . (5.27)
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By (5.2) and Lemma 5.5, we have

T (r,F(z))≤
k

∑
j=0, j ̸=l

T (r,A j(z))+T (r,Al(z))+
k

∑
j=1

T (r, f (z+ c j))

+T (r, f (z))+O(1)

≤
k

∑
j=0, j ̸=l

T (r,A j(z))+T (r,Al(z))+(2k+1)T (2r, f (z))+O(1).

(5.28)

Substituting (5.17), (5.26) and (5.27) into (5.28), for the above ε and for all r ∈ E1, we get

(logr)µlog(F)−ε ≤ k(logr)ρ+ε +(logr)µlog(Al)+ε +(2k+1)T (2r, f (z))+O(1). (5.29)

So

(1−o(1))(logr)µlog(F)−ε ≤ O
(
(logr)ρlog( f )+ε

)
. (5.30)

It follows that µlog(F)−2ε ≤ ρlog( f ). Since ε > 0 is arbitrary, we get µlog(F)≤ ρlog( f ).



Chapter 6

Linear delay-differential equations with zero
order meromorphic coefficients

6.1 Introduction

This chapter is devoted to consider the homogeneous and non-homogeneous linear delay-differential

equations
n

∑
i=0

m

∑
j=0

Ai j(z) f ( j)(z+ ci) = 0, (6.1)

n

∑
i=0

m

∑
j=0

Ai j(z) f ( j)(z+ ci) = F(z), (6.2)

where Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) are meromorphic functions, ci(i =

0, . . . ,n) are distinct non-zero complex constants. Recently, the research on the growth properties of

meromorphic solutions of the complex delay-differential equations has gathered increasing attention

(see e.g. [11, 12, 17, 52, 71, 81]. In [12], Bellaama and Belaı̈di considered the growth of equations (6.1)

and (6.2) for the case where one arbitrary coefficient dominates the rest of the coefficients either by its

lower order or by its lower type, and obtained the following theorem.

Theorem 6.1 ( [12]). Consider the delay differential equation with meromorphic coefficients. Suppose

that one of the coefficients, say Al0 with µ(Al0)> 0, is dominate in the sens that:

(i) max{µ(Aab),ρ(S)} ≤ µ(Al0)< ∞;

(ii) τ(Al0)> τ(Aab), whenever µ(Al0) = µ(Aab);

(iii) ∑ρ(Ai j)=µ(Al0),(i, j)̸=(l,0),(a,b) τ(Ai j)+ τ(F)< τ(Al0)< ∞, whenever µ(Al0) = ρ(S);

(iv) ∑ρ(Ai j)=µ(Al0),(i, j)̸=(l,0),(a,b) τ(Ai j)+ τ(Aab)< τ(Al0)< ∞, whenever µ(Al0) = µ(Aab) = ρ(S);

(v) λ

(
1

Al0

)
< µ(Al0) < ∞, where S := {F,Ai j : (i, j) ̸= (a,b),(l,0)} and ρ(S) := max{ρ(g) : g ∈

S}.
62
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Then any meromorphic solution f of (6.2) satisfies ρ( f )≥ µ(Al0) if F(z)(̸≡ 0). Further if F(z)(≡ 0),

then any meromorphic solution f (z)(̸≡ 0) of (6.2) satisfies ρ( f )≥ µ(Al0)+1.

They also in [11], proved the following result in which the assumption on the dominance of the

coefficient Al0(z) by the lower order or the lower type, was made in different way

Theorem 6.2 ( [11]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) be meromorphic

functions. Suppose there exists an integer l(0 ≤ l ≤ k) such that Al0(z) satisfies

λ (
1

Al0
)< µ(Al0)< ∞,

max{ρ(Ai j) : (i, j) ̸= (l,0)} ≤ µ(Al0),

∑
ρ(Ai j)=µ(Al0),(i, j)̸=(l,0)

τ(Ai j)< τ(Al0)< ∞.

1. If ρ(F) < µ(Al0), or ρ(F) = µ(Al0) and ∑ρ(Ai j)=µ(Al0),(i, j)̸=(l,0) τ(Ai j) + τ(F) < τ(Al0), or

µ(F) = µ(Al0) and ∑ρ(Ai j)=µ(Al0),(i, j)̸=(l,0) τ(Ai j) + τ(Al0) < τ(F), then every meromorphic

solution f (z)(̸≡ 0) of (6.2) satisfies ρ( f )≥ µ(Al0) . Further, if F(z)≡ 0, then ρ( f )≥ µ(Al0)+

1.

2. If µ(F)> µ(Al0), then every meromorphic solution f (z) of (6.2) satisfies ρ( f )≥ µ(F) .

As an answer to the question how to express the growth of solutions of (6.1), for the case when its

coefficients are meromorphic functions of order zero. In [9], Belaı̈di used the logarithmic order and

obtained the following theorem.

Theorem 6.3 ( [9]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) be meromorphic functions.

Suppose there exists an integer l(0 ≤ l ≤ k) such that Al0(z) satisfies

max{ρlog(Ai j) : (i, j) ̸= (l,0)}< ρlog(Al0),

δ (∞,Al0)> 0.

Then every meromorphic solution f (z)(̸≡ 0) of (6.1) satisfies ρlog( f )≥ ρlog(Al0)+1 .

In [13], Biswas generalized the above result to non-homogeneous equation (6.2), by proving the

following theorem

Theorem 6.4 ( [13]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) be meromorphic

functions. Suppose there exists an integer l(0 ≤ l ≤ k) such that Al0(z) satisfies

max{ρlog(Ai j) : (i, j) ̸= (l,0)}< ρlog(Al0),

δ (∞,Al0)> 0.

1. If ρlog(F)< ρlog(Al0), then every meromorphic solution f (z)(̸≡ 0) of (6.2) satisfies ρlog( f )≥
ρlog(Al0) .
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2. If ρlog(F)> ρlog(Al0), then every meromorphic solution f (z) of (6.1) satisfies ρlog( f )≥ ρlog(F)

.

The main purpose of this chapter is to continue investigating the logarithmic order of meromorphic

solutions of equations (6.1) and (6.2) to extend and improve the above theorems. In our results,

alongside the other additional conditions, the dominance of the arbitrary coefficient Al0 is assumed in

term of the logarithmic lower order and the logarithmic lower type in two different way as in Theorem

6.1 and Theorem 6.2.

6.2 Main Results

Theorem 6.5 ( [23]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) be meromorphic functions,

and a, l ∈ {0,1, ...,n} , b ∈ {0,1, ...,m} such that (a,b) ̸= (l,0). Suppose that one of the coefficients,

say Al0 with λlog

(
1

Al0

)
+1 < µlog(Al0)< ∞ is dominate in the sens that:

(i) max{µlog(Aab),ρlog(S)} ≤ µlog(Al0)< ∞;

(ii) τ log(Al0)> τ log(Aab), whenever µlog(Al0) = µlog(Aab);

(iii) ∑ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b) τlog(Ai j)+τlog(F)< τ log(Al0)<∞, whenever µlog(Al0)= ρlog(S);

(iv) ∑ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b) τlog(Ai j)+τlog(F)+τ log(Aab)< τ log(Al0)<∞, whenever µlog(Al0)=

µlog(Aab) = ρlog(S), where S := {F,Ai j : (i, j) ̸= (a,b),(l,0)} and ρlog(S) := max{ρlog(g) : g ∈
S}.

Then any meromorphic solution f of (6.2) satisfies ρlog( f )≥ µlog(Al0) if F(z)(̸≡ 0). Further if F(z)(≡
0), then any meromorphic solution f (z)(̸≡ 0) of (6.1) satisfies ρlog( f )≥ µlog(Al0)+1.

Theorem 6.6 ( [23]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) be meromorphic functions,

and a, l ∈ {0,1, ...,n} , b ∈ {0,1, ...,m} such that (a,b) ̸= (l,0). Suppose that one of the coefficients,

say Al0 with µ(Al0)> 0 and δ (∞,Al0)> 0 is dominate in the sens that:

(i) max{µlog(Aab),ρlog(S)} ≤ µlog(Al0)< ∞;

(ii) δτ log(Al0)> τ log(Aab), whenever µlog(Al0) = µlog(Aab);

(iii) ∑ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b) τlog(Ai j)+τlog(F)< δτ log(Al0)<∞, whenever µlog(Al0)= ρlog(S);

(iv) ∑ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b) τlog(Ai j)+τlog(F)+τ log(Aab)< δτ log(Al0)<∞, whenever µlog(Al0)=

µlog(Aab) = ρlog(S), where S := {F,Ai j : (i, j) ̸= (a,b),(l,0)} and ρlog(S) := max{ρlog(g) : g ∈
S}.

Then any meromorphic solution f of (6.2) satisfies ρlog( f )≥ µlog(Al0) if F(z)(̸≡ 0). Further if F(z)(≡
0), then any meromorphic solution f (z)(̸≡ 0) of (6.1) satisfies ρlog( f )≥ µlog(Al0)+1.
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Theorem 6.7 ( [24]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) be meromor-

phic functions. Suppose there exists an integer l(0 ≤ l ≤ k) such Al0(z) satisfies δ (∞,Al0) > 0 and

max{ρlog(Ai j) : (i, j) ̸= (l,0)}< µlog(Al0)≤ ρlog(Al0)< ∞.

1. If µlog(F)< µlog(Al0), then every meromorphic solution f (z)(̸≡ 0) of (6.2) satisfies ρlog( f )≥
µlog(Al0) . Further, if F(z)≡ 0, then µlog( f )≥ µlog(Al0)+1.

2. If µlog(F)> µlog(Al0), then every meromorphic solution f (z) of (6.2) satisfies ρlog( f )≥ µlog(F)

.

Remark 6.1. We can also replace the condition max{ρlog(Ai j) : (i, j) ̸= (l,0)}< µlog(Al0)≤ ρlog(Al0)

in Theorem 6.7 by

limsup
r−→+∞

∑(i, j)̸=(l,0)m(r,Ai j)

m(r,Al0)
< 1

for the homogeneous case F(z)≡ 0.

Theorem 6.8 ( [23]). Let Ai j(z) (i = 0,1, . . . ,n, j = 0,1, . . . ,m,n,m ∈ N) and F(z) be meromorphic

functions. Suppose there exists an integer l(0 ≤ l ≤ k) such that Al0(z) satisfies

λlog(
1

Al0
)+1 < µlog(Al0)< ∞,

max{ρlog(Ai j) : (i, j) ̸= (l,0)} ≤ µlog(Al0),

τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0)

τlog(Ai j)< τ log(Al0)< ∞.

1. If ρlog(F)< µlog(Al0), or ρlog(F)= µlog(Al0) and τ+τlog(F)< τ log(Al0), or µlog(F)= µlog(Al0)

and τ + τ log(Al0) < τ log(F), then every meromorphic solution f (z)(̸≡ 0) of (6.2) satisfies

ρlog( f )≥ µlog(Al0) . Further, if F(z)≡ 0, then µlog( f )≥ µlog(Al0)+1.

2. If µlog(F)> µlog(Al0), then every meromorphic solution f (z) of (6.2) satisfies ρlog( f )≥ µlog(F).

Remark 6.2. The condition λlog(
1

Al0
)+1 < µlog(Al0) in Theorem 6.8 can be replaced by δ (∞,Al0)> 0

with δτ log(Al0) instead of τ log(Al0), the only difference between the two conditions that by the

condition δ (∞,Al0)> 0 the case when µlog(Al0) = 1 is also included.

6.3 Lemmas

For the proof of our results we need the following lemmas.

Lemma 6.1 ( [39]). Let k and j be integers such that k > j ≥ 0. Let f be a meromorphic function in

the plane C such that f ( j) does not vanish identically. Then, there exists an r0 > 1 such that

m
(

r,
f (k)

f ( j)

)
≤ (k− j) log+

ρ(T (ρ, f ))
r(ρ − r)

+ log
k!
j!
+5.3078(k− j),
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for all r0 < r < ρ <+∞. If f is of finite order s, then

limsup
r→+∞

m
(

r, f (k)

f ( j)

)
logr

≤ max{0,(k− j)(s−1)}.

Lemma 6.2. Let f be a meromorphic function with finite logarithmic lower order 1 ≤ µlog( f )<+∞.

Then there exists a subset E2 of [1,+∞) that has infinite logarithmic measure such that for all r ∈ E2,

we have

τ log( f ) = lim
r−→+∞

T (r, f )

(logr)µlog( f )
.

Consequently, for any given ε > 0 and for all r ∈ E2, we have

T (r, f )< (τ log( f )+ ε)(logr)µlog( f ).

Proof. By the definition of the logarithmic lower type, there exists a sequence {rn}∞

n=1 tending to ∞

satisfying
(
1+ 1

n

)
rn < rn+1, and

τ log( f ) = lim
rn→+∞

T (rn, f )

(logrn)
µlog( f )

.

Then for any given ε > 0, there exists an n1 such that for n ≥ n1 and any r ∈
[ n

n+1rn,rn
]
, we have

T ( n
n+1rn, f )

(logrn)
µlog( f )

≤ T (r, f )

(logr)µlog( f )
≤ T (rn, f )

(log n
n+1rn)

µlog( f )
.

It follows that (
log n

n+1rn

logrn

)µlog( f ) T ( n
n+1rn, f )

(log n
n+1rn)

µlog( f )
≤ T (r, f )

(logr)µlog( f )

≤ T (rn, f )

(logrn)
µlog( f )

(
logrn

log n
n+1rn

)µlog( f )

. (6.3)

Set

E2 =
+∞⋃

n=n1

[
n

n+1
rn,rn

]
.

Then from ( 6.3, we obtain

lim
r→+∞

r∈E2

T (r, f )

(logr)µlog( f )
= lim

rn→+∞

T (rn, f )

(logrn)
µlog( f )

= τ log( f ),

so for any given ε > 0 and all sufficiently large r ∈ E2, we get

T (r, f )<
(

τ log( f )+ ε

)
(logr)µlog( f ) ,

where mlog (E2) =
∫
E2

dr
r =

+∞

∑
n=n1

rn∫
n

n+1 rn

dt
t =

+∞

∑
n=n1

log
(
1+ 1

n

)
=+∞.

Lemma 6.3 ( [38]). Let f be a meromorphic function and k ≥ 1 be an integer. Then we have

T (r, f (k))≤ (k+1)T (r, f )+S(r, f ),

where S (r, f ) satisfies the condition (1.3). In particular, if f is of finite order, then (1.3) holds without

the excluded set.
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6.4 Proof of the theorems

Proof of Theorem 6.5

Proof. Let f (z) be a meromorphic solution of (6.2). If f (z) has infinite logarithmic order, then the

result holds. Now, we suppose that ρlog( f )< ∞. We divide (6.2) by f (z+ cl) to get

−Al0(z) =
n

∑
i=0,i ̸=l,a

m

∑
j=0

Ai j
f ( j)(z+ ci)

f (z+ ci)

f (z+ ci)

f (z+ cl)

+
m

∑
j=0, j ̸=b

Aa j
f ( j)(z+ ca)

f (z+ ca)

f (z+ ca)

f (z+ cl)
+

m

∑
j=1

Al j
f ( j)(z+ cl)

f (z+ cl)

+Aab
f (b)(z+ ca)

f (z+ ca)

f (z+ ca)

f (z+ cl)
− F(z)

f (z+ cl)
. (6.4)

By (6.4) and Lemma 5.5, for sufficiently large r, we have

m(r,Al0(z))≤
n

∑
i=0,i̸=l,a

m

∑
j=0

m(r,Ai j(z))+m(r,Aab(z))

+
m

∑
j=1

m(r,Al j(z))+
m

∑
j=0, j ̸=b

m(r,Aa j(z))+
n

∑
i=0,i ̸=l,a

m

∑
j=0

m

(
r,

f ( j)(z+ ci)

f (z+ ci)

)

+
n

∑
i=0,i̸=l,a

m
(

r,
f (z+ ci)

f (z+ cl)

)
+

m

∑
j=1

m

(
r,

f ( j)(z+ ca)

f (z+ ca)

)
+2m

(
r,

f (z+ ca)

f (z+ cl)

)

+
m

∑
j=1

m

(
r,

f ( j)(z+ ca)

f (z+ ca)

)
+m(r,F(z))+m

(
r,

1
f (z+ cl)

)
+O(1)

≤
n

∑
i=0,i ̸=l,a

m

∑
j=0

T (r,Ai j(z))+T (r,Aab(z))+
m

∑
j=1

T (r,Al j(z))

+
m

∑
j=0, j ̸=b

T (r,Aa j(z))+
n

∑
i=0,i̸=l,a

m

∑
j=0

m

(
r,

f ( j)(z+ ci)

f (z+ ci)

)

+
n

∑
i=0,i̸=l,a

m
(

r,
f (z+ ci)

f (z+ cl)

)
+

m

∑
j=1

m

(
r,

f ( j)(z+ ca)

f (z+ ca)

)
+2m

(
r,

f (z+ ca)

f (z+ cl)

)

+
m

∑
j=1

m

(
r,

f ( j)(z+ ca)

f (z+ ca)

)
+T (r,F(z))+2T (2r, f )+O(1). (6.5)

From Lemma 6.1, for sufficiently large r, we obtain

m

(
r,

f ( j)(z+ ci)

f (z+ ci)

)
≤ 2 j log+T (2r, f ) , (i = 0,1, ...,n, j = 1, ...,m). (6.6)

By Lemma 5.4, for any given ε > 0 and all sufficiently large r, we have

m
(

r,
f (z+ ci)

f (z+ cl)

)
= O

(
(logr)ρlog( f )−1+ε

)
, (i = 0,1, ...,n, i ̸= l). (6.7)
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By substituting (6.6) and (6.7) into (6.5), for any given ε > 0 and all sufficiently large r, we obtain

m(r,Al0(z))≤
n

∑
i=0,i ̸=l,a

m

∑
j=0

T (r,Ai j(z))+T (r,Aab(z))+
m

∑
j=1

T (r,Al j(z))+
m

∑
j=0, j ̸=b

T (r,Aa j(z))

+O
(
log+T (2r, f )

)
+O

(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+2T (2r, f ). (6.8)

Let us set

δ = δ (∞,Al0)> 0. (6.9)

Now, we divide this proof into four cases:

Case (i): If max{µlog(Aab),ρlog(S)}< µlog(Al0), then by the definition of µlog(Al0) and (6.9), for any

given ε > 0 and all sufficiently large r, we have

m(r,Al0)≥
δ

2
T (r,Al0)≥

δ

2
(logr)µlog(Al0)− ε

2 ≥ (logr)µlog(Al0)−ε . (6.10)

By the definition of ρlog(S) for any given ε > 0 and all sufficiently large r, we have

T (r,g)≤ (logr)ρlog(S)+ε , g ∈ S. (6.11)

By the definition of µlog(Aab) and Lemma 5.1, there exists a subset E1 ⊂ (1,+∞) of infinite logarithmic

measure such that for any given ε > 0 and for all sufficiently large r ∈ E1, we have

T (r,Aab)≤ (logr)µlog(Aab)+ε . (6.12)

Set ρ = max{µlog(Aab),ρlog(S)}, then from (6.11) and (6.12), for any given ε > 0 and for all r ∈ E1,

it follows

max{T (r,Aab),T (r,g)} ≤ (logr)ρ+ε . (6.13)

Also, from the definition of ρlog( f ) for any given ε > 0 and all sufficiently large r, we have

T (r, f )≤ (logr)ρlog( f )+ε . (6.14)

By substituting (6.10), (6.13) and (6.14) into (6.8), for all r ∈ E1, we get

(logr)µlog(Al0)−ε ≤ ((n−1)(m+1)+2m+1)(logr)ρ+ε +O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+(logr)ρ+ε +O

(
(logr)ρlog( f )+ε

)
. (6.15)

Now, we choose sufficiently small ε satisfying 0 < 2ε < µlog(Al0)−ρ, for all r ∈ E1, it follows from

(6.15) that

(1−o(1))(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)−2ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Similarly, for the homogeneous case, by (6.1), (6.6) and (6.7), we obtain

m(r,Al0(z))≤
n

∑
i=0,i ̸=l,a

m

∑
j=0

T (r,Ai j(z))+T (r,Aab(z))+
m

∑
j=1

T (r,Al j(z))+
m

∑
j=0, j ̸=b

T (r,Aa j(z))
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+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
. (6.16)

Then, by substituting (6.10) and (6.13) into (6.16), for all sufficiently large r ∈ E1, we have

(logr)µlog(Al0)−ε ≤ ((n−1)(m+1)+2m+1)(logr)ρ+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
.

(6.17)

For the above ε and for all r ∈ E1, we deduce from (6.17) that

(1−o(1))(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)−2ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (ii): If β = ρlog(S)< µlog(Al0) = µlog(Aab) and δτ log(Al0)> τ log(Aab), then by the definition

of τ log(Al0) and (6.9), for any given ε > 0 and all sufficiently large r, we have

m(r,Al0)≥ (δ − ε)T (r,Al0)≥ (δ − ε)(τ log(Al0)− ε)(logr)µlog(Al0)

≥
(

δτ log(Al0)− (τ log(Al0)+δ )ε + ε
2
)
(logr)µlog(Al0)

≥
(

δτ log(Al0)− (τ log(Al0)+δ )ε
)
(logr)µlog(Al0). (6.18)

By the definition of τ log(Aab) and Lemma 6.2, there exists a subset E1 ⊂ (1,+∞) of infinite logarithmic

measure such that for any given ε > 0 and for all sufficiently large r ∈ E1, we obtain

T (r,Aab)≤ (τ log(Aab)+ ε)(logr)µlog(Aab) = (τ log(Aab)+ ε)(logr)µlog(Al0). (6.19)

By substituting (6.11), (6.14), (6.18) and (6.19) into (6.8), for all sufficiently large r ∈ E1, we get(
δτ log(Al0)− τ log (Aab)− (τ log(Al0)+δ +1)ε

)
(logr)µlog(Al0) ≤ ((n−1)(m+1)+2m)(logr)β+ε

+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(logr)β+ε +O

(
(logr)ρlog( f )+ε

)
. (6.20)

Now, we choose sufficiently small ε satisfying 0 < ε < min{µlog(Al0)−β

2 ,
δτ log(Al0)−τ log(Aab)

τ log(Al0)+δ+1 }, for all

sufficiently large r ∈ E1, by (3.20), we obtain

(1−o(1))
(

δτ log(Al0)− τ log (Aab)− (τ log(Al0)+δ +1)ε
)
(logr)µlog(Al0)

≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Next, for the homogeneous case, by substituting (6.11), (6.18) and (6.19) into (6.16), for all sufficiently

large r ∈ E1, we have(
δτ log(Al0)− τ log (Aab)− (τ log(Al0)+δ +1)ε

)
(logr)µlog(Al0) ≤ ((n−1)(m+1)+2m)(logr)β+ε

+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
. (6.21)

For the above ε and all sufficiently large r ∈ E1, from (6.16), we obtain

(1−o(1))
(

δτ log(Al0)− τ log (Aab)− (τ log(Al0)+δ +1)ε
)
(logr)µlog(Al0)
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≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (iii): When µlog(Aab)< µlog(Al0) = ρlog(S) and

τ1 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τlog(F)

= τ + τlog(F)< τ log(Al0), τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j).

Then, there exists a subset J ⊆ {0,1, . . . ,n}×{0,1, . . . ,m}\{(l,0),(a,b)} such that for all (i, j) ∈ J,

when ρlog(Ai j) = µlog (Al0) , we have ∑
(i, j)∈J

τlog
(
Ai j
)
< δτ log (Al0)− τlog(F), and for (i, j) ∈ Π =

{0,1, . . . ,n}×{0,1, . . . ,m}\(J∪{(l,0),(a,b)}) we have ρlog
(
Ai j
)
< µlog (Al0) . Hence, for any given

ε > 0 and all sufficiently large r, we get

T
(
r,Ai j

)
≤

{ (
τlog(Ai j)+ ε

)
(logr)µlog(Al0) , if (i, j) ∈ J,

(logr)ρlog(Ai j)+ε ≤ (logr)µlog(Al0)−ε , if (i, j) ∈ Π
(6.22)

and

T (r,F)≤

{ (
τlog(F)+ ε

)
(logr)µlog(Al0) , if ρlog(F) = µlog(Al0),

(logr)ρlog(F)+ε ≤ (logr)µlog(Al0)−ε , if ρlog(F)< µlog(Al0).
(6.23)

By substituting (6.12), (6.14), (6.18), (6.22)and (6.23) into (6.8), for all sufficiently large r ∈ E1, we

get

(δτ log(Al0)− τ1 −
(

τ log(Al0)+δ +mn+m+n+1
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)µlog(Al0)−ε

)
+(logr)µlog(Aab)+ε +O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
. (6.24)

We may choose sufficiently small ε satisfying 0 < ε < min{µlog(Al0)−µlog(Aab)
2 ,

τ log(Al0)−τ1
τ log(Al0)+δ+mn+m+n+1},

for all sufficiently large r ∈ E1, by (6.24), we obtain

(1−o(1))(δτ log(Al0)− τ1 −
(

τ log(Al0)+δ +mn+m+n+1
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Further, for the homogeneous case, by substituting (6.12), (6.18) and (6.22) into (6.16), for all

sufficiently large r ∈ E1, we get

(δτ log(Al0)− τ −
(

τ log(Al0)+δ +mn+m+n
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)µlog(Al0)−ε

)
+(logr)µlog(Aab)+ε +O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
. (6.25)

For ε sufficiently small satisfying

0 < ε < min

{
µlog(Al0)−µlog(Aab)

2
,

τ log(Al0)− τ

τ log(Al0)+δ +mn+m+n

}
,
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and for all sufficiently large r ∈ E1, from (6.25) we conclude

(1−o(1))(δτ log(Al0)− τ −
(

τ log(Al0)+δ +mn+m+n
)

ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (iv): When µlog(Al0) = µlog(Aab) = ρlog(S) and

τ3 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τlog(F)+ τ log(Aab)

= τ2 + τlog(F)< δτ log(Al0),

τ2 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τ log(Aab).

Then, by substituting (6.14), (6.18), (6.19), (6.22) and (6.23) into (6.8), for all sufficiently large r ∈ E1,

we get

(δτ log(Al0)− τ3 −
(

τ log(Al0)+δ +mn+m+n+2
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
. (6.26)

Now, we may choose sufficiently small ε satisfying 0 < ε <
δτ log(Al0)−τ3

τ log(Al0)+δ+mn+m+n+2 , for all sufficiently

large r ∈ E1, we deduce from (6.26) that

(1−o(1))(δτ log(Al0)− τ3 −
(

τ log(Al0)+δ +mn+m+n+2
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Also for the homogeneous case, by substituting (6.18), (6.19) and (6.22) into (6.16), for all sufficiently

large r ∈ E1, we have

(δτ log(Al0)− τ2 −
(

τ log(Al0)+δ +mn+m+n+1)
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
. (6.27)

Thus, for sufficiently small ε satisfying 0 < ε <
δτ log(Al0)−τ2

τ log(Al0)+δ+mn+m+n+1 , for all sufficiently large r ∈ E1,

from (6.26) we obtain

(1−o(1))(δτ log(Al0)− τ2 −
(

τ log(Al0)+δ +mn+m+n+1
)

ε)(logr)µlog(Al0)

≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.
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Proof of Theorem 6.6

Proof. Let f (z) be a meromorphic solution of (6.2). If f (z) has infinite logarithmic order, then the

result holds. Now, we suppose that ρlog( f )< ∞. By the definition of λlog

(
1

Al0

)
, for any given ε > 0

with sufficiently large r, we have

N(r,Al0)≤ (logr)λlog

(
1

Al0

)
+1+ε

. (6.28)

By (6.8) and (6.28), for any given ε > 0 and all sufficiently large r, we have

T (r,Al0(z)) = m(r,Al0(z))+N(r,Al0(z))

≤
n

∑
i=0,i ̸=l,a

m

∑
j=0

T (r,Ai j(z))+T (r,Aab(z))

+
m

∑
j=1

T (r,Al j(z))+
m

∑
j=0, j ̸=b

T (r,Aa j(z))+O
(
log+T (2r, f )

)
+O

(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+2T (2r, f )+(logr)λlog

(
1

Al0

)
+1+ε

. (6.29)

This proof is also divided into four cases:

Case (i): If max{µlog(Aab),ρlog(S)} < µlog(Al0), then by the definition of µlog(Al0) for any given

ε > 0 and all sufficiently large r, we have

T (r,Al0)≥ (logr)µlog(Al0)−ε . (6.30)

By substituting (6.13), (6.14) and (6.30) into (6.29), for any given ε > 0 and all sufficiently large

r ∈ E1, we get

(logr)µlog(Al0)−ε ≤ ((n−1)(m+1)+2m+2)(logr)ρ+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.31)

Now, we choose sufficiently small ε satisfying

0 < 2ε < min
{

µlog(Al0)−ρ,µlog(Al0)−λlog

(
1

Al0

)
−1
}
,

for all sufficiently large r ∈ E1, it follows from (6.31) that

(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )+ε

)
,

that means, µlog(Al0)−2ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Similarly, for the homogeneous case, by (6.16) and (6.28), we have

T (r,Al0(z)) = m(r,Al0(z))+N(r,Al0(z))

≤
n

∑
i=0,i ̸=l,a

m

∑
j=0

T (r,Ai j(z))+T (r,Aab(z))+
m

∑
j=1

T (r,Al j(z))+
m

∑
j=0, j ̸=b

T (r,Aa j(z))
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+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.32)

Then, by substituting (6.13) and (6.30) into (6.32), for all sufficiently large r ∈ E1, we have

(logr)µlog(Al0)−ε ≤ ((n−1)(m+1)+2m+1)(logr)ρ+ε +O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.33)

For sufficiently small ε satisfying

0 < 2ε < min
{

µlog(Al0)−ρ,µlog(Al0)−λlog

(
1

Al0

)
−1
}
,

and all sufficiently large r ∈ E1, we deduce from (6.33) that

(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)−2ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (ii): If β = ρlog(S)< µlog(Al0) = µlog(Aab) and τ log(Al0)> τ log(Aab), then by the definition of

τ log(Al0), for any given ε > 0 and all sufficiently large r, we have

T (r,Al0)≥ (τ log(Al0)− ε)(logr)µlog(Al0). (6.34)

By substituting (6.11), (6.14), (6.19) and (6.34) into (6.29), for all sufficiently large r ∈ E1, we get

(τ log(Al0)− ε)(logr)µlog(Al0) ≤ ((n−1)(m+1)+2m+1)(logr)β+ε

+(τ log(Aab)+ ε)(logr)µlog(Al0)+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.35)

Now, we choose sufficiently small ε satisfying 0 < 2ε < min{µlog(Al0)−β ,µlog(Al0)−λlog

(
1

Al0

)
−

1,τ log(Al0)− τ log(Aab)}, for all sufficiently large r ∈ E1, it follows from (6.35) that

(1−o(1))(τ log(Al0)− τ log(Aab)−2ε)(logr)µlog(Al0) ≤ (logr)ρlog( f )+ε ,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Next, for the homogeneous case, by substituting (6.11), and (6.19) into (6.32), for all sufficiently large

r ∈ E1, we have

(τ log(Al0)− ε)(logr)µlog(Al0) ≤ ((n−1)(m+1)+2m)(logr)β+ε +(τ log(Aab)+ ε)(logr)µlog(Al0)

+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.36)

Now, we choose sufficiently small ε satisfying 0 < 2ε < min{µlog(Al0)−β ,µlog(Al0)−λlog

(
1

Al0

)
−

1,τ log(Al0)− τ log(Aab)}, for all sufficiently large r ∈ E1, we deduce from (6.36) that

(1−o(1))(τ log(Al0)− τ log(Aab)−2ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )−1+ε

)
,
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that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (iii): When µlog(Aab)< µlog(Al0) = ρlog(S) and

τ1 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τlog(F)

= τ + τlog(F)< τ log(Al0), τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j).

Then, for any given ε > 0 and all sufficiently large r, (6.22) and (6.23) hold. By substituting (6.12),

(6.14), (6.22), (6.23) and (6.34) into (6.29), for all sufficiently large r ∈ E1, we get(
τ log(Al0)− ε

)
(logr)µlog(Al0) ≤ ∑

(i, j)∈J

(
τlog
(
Ai j
)
+ ε
)
(logr)µlog(Al0)

+ ∑
(i, j)∈Π

(logr)µlog(Al0)−ε +(logr)µlog(Aab)+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+
(
τlog(F)+ ε

)
(logr)µlog(Al0)+O

(
(logr)ρlog( f )+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

≤ (τ1 +(mn+m+n)ε)(logr)µlog(Al0)+O(logr)µlog(Al0)−ε

+(logr)µlog(Aab)+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.37)

We may choose sufficiently small ε satisfying

0 < ε < min
{

µlog(Al0)−µlog(Aab)

2
,

µlog(Al0)−λlog

(
1

Al0

)
−1

2
,

τ log(Al0)− τ1

mn+m+n+1

}
,

for all sufficiently large r ∈ E1, by (6.37) we have

(1−o(1))(τ log(Al0)− τ1 − (mn+m+n+1)ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Further, for the homogeneous case, by substituting (6.12), (6.22) and (6.34) into (6.32), for all

sufficiently large r ∈ E1, we get

(τ log(Al0)− τ − (mn+m+n)ε)(logr)µlog(Al0) ≤ O
(
(logr)µlog(Al0)−ε

)
+(logr)µlog(Aab)+ε +O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.38)

We may choose sufficiently small ε satisfying

0 < ε < min
{

µlog(Al0)−µlog(Aab)

2
,

µlog(Al0)−λlog

(
1

Al0

)
−1

2
,
τ log(Al0)− τ

mn+m+n

}
,

for all sufficiently large r ∈ E1, by (6.38) we have

(1−o(1))(τ log(Al0)− τ − (mn+m+n)ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )−1+ε

)
,
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that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Case (iv): When µlog(Al0) = µlog(Aab) = ρlog(S) and

τ3 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τlog(F)+ τ log(Aab)

= τ2 + τlog(F)< τ log(Al0),

τ2 = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0),(a,b)

τlog(Ai j)+ τ log(Aab).

Then, by substituting (6.14), (6.19), (6.22), (6.23) and (6.34) into (6.29), for all sufficiently large

r ∈ E1, we have

(τ log(Al0)− τ3 − (mn+m+n+2)ε)(logr)µlog(Al0) ≤ O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
+O

(
(logr)ρlog( f )+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.39)

Now, we may choose sufficiently small ε satisfying 0 < ε < min
{

µlog(Al0)−λlog

(
1

Al0

)
−1

2 ,
τ log(Al0)−τ3
mn+m+n+2

}
,

for all sufficiently large r ∈ E1, we deduce from (6.39) that

(1−o(1))(τ log(Al0)− τ3 − (mn+m+n+2)ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )+ε

)
,

this means, µlog(Al0)− ε ≤ ρlog( f ) and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0).

Further, for the homogeneous case, by substituting (6.19), (6.22) and (6.34) into (6.32), for all

sufficiently large r ∈ E1, we get

(τ log(Al0)− τ2 − (mn+m+n+1)ε)(logr)µlog(Al0) ≤ O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))+O

(
(logr)ρlog( f )−1+ε

)
+(logr)λlog

(
1

Al0

)
+1+ε

. (6.40)

Therefore, for ε satisfying 0 < ε < min
{

µlog(Al0)−λlog

(
1

Al0

)
−1

2 ,
τ log(Al0)−τ2
mn+m+n+1

}
and for all sufficiently large

r ∈ E1, by (6.40) we have

(1−o(1))(τ log(Al0)− τ2 − (mn+m+n+1)ε)(logr)µlog(Al0) ≤ O
(
(logr)ρlog( f )−1+ε

)
,

that is, µlog(Al0)− ε ≤ ρlog( f )−1 and since ε > 0 is arbitrary, then ρlog( f )≥ µlog(Al0)+1.

Proof of Theorem 6.7

Proof. Let f (z)(̸≡ 0) be a meromorphic solution of (6.2). We divide (6.2) by f (z+ cl) to get

−Al0(z) =
n

∑
i=0,i ̸=l

m

∑
j=0

Ai j(z)
f ( j)(z+ ci) f (z+ ci)

f (z+ ci) f (z+ cl)
+

m

∑
j=1

Ai j(z)
f ( j)(z+ cl)

f (z+ cl)
− F(z)

f (z+ cl)
. (6.41)
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By (6.41), it follows

m(r,Al0(z))≤
n

∑
i=0,i̸=l

m

∑
j=0

m(r,Ai j(z))+
m

∑
j=1

m(r,Al j(z))

+
n

∑
i=0

m

∑
j=1

m
(

r,
f ( j)(z+ ci)

f (z+ ci)

)
+

n

∑
i=0,i ̸=l

m
(

r,
f (z+ ci)

f (z+ cl)

)
+m(r,F(z))+m

(
r,

1
f (z+ cl)

)
+O(1).

(6.42)

Combining (6.6) and (6.7) with (6.42), then by using Lemma 5.5, for any given ε > 0 , we get

m(r,Al0(z))≤
n

∑
i=0,i̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O
(
log+T (2r, f )

)
+O

(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))

+
(
1+o(1)

)
T (r+ |cl|, f (z))+O(1)

≤
n

∑
i=0,i̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+2T (2r, f (z))

≤
n

∑
i=0,i̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+O

(
(logr)ρlog( f )+ε

)
.

(6.43)

We suppose that

δ (∞,Al0) = δ > 0 (6.44)

and max{ρlog(Ai j) : (i, j) ̸= (l,0)} = ρ < µlog(Al0). Then by (6.44) and the definitions of µlog(Al0)

and ρlog(Ai j), for any given ε

(
0 < ε <

µlog(Al0)−ρ

2

)
and sufficiently large r, we have

m(r,Al0)≥
δ

2
T (r,Al0)≥

δ

2
(logr)µlog(Al0)− ε

2 ≥ (logr)µlog(Al0)−ε . (6.45)

and

T (r,Ai j)≤ (logr)ρlog(Ai j)+ε ≤ (logr)ρ+ε , (i, j) ̸= (l,0). (6.46)

(1) If µlog(F) < µlog(Al0), then by Lemma 5.1, there exists a subset E1 with infinite logarithmic

measure such that for any given ε

(
0 < ε <

µlog(Al0)−µlog(F)
2

)
and for all r ∈ E1, we have

T (r,F)≤ (logr)µlog(F)+ε . (6.47)

By substituting (6.45)-(6.47) into (6.43), for any given ε satisfying

0 < ε < min
{

µlog(Al0)−ρ

2
,

µlog(Al0)−µlog(F)

2

}
and for all r ∈ E1, we get

(logr)µlog(Al0)−ε ≤ (n(m+1)+n)(logr)ρ+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(logr)µlog(F)+ε +O

(
(logr)ρlog( f )+ε

)
,

(6.48)
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which implies that

(1−o(1))(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )+ε

)
, (6.49)

that is, µlog(Al0)−2ε ≤ ρlog( f ). Since ε > 0 is arbitrary, we obtain µlog(Al0)≤ ρlog( f ).

Further, if F(z)≡ 0, then by (6.6), (6.42) and Lemma 5.3, there exists a subset E2 with infinite

logarithmic measure such that for any given ε > 0 and for all r ∈ E2, we have

m(r,Al0(z))≤
n

∑
i=0,i ̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O(log(logr))

+O
(
(logr)µlog( f )−1+ε

)
.

(6.50)

Substituting (6.45) and (6.46) into (6.50), for any given ε satisfying 0 < ε <
µlog(Al0)−ρ

2 and for

all r ∈ E2, we obtain

(logr)µlog(Al0)−ε ≤ (n(m+1)+m)(logr)ρ+ε +O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
.

(6.51)

It follows that

(1−o(1))(logr)µlog(Al0)−ε ≤ O
(
(logr)ρlog( f )−1+ε

)
. (6.52)

So, µlog(Al0)+ 1− 2ε ≤ ρlog( f ). Since ε > 0 is arbitrary, we conclude that µlog(Al0)+ 1 ≤
ρlog( f ).

(2) Let f be a meromorphic solution of (6.2). If µlog(F)> µlog(Al0), then by (6.2), Lemma 5.5 and

Lemma 6.3, we have

T (r,F(z))≤ ∑
(i, j)̸=(l,0)

T (r,Ai j(z))+T (r,Al0(z))+
n

∑
i=0

m

∑
j=0

T
(
r, f ( j)(z+ ci)

)
+O(1)

≤ ∑
(i, j)̸=(l,0)

T (r,Ai j(z))+T (r,Al0(z))+
n

∑
i=0

m

∑
j=0

(
( j+1)T

(
r, f (z+ ci)

)
+S(r, f )

)
+O(1)

≤ ∑
(i, j)̸=(l,0)

T (r,Ai j(z))+T (r,Al0(z))+O
(
T (2r, f (z))

)
+o(T (r, f )).

(6.53)

By the definition of µlog(F), for any given ε

(
0 < ε <

µlog(F)−µlog(Al0)
2

)
and sufficiently large r,

we have

T (r,F)≥ (logr)µlog(F)−ε . (6.54)

By Lemma 5.1, there exists a subset E1 of infinite logarithmic measure, such that for any given

ε > 0 and for all r ∈ E1, we have

T (r,Al0)≤ (logr)µlog(Al0)+ε . (6.55)
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Substituting the assumptions (6.46), (6.54) and (6.55) into (6.53), for any given ε satisfying

0 < ε <
µlog(F)−µlog(Al0)

2 and for all r ∈ E1, we get

(logr)µlog(F)−ε ≤ ∑
(i, j)̸=(l,0)

(logr)ρ+ε +(logr)µlog(Al0)+ε +O
(
T (2r, f (z))

)
+o(T (r, f ))

= (n(m+1)+n)(logr)ρ+ε +(logr)µlog(Al0)+ε +O
(
T (2r, f (z))

)
+o(T (r, f )).

(6.56)

Then (
1−o(1)

)
(logr)µlog(F)−ε ≤ O

(
T (2r, f (z))

)
+o(T (r, f )). (6.57)

It follows by (6.57) that ρlog( f ) ≥ µlog(F)− ε . Since ε > 0 is arbitrary, we deduce that

ρlog( f )≥ µlog(F).

Proof of Theorem 6.8

Proof. Let f (z)(̸≡ 0) be a meromorphic solution of (6.2). By (6.43), for any given ε > 0, we have

T (r,Al0(z)) = m(r,Al0(z))+N(r,Al0(z))

≤
n

∑
i=0,i ̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+T (r,F(z))+O

(
(logr)ρlog( f )+ε

)
+N(r,Al0(z)),

(6.58)

(1) If ρlog(F)< µlog(Al0), then for any given ε

(
0 < ε <

µlog(Al0)−ρlog(F)
2

)
and sufficiently large r,

we have

T (r,F)≤ (logr)ρlog(F)+ε . (6.59)

Suppose that ρ =max{ρlog(Ai j) : (i, j) ̸=(l,0)}< µlog(Al0). Then by the definitions of µlog(Al0)

and ρlog(Ai j), for any given ε

(
0 < ε <

µlog(Al0)−ρ

2

)
and sufficiently large r, we get

T (r,Al0)≥ (logr)µlog(Al0)−ε (6.60)

and

T (r,Ai j)≤ (logr)ρlog(Ai j)+ε ≤ (logr)ρ+ε , (i, j) ̸= (l,0). (6.61)

By the definition of λlog(
1

Al0
) , for any given ε

(
0 < ε <

µlog(Al0)−λlog(
1

Al0
)−1

2

)
and sufficiently

large r, we have

N(r,Al0)≤ (logr)λlog(
1

Al0
)+1+ε

. (6.62)

By substituting the assumptions (6.59) - (6.62) into (6.58), for any given ε satisfying

0 < ε < min
{

µlog(Al0)−ρ

2
,

µlog(Al0)−λlog(
1

Al0
)−1

2
,

µlog(Al0)−ρlog(F)

2

}
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and sufficiently large r, we obtain

(logr)µlog(Al0)−ε ≤
n

∑
i=0,i̸=l

m

∑
j=0

T (r,Ai j(z))+
m

∑
j=1

T (r,Al j(z))+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+(logr)ρlog(F)+ε

+O
(
(logr)ρlog( f )+ε

)
+(logr)λlog(

1
Al0

)+1+ε
.

(6.63)

Then (
1−o(1)

)
(logr)µlog(Al0)−ε ≤ O

(
(logr)ρlog( f )+ε

)
. (6.64)

which implies that ρlog( f )≥ µlog(Al0)−2ε. Since ε > 0 is arbitrary, we get ρlog( f )≥ µlog(Al0).

Now we suppose that max{ρlog(Ai j) : (i, j) ̸= (l,0)}= µlog(Al0) and

τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0)

τlog(Ai j)< τ log(Al0).

Then there exist two sets Γ1 ⊆ {(i, j) : i = 0,1, ...,n, j = 0,1, , ...,m,(i, j) ̸= (l,0)} and Γ2 =

{(i, j) : i = 0,1, ...,n, j = 0,1, , ...,m,(i, j) ̸= (l,0)} \ Γ1, such that for (i, j) ∈ Γ1, we have

ρlog(Ai j)= µlog(Al0) with τ =∑(i, j)∈Γ1
τlog(Ai j)< τ log(Al0) and for (i, j)∈Γ2, we have ρlog(Ai j)<

µlog(Al0). Hence, for any given ε

(
0 < ε <

τ log(Al0)−τ

mn+m+n+1

)
and sufficiently large r, we get

T (r,Ai j)≤ (τlog(Ai j)+ ε)(logr)µlog(Al0), (i, j) ∈ Γ1 (6.65)

and

T (r,Ai j)≤ (logr)µlog(Al0)−ε , (i, j) ∈ Γ2. (6.66)

By the definition of τ log(Al0), for the above ε and sufficiently large r, we have

T (r,Al0)≥ (τ log(Al0)− ε)(logr)µlog(Al0). (6.67)

By substituting the assumptions (6.59), (6.62), (6.65), (6.66) and (6.67) into (6.58), for any given

ε satisfying

0 < ε < min
{

τ log(Al0)− τ

mn+m+n+1
,

µlog(Al0)−λlog(
1

Al0
)−1

2
,

µlog(Al0)−ρlog(F)

2

}
and for sufficiently large r, we obtain

(τ log(Al0)− ε)(logr)µlog(Al0)

≤ ∑
(i, j)∈Γ1

(τlog(Ai j)+ ε)(logr)µlog(Al0)+ ∑
(i, j)∈Γ2

(logr)µlog(Al0)−ε

+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(logr)ρlog(F)+ε

+O
(
(logr)ρlog( f )+ε

)
+(logr)λlog(

1
Al0

)+1+ε

≤ (τ +(mn+m+n)ε)(logr)µlog(Al0)+O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+(logr)ρlog(F)+ε

+O
(
(logr)ρlog( f )+ε

)
+(logr)λlog(

1
Al0

)+1+ε
.

(6.68)
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Thus,

(
1−o(1)

)(
τ log(Al0)− τ − (mn+m+n+1)ε

)
(logr)µlog(Al0) ≤ O

(
(logr)ρlog( f )+ε

)
. (6.69)

It follows by (6.69) that ρlog( f ) ≥ µlog(Al0)− ε . Since ε > 0 is arbitrary, we get ρlog( f ) ≥
µlog(Al0).

If ρlog(F) = µlog(Al0) and τ + τlog(F)< τ log(Al0), then for any given ε > 0 and for sufficiently

large r, we have

T (r,F)≤ (τlog(F)+ ε)(logr)µlog(Al0). (6.70)

By substituting the assumptions (6.62), (6.65)-(6.67) and (6.70) into (6.58), for any given ε

satisfying

0 < ε < min
{

τ log(Al0)− τ − τlog(F)

mn+m+n+2
,

µlog(Al0)−λlog(
1

Al0
)−1

2

}
and for sufficiently large r, we get

(τ log(Al0)− ε)(logr)µlog(Al0)

≤ ∑
(i, j)∈Γ1

(τlog(Ai j)+ ε)(logr)µlog(Al0)+ ∑
(i, j)∈Γ2

(logr)µlog(Al0)−ε

+O(log(logr))+O
(
(logr)ρlog( f )−1+ε

)
+(τlog(F)+ ε)(logr)µlog(Al0)

+O
(
(logr)ρlog( f )+ε

)
+(logr)λlog(

1
Al0

)+1+ε

≤ (τ +(mn+m+n)ε)(logr)µlog(Al0)+O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))

+O
(
(logr)ρlog( f )−1+ε

)
+(τlog(F)+ ε)(logr)µlog(Al0)

+O
(
(logr)ρlog( f )+ε

)
+(logr)λlog(

1
Al0

)+1+ε
.

(6.71)

It follows

(
1−o(1)

)(
τ log(Al0)− τ − τlog(F)− (mn+m+n+2)ε

)
(logr)µlog(Al0) ≤ O

(
(logr)ρlog( f )+ε

)
.

(6.72)

This implies that ρlog( f )≥ µlog(Al0)−ε . Since ε > 0 is arbitrary, we obtain ρlog( f )≥ µlog(Al0).

If µlog(F) = µlog(Al0) and τ + τ log(Al0)< τ log(F), then for any sufficiently small ε > 0 and for

sufficiently large r, we have

T (r,F)> (τ log(F)− ε)(logr)µlog(Al0). (6.73)

By Lemma 6.2, there exists a subset E1 of infinite logarithmic measure, such that for any given

ε > 0 and for all r ∈ E1, we have

T (r,Al0)≤ (τ log(Al0)+ ε)(logr)µlog(Al0). (6.74)
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Substituting the assumptions (6.65), (6.66), (6.73) and (6.74), into (6.53), for every sufficiently

small ε satisfying 0 < ε <
τ log(F)−τ−τ log(Al0)

mn+m+n+2 and for all r ∈ E3, we obtain

(τ log(F)− ε)(logr)µlog(Al0)

≤ ∑
(i, j)∈Γ1

(τlog(Ai j)+ ε)(logr)µlog(Al0)+ ∑
(i, j)∈Γ2

(logr)µlog(Al0)−ε

+(τ log(Al0)+ ε)(logr)µlog(Al0)+O
(
T (2r, f (z))

)
+o(T (r, f ))

≤ (τ + τ log(Al0)+(mn+m+n+1)ε)(logr)µlog(Al0)+O
(
(logr)µlog(Al0)−ε

)
+O

(
T (2r, f (z))

)
+o(T (r, f )).

(6.75)

So (
1−o(1)

)(
τ log(F)− τ − τ log(Al0)− (mn+m+n+2)ε

)
(logr)µlog(Al0)

≤ O
(
T (2r, f (z))

)
+o(T (r, f )),

(6.76)

which implies that ρlog( f )≥ µlog(Al0) .

Further for the homogeneous case F(z)≡ 0, by (6.50), for any given ε > 0 and for all r ∈ E2,

we have
T (r,Al0(z)) = m(r,Al0(z))+N(r,Al0(z))

≤
n

∑
i=0,i ̸=l

m

∑
j=0

T (r,Ai j)+
m

∑
j=1

T (r,Al j)+O(log(logr))

+O
(
(logr)µlog( f )−1+ε

)
+N(r,Al0(z)).

(6.77)

If ρ = max{ρlog(Ai j) : (i, j) ̸= (l,0)}< µlog(Al0), then by substituting the assumptions (6.60) -

(6.62) into (6.77), for any given ε satisfying

0 < ε < min
{

µlog(Al0)−ρ

2
,

µlog(Al0)−λlog(
1

Al0
)−1

2

}
and for all r ∈ E2, we obtain

(logr)µlog(Al0)−ε ≤
n

∑
i=0,i̸=l

m

∑
j=0

(logr)ρ+ε +
m

∑
j=1

(logr)ρ+ε +O(log(logr))

+O
(
(logr)µlog( f )−1+ε

)
+(logr)λlog(

1
Al0

)+1+ε

≤ (n(m+1)+m)(logr)ρ+ε +O(log(logr))+O
(
(logr)µlog( f )−1+ε

)
+(logr)λlog(

1
Al0

)+1+ε
.

(6.78)

Then (
1−o(1)

)
(logr)µlog(Al0)−ε ≤ O

(
(logr)µlog( f )−1+ε

)
, (6.79)

which implies that µlog( f ) ≥ µlog(Al0) + 1 − 2ε. Since ε > 0 is arbitrary, we deduce that

µlog( f )≥ µlog(Al0)+1. If max{ρlog(Ai j) : (i, j) ̸= (l,0)}= µlog(Al0) and

τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0)

τlog(Ai j)< τ log(Al0),
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then by substituting the assumptions (6.62), (6.65), (6.66) and (6.67) into (6.77), for any given ε

satisfying

0 < ε < min
{

τ log(Al0)− τ

mn+m+n+1
,

µlog(Al0)−λlog(
1

Al0
)−1

2

}
and for all r ∈ E2, we get

(τ log(Al0)− ε)(logr)µlog(Al0)

≤ ∑
(i, j)∈Γ1

(τlog(Ai j)+ ε)(logr)µlog(Al0)+ ∑
(i, j)∈Γ2

(logr)µlog(Al0)−ε

+O(log(logr))+O
(
(logr)µlog( f )−1+ε

)
+(logr)λlog(

1
Al0

)+1+ε

≤ (τ +(mn+m+n)ε)(logr)µlog(Al0)+O
(
(logr)µlog(Al0)−ε

)
+O(log(logr))+O

(
(logr)µlog( f )−1+ε

)
+(logr)λlog(

1
Al0

)+1+ε
.

(6.80)

It follows that

(
1−o(1)

)(
τ log(Al0)− τ − (mn+m+n+1)ε

)
(logr)µlog(Al0) ≤ O

(
(logr)µlog( f )−1+ε

)
, (6.81)

that is µlog( f )≥ µlog(Al0)+1− ε . Since ε > 0 is arbitrary, we obtain µlog( f )≥ µlog(Al0)+1.

(2) Let f be a meromorphic solution of (6.2). If µlog(F) > µlog(Al0), then we suppose that ρ =

max{ρlog(Ai j) : (i, j) ̸= (l,0)} < µlog(Al0). By using a similar reasoning method as in (6.53)-

(6.57) from the proof of Theorem 6.7, we get µlog(F)≤ ρlog( f ).

Now, we suppose that max{ρlog(Ai j) : (i, j) ̸= (l,0)}= µlog(Al0) and

τ = ∑
ρlog(Ai j)=µlog(Al0),(i, j)̸=(l,0)

τlog(Ai j)< τ log(Al0).

Then by substituting the assumptions (6.54), (6.65), (6.66) and (6.67) into (6.53), for any given

ε satisfying 0 < ε <
µlog(F)−µlog(Al0)

2 and for all r ∈ E3, we have

(logr)µlog(F)−ε ≤ ∑
(i, j)∈Γ1

(τlog(Ai j)+ ε)(logr)µlog(Al0)+ ∑
(i, j)∈Γ2

(logr)µlog(Al0)−ε

+(τ log(Al0)+ ε)(logr)µlog(Al0)+O
(
T (2r, f (z))

)
+o(T (r, f ))

≤ (τ + τ log(Al0)+(mn+m+n+1)ε)(logr)µlog(Al0)+O
(
(logr)µlog(Al0)−ε

)
+O

(
T (2r, f (z))

)
+o(T (r, f )).

(6.82)

It follows that

(
1−o(1)

)
(logr)µlog(F)−ε ≤ O

(
T (2r, f (z))

)
+o(T (r, f )). (6.83)

By (6.83), we conclude that ρlog( f )≥ µlog(F).
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6.5 Examples

The following example is for illustrating the sharpness of some assertions in Theorem 6.6.

Example 6.1. For Theorem 6.6, we consider the meromorphic function

f (z) =
1
z5 (6.84)

which is a solution to the delay-differential equation

A20(z) f (z−2i)+A11(z) f ′(z+ i)+A10(z) f (z+ i)

+A01(z) f ′(z)+A00(z) f (z) = F(z), (6.85)

where A20(z) = 2
3(z− 2i)4, A11(z) = 2e, A10(z) = 10e

z+i , A01(z) = i
2 , A00(z) = 5i

2z and F(z) = 2
3(z−2i) .

Obviously, Ai j(z) (i = 0,1,2, j = 0,1) and F(z) satisfy the conditions in Case (iii) of Theorem 6.6,

such that

δ (∞,A20) = 1 > 0,

µlog(A11) = 0 < max{ρlog(F),ρlog(Ai j),(i, j) ̸= (1,1),(2,0)}= µlog(A20) = 1

and

∑
ρlog(Ai j)=µlog(A20),(i, j)̸=(1,1),(2,0)

τlog(Ai j)+ τlog(F) = 3 < δτ log(A20) = 4.

We see that f satisfies

µlog( f ) = 1 = ρlog(A20).

The meromorphic function f (z) = 1
z5 is a solution of equation (6.85) for the coefficients A20(z) =

3(z−2i)7, A11(z) = 1
z−i , A10(z) = 5

z2+1 , A01(z) = i
2 , A00(z) = 5i

2z and F(z) = 3(z−2i)2. Clearly, Ai j(z)

(i = 0,1,2, j = 0,1) and F(z) satisfy the conditions in Case (iv) of Theorem 6.6 such that

δ (∞,A20) = 1 > 0,

µlog(A11) = max{ρlog(F),ρlog(Ai j),(i, j) ̸= (1,1),(2,0)}= µlog(A20) = 1

and

∑
ρlog(Ai j)=µlog(A20),(i, j)̸=(1,1),(2,0)

τlog(Ai j)+ τlog(F)+ τ log(A11) = 6 < δτ log(A20) = 7.

We see that f satisfies ρlog( f ) = 1 = µlog(A20).
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Conclusion

In this thesis, Nevanlinna theory of value distribution has been applied to study the behavior of solutions

through two important aspects: the growth and the oscillation. This study included linear differential

equations with analytic or meromorphic coefficients in the extended complex plane except at a finite

singular point, linear difference equations with meromorphic coefficients and linear delay-differential

equations also with meromorphic coefficients. This thesis may address several questions related to the

growth and value distribution of solutions to these three types of problems, but it also opens the door

to many other intriguing questions, such as:

Q1: Can we obtain similar results to those in the third and fourth chapters for the case when the

coefficients are analytic or meromorphic functions in the unit disk?

Q2: What can be said about the growth and value distribution of the linear difference polynomials

generated by meromorphic solutions of the higher order complex linear difference equations of Chapter

5 ?
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