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Abstract

The main goal of this thesis is to present a set results on the existence, uniqueness and sta-

bility of certain classes of the initial value problems and boundary value problems for frac-

tional q-difference equations and impulsive fractional q-difference equations involving

Caputo’s fractional q-derivative. The results have been proven analytically, where the ex-

istence results are based on some classical fixed point theorems (Banach, Schaefer, Kras-

noselskii, Non-linear alternative of Leray-Schauder) as well as Mönch’s fixed point the-

orem combined with the technique of Kuratowski’s measure of noncompactness, while

the stability results depend on the techniques of Ulam-Hyers stability and Ulam-Hyers-

Rassias stability. To support our results, we provide different illustrative examples in each

chapter.

Key-words and phrases: Fractional q-calculus; Quantum calculus; Caputo fractional

q-derivative; Fractional q-difference equations; Impulsive fractional q-difference equa-

tions; Initial value problem; Boundary value problem; Banach space; Existence; Unique-

ness; Fixed point theorems; Kuratowski measure of noncompactness; Ulam-Hyers stabil-

ity; Ulam-Hyers-Rassias stability.

AMS Subject Classification: 05A30, 26A33, 34A08, 34A12, 34A37, 34Bxx, 39A13, 47H10.
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Résumé

L’objectif principal de cette thèse est de présenter un ensemble des résultats sur l’existence,

l’unicité et la stabilité de certaines classes de problèmes à valeurs initiales et problèmes

aux limites pour les équations q-différence fractionnaires et les équations q-différence

fractionnaires impulsives impliquant la q-dérivée fractionnaire de Caputo. Les résul-

tats ont été prouvés analytiquement, où les résultats d’existence sont basés sur certaines

théorèmes classiques du point fixe (Banach, Schaefer, Krasnoselskii, alternative non linéaire

de Leray-Schauder) et ainsi que sur le théorème du point fixe de Mönch combiné avec la

technique de la mesure de non-compacité de Kuratowski, alors que les résultats de stabil-

ité sont basés sur des techniques de la stabilité d’Ulam-Hyers et la stabilité d’Ulam-Hyers-

Rassias. Pour étayer nos résultats, on offre différents exemples illustratifs dans chaque

chapitre.

Mots-clés et phrases: q-Calcul fractionnaire; Calcul quantique; La q-Dérivé fraction-

naire au sens de Caputo; Équations q-différence fractionnaires; Équations q-différence

fractionnaires impulsives; Problème à valeur initiale; Problème aux limites; Espace de Ba-

nach; Existence; Unicité; Théorèmes de point fixe; Mesure de Kuratowski de non-compacité;

Stabilité d’Ulam-Hyers; Stabilité d’Ulam-Hyers-Rassias.

Classification AMS: 05A30, 26A33, 34A08, 34A12, 34A37, 34Bxx, 39A13, 47H10.
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  الملخص     

            

وحدانية  الهدف الرئيسي من هذه الأطروحة هو تقديم مجموعة من النتائج حول وجود،

-qفئات معينة من مسائل القيمة الأولية والحدية للمعادلات ل  حلول واستقرار 

ي تتضمن-qالتفاضلية الكسرية والمعادلات 
مشتق   التفاضلية الكسرية الاندفاعية  الت 

، حيث تعتمد نتائج الوجود على بعض .  q-Caputكسري ل
ً
وقد تم إثبات النتائج تحليليا

، البديل غير الخطي Banach ،Schaefer ،Krasnoselskiiنظريات النقطة الثابتة )

Leray-Schauder وبالإضافة إلى نظرية )Mönch  للنقطة الثابتة جنبًا إلى جنب مع

ن تعتمد  ، وKuratowskiالتوافق ل س عدمتقنية مقيا ي حير
ن
نتائج الاستقرار على ف

لدعم نتائجنا،  . Ulam-Hyers-Rassiasو استقرار  Ulam-Hyersاستقرار  تقنيات

ي كل فصل. 
ن
 نقدم أمثلة توضيحية مختلفة ف

 



Notations

N : Set of natural numbers.

N∗ : Set of natural numbers without zero.

R : Set of real numbers.

R∗ : Set of real numbers without zero.

R+ : Set of positive real numbers.

C : Set of complex numbers.

convA : Convex hull of bounded set A .

convA : Convex hull and closed of bounded set A .

sup : Supremum.

inf : Infimum.

[.] : Integer part of a real number.

E : Banach space.

‖.‖ : Norm of Banach space E.

Γq (.) : q-Gamma function.

Bq (., .) : q-Beta function.

Dq : q-Derivative.

Iq : q-Integral.

I
β
q,a : Riemann-Liouville’s fractional q-integral of order β≥ 0; q ∈ (0,1).

RLD
β
q,a : Riemann-Liouville’s fractional q-derivative of order β≥ 0; q ∈ (0,1).

CDα
q,a : Caputo’s fractional q-derivative of order β≥ 0; q ∈ (0,1).
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Introduction

Fractional calculus is one of the fundamental areas of mathematical analysis, which is a

generalization of ordinary differentiation and integration to an arbitrary real or complex

order. The idea of fractional calculus has a long history, it began with a conversation be-

tween two mathematicians Leibnitz and L’Hopital at the end of the 17th century; Leibnitz

introduced the derivative symbol d n y
d xn of order n ∈ N and L’Hopital posed a question to

Leibnitz in 1695 : "What if n be 1
2 ", Leibnitz replied: "It will lead to a paradox" and added:

"From this apparent paradox, one day useful consequences will be drawn." (see [81]). Out

of this conversation fractional calculus was born.

Through time, this question has attracted the interest and investigation by many math-

ematicians, in particular: Euler (1730), Lagrange (1772), Laplace (1812), Fourier (1822),

Abel (1823), Liouville (1832), Riemann (1847), Hadamard (1892), Riesz (1922), and others,

which contributed to the development of fractional calculus. However, this theory can be

considered a new topic because it was the talk of researchers at scientific conferences and

seminars. The first conference on fractional calculus and its applications is attributed to

Ross, who organized it in June 1974 at the University of New Haven, edited the conference

procedures in [81]. The first monograph is attributed to Oldham and Spanier who pub-

lished a book dedicated to fractional calculus in 1974 [76].

Recently, there has been a great interest on the theory of the integrals, derivatives of

the arbitrary order, and fractional differential equations by scholars, with a lot of works

that appeared on it, including books of Samko et al. [85], Miller et al. [70], Podlubny [77],

Hilfer [55], Kilbas et al. [64] and Tarasov [92]. Moreover, fractional differential equations

provide a comprehensive scheme for analysing regular and complex systems in many

fields, such as physics, engineering, biology, economics, material sciences and social sci-

ences. These are some applications:

I In Physics: Fractional differential equations are essential for modelling anoma-

lous diffusion and explaining how the system changes over time [48]. Furthermore,

many non-linear physical phenomena that include gas bubbles in liquids can be

explained by using the nonlinear fractional-stochastic wave equation [72].

1
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I In Engineering: Fractional differential equations are employed to simulate damp-

ing systems and viscoelastic materials [47], with giving more precise explanations

of mechanical behaviour. Fractional-order controllers can also be used to progress

the performance and stability of control systems [41].

I In Biology: Fractional order models can be used to study how the disease is spread

in societies. Specifically, an effective and acceptable explanation of the COVID-

19 pandemic and its spreading variant can be obtained using non-integer order of

COVID-19 models [19, 97].

I In Economics: A fractional-order growth model with time delay can be used to ef-

fectively represent economic growth by adding a time lag to the capital stock [69].

As a consequence, several authors paid attention of fractional differential equations

and investigated the existence and stability of solutions to initial and boundary value

problems for fractional differential equations; the reader can see the books of Abbas et

al [4, 3] and Benchohra et al [36, 37], the papers [9, 10, 31, 32, 33, 34, 35, 39, 40, 45, 46, 53]

and the references therein.

Q-Difference calculus or quantum calculus is also a significant branch in mathemat-

ical analysis, and is considered a link between mathematics and physics. The history

of q-difference calculus dates back to 1910, thanks to the works of Jackson [58, 59], the

first researcher who created q-calculus in a systematic manner and presented the idea of

the q-derivative, q-integral and certain classical concepts. The essential definitions and

properties of q-calculus can be read in the book of Kac and Cheung [63]. The q-difference

calculus has played a very important role in physical phenomena; for example, the physi-

cist Fock studied the symmetry of hydrogen atoms using the q-difference equations.

By integrating q-difference calculus with fractional calculus you get fractional q-diffe-

rence calculus, which is a generalization of q-difference calculus to an arbitrary real or

complex order. Moreover, the fractional q-calculus was first developed at the end of the

1960s thanks to the contributions of Al-Salam [27] who proposed the theory of the frac-

tional q-calculus, beginning from the q-analogue of Cauchy’s formula and Agarwal [11]

who addressed some fractional q-integral and fractional q-derivatives operators. In addi-

tion, Rajković et al. in [78, 79, 86, 88] expanded the concepts of the fractional q-calculus

and discussed its properties.

Fractional q-calculus, especially fractional q-difference equations are essential for

modeling a large number of phenomena in various fields of science and engineering, such

as:

2
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I In Physics: Fractional q-difference equations can be used to simulate anomalous

diffusion processes, like as subdiffusion or superdiffusion. It is also possible to

model complex behaviors in statistical physics [8].

I In Mechanics: Fractional q-calculus provides a mathematical framework for mod-

eling complex dynamics and phenomena. It can be used to model non-linear dy-

namics in mechanical systems as well as frictional dynamics in mechanical systems,

including viscoelastic materials and contact mechanics.

I In Chemistry: Fractional q-difference equations can be applied to models of chem-

ical networks and chemical reaction kinetics, which provide a framework for de-

scribing the speeds of chemical reactions involving complex molecular interac-

tions.

I In Medicine: Fractional q-difference equations can facilitate modeling of diseases

with complex dynamics, such as cancer, neurodegenerative disorders and Corona

virus (COVID-19). In addition, fractional q-difference equations can be helpful

in analysing biomedical signals, including electrocardiogram (ECG) and electroen-

cephalogram (EEG).

I In Economics: Fractional q-calculus techniques can be applied to solve economics

optimisation problems such as production scheduling and resource allocation. The

dynamics of financial time series data, such as currency rates and stock prices, can

also be represented employing fractional q-difference equations.

Further, fractional q-difference equations have attracted the attention of mathemati-

cians and engineers in recent times, due to their application in many areas. So that

they discussed and investigated the existence and stability of its solutions; for details, see

the books of Annaby and Mansour [28], Abbas et al. [1] and the papers of Ahmed et al.

[13, 15, 17] and Abbas et al. [2, 5, 6]. As a result, initial and boundary value problems for

fractional q-difference equations involving Caputo’s fractional q-derivative have become

of significance among researchers; for more information, see the works [5, 7, 8, 13, 14, 15,

42, 56, 67, 68, 84, 98] and the references therein.

On the other hand, the research into the theory of impulsive differential equations

began in the 1960s by Milman and Myshkis [71] and achieved great progress over time

with contributions from mathematicians due to its importance and applications in vari-

ous fields, including in physics, chemistry, biology, control theory and population dynam-

ics. This makes it a vital and active field of research in modern mathematics and applied

sciences. Recently, impulsive fractional differential equations and impulsive fractional

q-difference equations have drawn the attention of several scholars, who have examined

3
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the existence and stability of their solutions; for example, refer to references [2, 13, 16, 26,

20, 38, 52, 61, 75, 93].

Fixed point theories offers basic tools for examining existence and uniqueness of solu-

tions to various non-linear problems. They often depend on some specific properties (e.g.

contraction, complete continuity, . . . ). Lately, fixed point theory has proven to be a highly

useful and significant instrument in studying a variety of phenomena in a wide range of

scientific and engineering domains. Fixed point theory plays an essential role in solving

fractional differential equations and their applications such as initial and boundary value

problems. Among the most famous fixed point theories are Banach’s theorem, Schaefer’s

and Krasnoselskii’s theorems, nonlinear alternative of Leary-Schauder’s theorem. In ad-

dition to fixed point theorem of Mönch [73, 74] combined with Kuratowski’s measure of

non-compactness.

The concept of the measure of non-compactness was first introduced in the mid-20th

century by the Polish mathematician Kuratowski [66], after whom the concept is named.

The first study of the Kuratowski’s measure of non-compactness was attributed to Banas

and Goebe [29], and then it was developed and applied to many works; see the papers of

Szufla [89], Akhmerov et al [18], Guo et al [51] and Banas et al [30]. the technique of Ku-

ratowski’s measures of non-compactness is a useful and important tool in mathematical

analysis, particularly in functional analysis, differential equations and dynamic systems.

Ulam [95] was the first to raise the topic of the functional equations stability in a 1940

speech at Wisconsin University . In 1941, Hyers introduced and proved the stability the-

ory of functional equations (for more information see [57]). Later, this type of stability

was called Ulam-Hyers stability. Rassias [80] generalised the Hyers theorem in 1978, and

established the Ulam-Hyers stability of linear mappings in Banach space. Following this

finding, several works were published in order to expand the results of Ulam-Hyers stabil-

ity and apply them to ordinary differential equations and fractional differential equations;

refer to the papers of Rus [82, 83], Wang et al. [96], Dahmani et al. [46] and Taieb et al.

[90, 91], and the monograph of Jung [62] and Abbas et al. [4]. However, many academics

have focused on Ulam-Hyers stability and Ulam-Hyers-Rassias stability of fractional q-

difference equations; see the references [1, 6, 42, 56, 61, 67, 68].

The main goal of this thesis is to study of the existence, uniqueness and Ulam stability

of the solutions of some initial and boundary value problems for fractional q-difference

equations involving Caputo’s fractional q-derivative. This thesis consists of an introduc-

tion, four chapters and a conclusion with some perspectives, which is organized as fol-

lows:

4
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I Chapter 1: This chapter contains preliminary concepts, main definitions and nota-

tions necessary to understanding the content of this thesis. In the first section, we

explain the terms and definitions of functional analysis tools. The quantum calcu-

lus is reviewed in the second section. The third section focuses on the basic defi-

nitions and properties of the fractional q-calculus. In the fourth section, we give a

summary of Kuratowski’s measures of non-compactness. Then, we present some

classical fixed point theorems in the last section.

I Chapter 2: In this chapter, we create some existence and uniqueness results for

the boundary value problem for fractional q-difference equations involving the Ca-

puto’s fractional q-derivative of the following form:


(

CD
β
q z

)
(t ) =φ(t , z(t )); 0 < β≤ 1, t ∈ J = [0,T],

az(0)+bz(T) = c,

(1)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈

(0,1], φ : J×E→ E is a given function with E is Banach space and a,b and c are real

constants such that a+b 6= 0.

Firstly, we begin by presenting the integrable solution to the boundary value prob-

lem (1). Following that, we provide the main results of existence, the first results are

based on Banach’s contraction principle, Schaefer’s fixed point theorem and Leray-

Schauder non-linear alternative. The second result depends on Mönch’s fixed point

theorem combined with the Kuratowski’s measure of non-compactness. Finally, we

give an illustrative example at the end each section.

I Chapter 3: This chapter is concerned with determining the results of the existence

and stability of the boundary value problem for fractional q-difference equations

with integral conditions, which are given by:



(
CD

β
q z

)
(t ) =φ(t , z(t )); 1 < β≤ 2, t ∈ J = [0,T],

z(0)− z ′(0) =
∫ T

0 ϕ(s, z(s))d s,

z(T)+ z ′(T) =
∫ T

0 ψ(s, z(s))d s,

(2)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈

(1,2], φ : J×E→ E is a given function and ϕ,ψ : J×E→ E are continuous functions

with E is Banach space.
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First of all, we start by giving the integrable solution to the problem (2). Then, in

the second part, we prove the existence, uniqueness and Ulam stability of solutions

to the boundary value problem for fractional q-difference equations with integral

conditions (2) with E = R, by applying some fixed point theorems (Banach, Schae-

fer) and Ulam-Hyers and Ulam-Hyers-Rassias stabilities techniques. In the third

part, we discuss another result of the existence of solutions to the boundary value

problem for fractional q-difference equations with integral conditions (2) in Banach

spaces, using Mönch’s fixed point theorem and the Kuratowski’s measure of non-

compactness. At the conclusion of each section, we provide examples to illustrate

the main results.

I Chapter 4: In this chapter, we establish the existence, uniqueness and stability re-

sults for the initial value problem for impulsive fractional q-difference equations

involving Caputo’s fractional q-derivative, given as follows:

(
CD

β
q z

)
(t ) =φ(t , z(t )); 1 < β≤ 2, t ∈ J = [0,T], t 6= ti , i = 1, · · · ,n,

∆z |t=ti = Ii (z(t−i )), i = 1, · · · ,n,

∆z ′ |t=ti = I i (z(t−i )), i = 1, · · · ,n,

z(0) = z0, z ′(0) = z∗
0 ,

(3)

where q ∈ (0,1), T > 0, CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (1,2],

andφ : J×R→R is a continuous function, Ii ,I i :R→R, i = 1, · · · ,n are given func-

tions, and z0, z∗
0 ∈R, 0 = t0 < t1 < ·· · < tn < tn+1 = T <+∞,∆z |t=ti = z(t+i )− z(t−i ) and

∆z ′ |t=ti = z ′(t+i )− z ′(t−i ), z(t+i ) = limε→0+ z(ti +ε) and z(t−i ) = limε→0− z(ti +ε) repre-

sent the right and left limits of z at t = ti , i = 1, · · · ,n.

In first section, we present the integrable solution to the initial value problem (3).

The second section focuses on the main results of the existence and Ulam stabil-

ity for solutions of the initial value problem for impulsive fractional q-difference

equations (3), such that the first results of existence depend on Banach’s contraction

principle and Krasnoselskii’s fixed point theorem. The second results of stabilities

are based on Ulam-Hyers and Ulam-Hyers-Rassias stability. In the last, we offer an

example that illustrates our main results.

Finally, we close our work with a conclusion and some perspectives.
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Chapter 1

Materials and Preliminaries

This chapter constitutes a preliminary part in which we recall the fundamental notions

and results of the functional analysis theory and fractional q-calculus, which represent

essential tools in our study. Fractional q-calculus is a generalization of fractional calculus

and thus retains many basic properties.

The chapter is made in several sections. In the first section, we introduce the concepts

and definitions of functional analysis tools. The second section contains an overview of

quantum calculus (q-difference). Then, in the third section, we recall the elementary defi-

nitions and basic concepts related to the theory of fractional q-calculus and its properties.

The last two sections are devoted to presenting the basic properties of Kuratowski’s mea-

sure of non-compactness and some classical fixed point theorems that play an essential

role in our results concerning fractional q-difference equations.

1 Notations and Essential Concepts

This section contains the notations, definitions and essential concepts of the functional

analysis theory and operator; we suggest the reader to return to the following original

sources [43, 44, 49, 60, 64, 65, 85].

Definition 1.1 [43](Cauchy Sequence)
Let (E,‖.‖) be a normed vector space and let (zn)n be a sequence of elements of E, we say

that (zn)n is a Cauchy sequence if

∀ε> 0, ∃ Nε ∈N, ∀p, q ≥ Nε⇒‖zp − zq‖ < ε.

Definition 1.2 [65](Complete Space)
A normed vector space (E,‖.‖) is said to be complete, if any Cauchy sequence (zn)n of ele-

ments of E is convergent.
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1. NOTATIONS AND ESSENTIAL CONCEPTS

Definition 1.3 [65](Banach Space)
Any complete normed vector space (E,‖.‖) is known a Banach space.

Definition 1.4 [60](Lipschitz Mapping)
Let (E,‖.‖) be a normed vector space. A map φ : E→ E is said to be Lipschitzian if

∃L> 0,∀y, z ∈ E, such as : ‖φ(y)−φ(z)‖ ≤L‖y − z‖.

Definition 1.5 [60](Contraction Mapping)
A map φ : E→ E is said to be contraction, if it’s Lipschitzian with L ∈ (0,1).

Definition 1.6 [44](Carathéodory Mapping)
A map φ : [a,b]×E→ E is said to be Carathéodory, if

1. The map t →φ(t , z) is measurable for all z ∈ E, and

2. The map z →φ(t , z) is continuous for almost each t ∈ [a,b].

Definition 1.7 [60] (Compact Operator)
Let E, F be two Banach spaces. A linear operator A : E→ F is compact if it transforms all

bounded set of E into a relatively compact set of F.

Definition 1.8 [60] (Completely Continuous Operator)
Let E, F be two Banach spaces. The operator A : E→ F is said to be completely continuous,

if it’s continuous and compact.

Now, let (E,‖.‖) be a Banach space and J = [a,b] be an interval of R, then we give some

functional spaces [44, 49, 64, 85]:

• Consider C(J,E) the Banach space of continuous functions z : J→ E, equipped with

the norm

‖z‖∞ = sup
t∈J

|z(t )|.

• Let C2(J,E) the Banach space of differentiable functions from J into E whose first

and second derivatives are continuous.

• Let L1(J,R) the Banach space of measurable functions from J intoRwhich are Lebesgue

integrable, with the norm

‖z‖L1 =
∫

J
|z(t )|d t .

• Let L∞(J,R) the Banach space of measurable functions z : J → R which are essen-

tially bounded, with the norm

‖z‖L∞ = ess sup
t∈J

|z(t )| = inf{c > 0 : |z(t )| ≤ c a.e t ∈ J} .
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2. QUANTUM CALCULUS (Q-DIFFERENCE)

Next, given a set V of functions v : J→ E, let

V (t ) = {v(t ) : v ∈ V } ; t ∈ J,

V (J) = {v(t ) : v ∈ V ; t ∈ J} .

Finally, we present the Arzela-Ascoli’s theorem which plays an important role in our

work.

Theorem 1.9 [64] (Arzela-Ascoli)
Let X be a subset of C(J,E) with E is finite space. Then, X is relatively compact in C(J,E) if

and only if

(i) X is uniformly bounded, i.e.:

∃M > 0 : ‖φ(z)‖∞ ≤M ; ∀z ∈ J and φ ∈ X.

(ii) X is equi-continuous, i.e.:

∀ε> 0, ∃δ> 0 : ‖y − z‖∞ < δ ⇒ ‖φ(y)−φ(z)‖∞ < ε ∀y, z ∈ J and φ ∈ X.

2 Quantum Calculus (q-Difference)

In 1910, Jackson [58, 59], was the first scientist to developed quantum calculus in a system-

atic way, and introduced the notion of the q-derivative, the q-integral and some classical

concepts.

This section reviews the fundamental definitions and some notations of the q-difference,

as well as its properties and some examples. For details, see references [28, 63, 78, 88].

In this thesis, we assume that q ∈ (0,1). For all a ∈R, we set:

[a]q =
1−qa

1−q
. (1.1)

Definition 2.1 [63] The q-factorial of a positive integer n is defined by:

[0]q = 1, [n]q ! = [n]q [n −1]q · · · [2]q [1]q ; n ∈N. (1.2)
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2. QUANTUM CALCULUS (Q-DIFFERENCE)

Definition 2.2 [63] The q-analogue of the power (a−b)(n) is expressed by:

(a−b)(0) = 1, (a−b)(n) = (a−b)n
q =

n−1∏
i =0

(
a−bq i

)
; n ∈N, a,b ∈R. (1.3)

In general, if β ∈R, we have:

(a−b)(β) = aβ
∞∏

i =0

(
a−bq i

a−bq i+β

)
; a,b ∈R. (1.4)

Notice that, if b = 0, then a(β) = aβ.

Properties 2.3 [78] For all a,b,β ∈R+ and n,m ∈N. The following formulas are correct:

(
a−bqm)(β) = aβ

(
1−qm b

a

)(β)

. (1.5)

(
a−bqm

)(β)

(a−b)(β)
=

(
a−bqβ

)(m)

(a−b)(m)
. (1.6)

(
qn −qm)(β) = 0; m ≤ n. (1.7)

2.1 q-Derivative

In this part, we review a few definitions and properties of the q-derivative.

Definition 2.4 [63] Let φ be an arbitrary function. The q-differential is defined by:

dqφ(x) =φ(x)−φ(qx).

In particular,

dq x = x(1−q).

Definition 2.5 [63] The q-derivative of a function φ is defined by:

(
Dqφ

)
(x) =

dqφ(x)

dq x
=
φ(x)−φ(qx)

(1−q)x
; x 6= 0. (1.8)

(
Dqφ

)
(0) = lim

x→0

(
Dqφ

)
(x).

Note that,

lim
q→1

(
Dqφ

)
(x) =

dφ(x)

d x
=φ′(x).
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2. QUANTUM CALCULUS (Q-DIFFERENCE)

Example 2.6 [63] Let φ(x) = xn where n ∈N. Then, we have:

Dq xn = [n]q xn−1. (1.9)

In effect,

Dq xn =
xn − (qx)n

(1−q)x
,

=

(
1−qn

)
xn

(1−q)x
,

=
1−qn

1−q
xn−1,

= [n]q xn−1.

Properties 2.7 [63] Let φ, ψ be two functions and for γ, λ ∈ R. The properties of the q-

derivative are as follows:

1. The q-derivative Dq is a linear operator, such that:

Dq
(
γφ(x)+λψ(x)

)
= γ

(
Dqφ

)
(x)+λ(

Dqψ
)

(x).

2. The q-derivative of the product of the functions φ and ψ is given by:

Dq
(
φ(x).ψ(x)

)
=φ(qx)

(
Dqψ

)
(x)+ψ(x)

(
Dqφ

)
(x). (1.10)

3. The q-derivative of the quotient of the functions φ and ψ is given by:

Dq

(
φ(x)

ψ(x)

)
=

(
Dqφ

)
(x)ψ(qx)− (

Dqψ
)

(x)φ(qx)

ψ(x)ψ(qx)
; with ψ(x) 6= 0, ψ(qx) 6= 0. (1.11)

Proposition 2.8 [63] For n ∈N∗, we have:

(i)

Dq (x −a)(n) = [n]q (x −a)(n−1) . (1.12)

(ii)

Dq (a−x)(n) = −[n]q
(
a−qx

)(n−1) . (1.13)

Proof.

(i) By using mathematical induction. Clearly, the proposition (1.12) is correct when

n = 1,
(
because Dq (x −a) = [1]q = 1

)
.
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2. QUANTUM CALCULUS (Q-DIFFERENCE)

Let n ∈N∗. Assume that the proposition (1.12) is correct for some order i , i.e.:

Dq (x −a)(i ) = [i ]q (x −a)(i−1) ,

and we’ll prove that the proposition is correct for i +1, i.e.:

Dq (x −a)(i+1) = [i +1]q (x −a)(i ) .

According to the formula (1.3)
(
we have(x −a)(i+1) = (x −a)(i )

(
x −q ia

))
and using

the rule of the product (1.10), we get:

Dq (x −a)(i+1) = Dq (x −a)(i )
(
x −q ia

)
,

=
(
qx −q ia

)
Dq (x −a)(i ) + (x −a)(i )Dq

(
x −q ia

)
,

= q[i ]q

(
x −q i−1a

)
(x −a)(i−1) + (x −a)(i ) ,

= q[i ]q (x −a)(i ) + (x −a)(i ) ,

=
(
q[i ]q +1

)
(x −a)(i ) ,

= [i +1]q (x −a)(i ) .

So, the proposition is correct for i +1, hence, the proposition (1.12) holds.

(ii) According to the formula (1.3) and for n ∈N∗, we have:

(a−x)(n) = (a−x)
(
a−qx

)(
a−q2x

) · · ·(a−qn−1x
)

,

= (a−x) q
(
q−1a−x

)
q2 (

q−2a−x
) · · ·qn−1 (

q1−na−x
)

,

= q
n(n−1)

2 (−1)(x −a)(−1)
(
x −q−1a

)
(−1)

(
x −q−2a

) · · · (−1)
(
x −q1−na

)
,

= (−1)n q
n(n−1)

2 (x −a)
(
x −q−1a

)(
x −q−2a

) · · ·(x −q1−na
)

.

Then,

(a−x)(n) = (−1)n q
n(n−1)

2
(
x −q1−na

)(n)
. (1.14)

Using the formula (1.14) and proposition (1.12), we find:

Dq (a−x)(n) = (−1)n q
n(n−1)

2 Dq
(
x −q1−na

)(n)
,

= (−1)n q
n(n−1)

2 [n]q
(
x −q1−na

)(n−1)
,

= −[n]q qn−1(−1)n−1q
(n−1)(n−2)

2
(
x −q2−n (

q−1a
))(n−1)

,

= −[n]q qn−1 (
q−1a−x

)(n−1)
,

= −[n]q
(
a−qx

)(n−1) .
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Definition 2.9 [63] Let φ : [a,b] →R. The q-derivative of order n ∈N is defined by:

(
Dn

qφ
)

(x) =
(
DqD

n−1
q φ

)
(x); x ∈ [a,b], n ∈ {1,2, . . .}, (1.15)

and (
D0

qφ
)

(x) =φ(x).

2.2 q-Integral

This part contains the definitions, notations and some properties of the q-integral (Jack-

son’s Integral).

Definition 2.10 [63] The function Φ is a q-antiderivative of the function φ if DqΦ(x) =

φ(x). It’s rated by:

Φ(x) =
∫
φ(x)dq x.

Jackson’s Integral

[63] Let φ be an arbitrary function, for constructing its q-antiderivative Φ such that:

Φ(x) =
∫
φ(x)dq x. (1.16)

Then, we introduce the linear operator M̂q , which is defined by [63]:

M̂q (Φ(x)) =Φ(qx). (1.17)

By applying the q-derivative Dq on the formula (1.16), we obtain:

(
DqΦ

)
(x) =Dq

(∫
φ(x)dq x

)
⇒ Φ(x)−Φ(qx)

(1−q)x
=φ(x).

According to the formula (1.17), we get:(
1−M̂q

)
Φ(x)

(1−q)x
=φ(x).

Thus,

Φ(x) =
1(

1−M̂q
) (1−q)xφ(x).

Using expansion of the geometric series, we find:

Φ(x) = (1−q)
∞∑

n=0
M̂n

q

(
xφ(x)

)
.
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Since M̂n
q

(
xφ(x)

)
= qn xφ

(
qn x

)
, we can write:

Φ(x) = (1−q)
∞∑

n=0
qn xφ

(
qn x

)
.

Hence, ∫
φ(x)dq x = (1−q)x

∞∑
n=0

qnφ
(
qn x

)
,

this last expression is called the Jackson’s integral.

Set Jt := {t qn : n ∈N}∪ {0}.

Definition 2.11 [63] Let φ : Jt →R be a function. The q-integral is given by:

(Iqφ)(x) =
∫ x

0
φ(t )dq t = (1−q)x

∞∑
n=0

qnφ
(
qn x

)
, (1.18)

provided that the series converges.

Definition 2.12 [63] The q-integral of a function φ : [a,b] →R, is defined by:

(Iq,aφ)(x) =
∫ b

a
φ(t )dq t =

∫ b

0
φ(t )dq t −

∫ a

0
φ(t )dq t . (1.19)

Remark 2.13 In the case of putting the lower limit of integration is a = qnb, where n ∈ N.

The q-integral which depends on q,n and b is defined as follows:

∫ b

a
φ(t )dq t =

∫ b

qnb
φ(t )dq t = (1−q)b

n−1∑
i =0

q iφ
(
q ib

)
. (1.20)

Example 2.14 [63] Let φ(x) = xn , n ∈N. Then, we have:

Iq xn =
xn+1

[n +1]q
. (1.21)

In effect,

Iq xn =
∫ x

0
t ndq t ,

= (1−q)xn+1
∞∑

i =0
q i (n+1),

=
1−q

1−qn+1
xn+1,

=
xn+1

[n +1]q
.
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Definition 2.15 [63] Letφ,ψ be two q-differentiable functions on [a,b]. The q-integration

by parts is defined as:

∫ b

a
φ(x)

(
Dqψ

)
(x)dq x =φ(b)ψ(b)−φ(a)ψ(a)−

∫ b

a
ψ(qx)

(
Dqφ

)
(x)dq x. (1.22)

Proposition 2.16 [63, 88] The properties of the q-integral and q-derivative are as follows:

1. (
DqIqφ

)
(x) =φ(x). (1.23)

2. If φ is continuous at 0, then:

(
IqDqφ

)
(x) =φ(x)−φ(0). (1.24)

In general [88], for all n ∈N, we have:

1. (
Dn

qI
n
q,aφ

)
(x) =φ(x). (1.25)

2. (
In

q,aD
n
qφ

)
(x) =φ(x)−

n−1∑
i =0

(
Di

qφ
)

(a)

[i ]q !
(x −a)(i ). (1.26)

2.3 q-Exponential Functions

In this part, we shall define two q-analogues of the exponential functions.

Definition 2.17 [63] The two q-exponential functions are as follows:

ex
q =

∞∑
i =0

xi

[i ]q !
=

1(
1− (1−q)x

)(∞)
, (1.27)

and

Ex
q =

∞∑
i =0

q
i (i−1)

2
xi

[i ]q !
=

(
1+ (1−q)x

)(∞) . (1.28)

Remark 2.18 [63] The two q-exponential functions are closely related. From (1.27) and

(1.28), we see that:

ex
q E−x

q = 1.

Proposition 2.19 [63] The q-derivative of the q-exponential functions are given by:

(i) Dq ex
q = ex

q .

(ii) Dq Ex
q = Eqx

q .
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2.4 q-Special Functions

This part includes the definitions and properties of the q-Gamma and q-Beta functions.

q-Gamma Function

Definition 2.20 [63] The q-Gamma function is given by:

Γq (β) =
(1−q)(β−1)

(1−q)β−1
; β> 0. (1.29)

The q-Gamma function admits a q-integral representation, which is defined by:

Γq (β) =
∫ ∞

0
xβ−1E−qx

q dq x; β> 0. (1.30)

Properties 2.21 [63] The q-Gamma function has the following properties:

1. For any β> 0, we have:

Γq (β+1) = [β]qΓq (β). (1.31)

2. For n ∈N, we have:

Γq (n +1) = [n]q ! with Γq (1) = 1. (1.32)

Proof.

1. For β> 0, we have:

Γq (β+1) =
(1−q)(β)

(1−q)β
,

=
(1−qβ)(1−q)(β−1)

(1−q)(1−q)β−1
,

= [β]qΓq (β).

2. Applying the property (1.31), for any n ∈N with Γq (1) = 1, we have:

Γq (n +1) = [n]qΓq (n),

= [n]q [n −1]qΓq (n −1),
...

= [n]q [n −1]q · · · [2]q [1]qΓq (1),

= [n]q !.
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q-Beta Function

Definition 2.22 [63] The q-Beta function is given by:

Bq (α,β) =
∫ 1

0
xα−1 (

1−qx
)(β−1) dq x; α,β> 0. (1.33)

Proposition 2.23 [63] The q-Beta and q-Gamma functions have the following relation-

ship:

Bq (α,β) =
Γq (α)Γq (β)

Γq (α+β)
; α, β> 0. (1.34)

3 Fractional q-Calculus

At the end of the sixties, Al-Salam [27] and Agarwal [11] suggested the fractional q-difference

calculus, so that they provided some types of the fractional q-integral and q-derivative

operators.

This section concentrates on the fundamental definitions and some properties of the

fractional q-calculus, can be located in [11, 27, 78, 79, 86, 88] and references therein.

3.1 Riemann-Liouville’s Fractional q-Integral

In this part, we will review the essential definitions and properties of the Riemann-Liouville’s

fractional q-integral.

The fractional q-integral of the Riemann-Liouville type is based on the q-analogue of

Cauchy’s formula (see [27, 78]), which is the calculation of the q-integral repeated n times

which is obtained by:

(
In

q,aφ
)

(x) =
∫ x

a
dq t

∫ t

a
dq tn−1

∫ tn−1

a
dq tn−2 · · ·

∫ t2

a
φ(t1)dq t1,

=
1

[n −1]q !

∫ x

a
(x −qt )(n−1)φ(t )dq t . (1.35)

By generalizing the formula (1.35) to the real positive order β and replacing the q-factorial

function with the q-Gamma function, we will have the following definition:

Definition 3.1 [11, 78] Let φ be a function defined on [a,b] and for β ∈ R+. The Riemann-

Liouville’s fractional q-integral of order β is given by:
(
I0

q,aφ
)

(x) =φ(x); if β = 0,

(
I
β
q,aφ

)
(x) = 1

Γq (β)

∫ x
a (x −qt )(β−1)φ(t )dq t ; if β> 0.

(1.36)

Notice that, if β = 1, then
(
I1

q,aφ
)

(x) =
(
Iq,aφ

)
(x).
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Example 3.2 Let φ(x) = x, x > 0 and for β≥ 0. Then, we have:

I
β
q x =

x(β+1)

Γq (β+2)
. (1.37)

In effect, by applying the property (1.13) and q-integration by parts (1.22), we get:

I
β
q x =

1

Γq (β)

∫ x

0
(x −qt )(β−1)tdq t ,

= − 1

[β]qΓq (β)

∫ x

0
tDq (x − t )(β)dq t ,

= − 1

Γq (β+1)

([
t (x − t )(β)

]x

0
−

∫ x

0
(x −qt )(β)dq t

)
,

=
1

Γq (β+1)

∫ x

0
(x −qt )(β)dq t ,

= − 1

[β+1]qΓq (β+1)

∫ x

0
Dq (x − t )(β+1)dq t ,

= − 1

Γq (β+2)

[
(x − t )(β+1)

]x

0
,

=
x(β+1)

Γq (β+2)
.

Remark 3.3 [86] For every φ(x) defined on (0,b) and β ∈R+, the following fact is true:

(
I
β
q,aφ

)
(a) =

1

Γq (β)

∫ a

a
(a−qt )(β−1)φ(t )dq t = 0. (1.38)

The next result is essential in clarifying the properties and lemmas of fractional q-

calculus.

Lemma 3.4 [78] The following identification is correct for every ν,α,β ∈R+:

∞∑
n=0

qαn (1−q1−nν)(α−1)(1−q1+n)(β−1)

(1−q)(α−1)(1−q)(β−1)
=

(1−qν)(α+β−1)

(1−q)(α+β−1)
. (1.39)

Theorem 3.5 [86] For each β ∈R+ and x ∈ (a,b). Then, the following relation is valid:

(
I
β
q,aφ

)
(x) =

(
I
β+1
q,a Dqφ

)
(x)+ φ(a)

Γq (β+1)
(x −a)(β). (1.40)
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Proof. Using the property (1.13) and q-integration by parts (1.22), we get:

(
I
β
q,aφ

)
(x) =

1

Γq (β)

∫ x

a
(x −qt )(β−1)φ(t )dq t ,

= − 1

[β]qΓq (β)

∫ x

a
Dq (x − t )(β)φ(t )dq t ,

= − 1

Γq (β+1)

([
(x − t )(β)φ(t )

]x

a
−

∫ x

a
(x −qt )(β) (Dqφ

)
(t )dq t

)
,

=
φ(a)

Γq (β+1)
(x −a)(β) + 1

Γq (β+1)

∫ x

a
(x −qt )(β) (Dqφ

)
(t )dq t ,

=
(
I
β+1
q,a Dqφ

)
(x)+ φ(a)

Γq (β+1)
(x −a)(β).

Lemma 3.6 [78] For α,β ∈R+ and let x < a, the relationship shown below is true:∫ a

0
(x −qt )(α−1)

(
I
β
q,aφ

)
(t )dq t = 0. (1.41)

Lemma 3.7 [78] For each β ∈R+, λ ∈ (−1,+∞). Then, we have:

I
β
q,a(x −a)(λ) =

Γq (λ+1)

Γq (β+λ+1)
(x −a)(β+λ); 0 < a< x < b. (1.42)

Particularly, for λ = 0, we have:

(
I
β
q,a1

)
(x) =

(x −a)(β)

Γq (β+1)
. (1.43)

Proof. For β ∈R+ and λ 6= 0, then by Definition 3.1, we have:

I
β
q,a(x −a)(λ) =

1

Γq (β)

∫ x

a
(x −qt )(β−1)(t −a)(λ)dq t ,

=
1

Γq (β)

(∫ x

0
(x −qt )(β−1)(t −a)(λ)dq t −

∫ a

0
(x −qt )(β−1)(t −a)(λ)dq t

)
.

On the one hand, according to Definition 2.11 and formula (1.7), we get:

∫ a

0
(x −qt )(β−1)(t −a)(λ)dq t = (1−q)a

∞∑
n=0

qn (
x −qn+1a

)(β−1) (
qna−a

)(λ) ,

= a(λ+1)(1−q)
∞∑

n=0
qn (

x −qn+1a
)(β−1) (

qn −1
)(λ) ,

= 0.

19
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On the other hand, applying Definition 2.11 and using the formula (1.39), we find:

∫ x

0
(x −qt )(β−1)(t −a)(λ)dq t = (1−q)x

∞∑
n=0

qn (
x −qn+1x

)(β−1) (
qn x −a

)(λ) ,

= x(β+λ)(1−q)
∞∑

n=0
qn (

1−qn+1)(β−1)
(
qn − a

x

)(λ)
,

= x(β+λ)(1−q)
∞∑

n=0
qn(1+λ) (1−qn+1)(β−1)

(
1− a

qn x

)(λ)

,

= x(β+λ)(1−q)
∞∑

n=0
qn(1+λ) (1−qn+1)(β−1)

(
1− a

qx
q1−n

)(λ)

,

= x(β+λ)(1−q)

(
1− a

x

)(β+λ) (1−q)(β−1)(1−q)(λ)

(1−q)(β+λ)
,

= (x −a)(β+λ)(1−q)
(1−q)(β−1)(1−q)(λ)

(1−q)(β+λ)
,

= (x −a)(β+λ)(1−q)
(1−q)(β−1)(1−q)(λ)(1−q)β−1(1−q)λ

(1−q)(β+λ)(1−q)β−1(1−q)λ
,

= (x −a)(β+λ) (1−q)β+λ(1−q)(β−1)(1−q)(λ)

(1−q)(β+λ)(1−q)β−1(1−q)λ
,

= (x −a)(β+λ)Γq (β)Γq (λ+1)

Γq (β+λ+1)
.

Hence,

I
β
q,a(x −a)(λ) =

1

Γq (β)

(
(x −a)(β+λ)Γq (β)Γq (λ+1)

Γq (β+λ+1)
−0

)
,

=
Γq (λ+1)

Γq (β+λ+1)
(x −a)(β+λ).

Particularly, for λ = 0, we have:(
I
β
q,a1

)
(x) =

1

Γq (β)

∫ x

a
(x −qt )(β−1)dq t ,

= − 1

[β]qΓq (β)

∫ x

a
Dq (x − t )(β)dq t ,

= − 1

Γq (β+1)

[
(x − t )(β)

]x

a
,

=
(x −a)(β)

Γq (β+1)
.

Properties 3.8 [78, 86] The fractional q-integral of the Riemann-Liouville has the follow-

ing properties:

1. Linearity: Let φ,ψ : [a,b] →R, for γ,λ ∈R and for any β ∈R+. Then, we have:

I
β
q,a

(
γφ(x)+λψ(x)

)
= γ

(
I
β
q,aφ

)
(x)+λ

(
I
β
q,aψ

)
(x).
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2. Semi-group and commutativity: Let φ : [a,b] → R and for any α,β ∈ R+. Then, we

have: (
Iαq,aI

β
q,aφ

)
(x) =

(
I
α+β
q,a φ

)
(x), (1.44)

=
(
I
β
q,aI

α
q,aφ

)
(x).

Proof.

1. Let φ,ψ : [a,b] →R, for γ,λ ∈R and β ∈R+, we have:

I
β
q,a

(
γφ(x)+λψ(x)

)
=

1

Γq (β)

∫ x

a
(x −qt )(β−1) (γφ(t )+λψ(t )

)
dq t ,

=
γ

Γq (β)

∫ x

a
(x −qt )(β−1)φ(t )dq t + λ

Γq (β)

∫ x

a
(x −qt )(β−1)ψ(t )dq t ,

= γ
(
I
β
q,aφ

)
(x)+λ

(
I
β
q,aψ

)
(x).

2. Let φ : [a,b] → R and for α,β ∈ R+, then by Definition 3.1 and formula (1.19), we

have:(
Iαq,aI

β
q,aφ

)
(x) =

1

Γq (α)

∫ x

a
(x −qt )(α−1)I

β
q,aφ(t )dq t ,

=
1

Γq (α)Γq (β)

∫ x

a
(x −qt )(α−1)

∫ t

a
(t −qs)(β−1)φ(s)dq sdq t ,

=
1

Γq (α)Γq (β)

(∫ x

0
(x −qt )(α−1) −

∫ a

0
(x −qt )(α−1)

)
×

(∫ t

0
(t −qs)(β−1)φ(s)dq s −

∫ a

0
(t −qs)(β−1)φ(s)dq s

)
dq t ,

=
1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ t

0
(t −qs)(β−1)φ(s)dq sdq t

− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t

− 1

Γq (α)Γq (β)

∫ a

0
(x −qt )(α−1)

∫ t

0
(t −qs)(β−1)φ(s)dq sdq t

+ 1

Γq (α)Γq (β)

∫ a

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t ,

=
1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ t

0
(t −qs)(β−1)φ(s)dq sdq t

− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t .

R.P Agarwal in the article [11] proved that the following equality is correct:(
Iαq,0I

β
q,0φ

)
(x) =

(
I
α+β
q,0 φ

)
(x). (1.45)
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As a result, we remark:(
Iαq,aI

β
q,aφ

)
(x) =

(
Iαq,0I

β
q,0φ

)
(x)− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t ,

=
(
I
α+β
q,0 φ

)
(x)− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t .

Moreover, we have: (
I
α+β
q,a φ

)
(x) =

(
I
α+β
q,0 φ

)
(x)−

(
I
α+β
q,0 φ

)
(a). (1.46)

According to the relation (1.46), we obtain:(
Iαq,aI

β
q,aφ

)
(x) =

(
I
α+β
q,a φ

)
(x)+

(
I
α+β
q,0 φ

)
(a)− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

×
∫ a

0
(t −qs)(β−1)φ(s)dq sdq t ,

=
(
I
α+β
q,a φ

)
(x)+ 1

Γq (α+β)

∫ a

0
(x −qt )(α+β−1)φ(t )dq t

− 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

∫ a

0
(t −qs)(β−1)φ(s)dq sdq t .

Then, (
Iαq,aI

β
q,aφ

)
(x) =

(
I
α+β
q,a φ

)
(x)+C,

with

C =
1

Γq (α+β)

∫ a

0
(x −qt )(α+β−1)φ(t )dq t − 1

Γq (α)Γq (β)

∫ x

0
(x −qt )(α−1)

×
∫ a

0
(t −qs)(β−1)φ(s)dq sdq t .

By applying Definition 2.11, we find:

C =
a(1−q)

Γq (α+β)

∞∑
i =0

q i
(
x −q i+1a

)(α+β−1)
φ

(
q ia

)
− ax(1−q)2

Γq (α)Γq (β)

×
∞∑

n=0
qn (

x −qn+1x
)(α−1)

∞∑
i =0

q i
(
qn x −q i+1a

)(β−1)
φ

(
q ia

)
,

= a(1−q)
∞∑

i =0
q i

[(
x −q i+1a

)(α+β−1)

Γq (α+β)
− x(1−q)

Γq (α)Γq (β)

×
∞∑

n=0
qn (

x −qn+1x
)(α−1)

(
qn x −q i+1a

)(β−1)
]
φ

(
q ia

)
.

So,

C = a(1−q)
∞∑

i =0
q i ciφ

(
q ia

)
,
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with

ci =

(
x −q i+1a

)(α+β−1)

Γq (α+β)
− x(1−q)

Γq (α)Γq (β)

∞∑
n=0

qn (
x −qn+1x

)(α−1)
(
qn x −q i+1a

)(β−1)
.

According to the definition of q-Gamma (1.29), we have:

Γq (α+β) =
(1−q)(α+β−1)

(1−q)α+β−1
, (1.47)

Γq (α)Γq (β) =
(1−q)(α−1)

(1−q)α−1

(1−q)(β−1)

(1−q)β−1
. (1.48)

Using the formulas (1.47)-(1.48), we get:

ci =

(
x −q i+1a

)(α+β−1)
(1−q)α+β−1

(1−q)(α+β−1)
− x(1−q)(1−q)α−1(1−q)β−1

(1−q)(α−1)(1−q)(β−1)

×
∞∑

n=0
qn (

x −qn+1x
)(α−1)

(
qn x −q i+1a

)(β−1)
,

=
x(α+β−1)

(
1−q i+1 a

x

)(α+β−1)
(1−q)α+β−1

(1−q)(α+β−1)
− x(α+β−1)(1−q)α+β−1

(1−q)(α−1)(1−q)(β−1)

×
∞∑

n=0
qβn (

1−qn+1)(α−1)
(
1−q i+1−n a

x

)(β−1)
.

If we take ν = a
x q i , we can write:

ci =
x(α+β−1)

(
1−νq

)(α+β−1) (1−q)α+β−1

(1−q)(α+β−1)
− x(α+β−1)(1−q)α+β−1

(1−q)(α−1)(1−q)(β−1)

×
∞∑

n=0
qβn (

1−qn+1)(α−1) (
1−νq1−n)(β−1)

.

By formula (1.39), we find:

ci =
x(α+β−1)

(
1−νq

)(α+β−1) (1−q)α+β−1

(1−q)(α+β−1)
− x(α+β−1)(1−q)α+β−1

(
1−νq

)(α+β−1)

(1−q)(α+β−1)
= 0.

Hence,

C = a(1−q)
∞∑

i =0
q i ciφ

(
q ia

)
= 0.

Consequently, (
Iαq,aI

β
q,aφ

)
(x) =

(
I
α+β
q,a φ

)
(x).

In the same way, we show that:(
I
β
q,aI

α
q,aφ

)
(x) =

(
I
α+β
q,a φ

)
(x).
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3.2 Riemann-Liouville’s Fractional q-Derivative

This part focuses on the basic concepts and properties of the Riemann-Liouville’s frac-

tional q-derivative.

Definition 3.9 [79, 88] Let φ be a function defined on [a,b] and for β ∈ R. The Riemann-

Liouville’s fractional q-derivative of order β is defined by:

(
RLD

β
q,aφ

)
(x) =


(
I
−β
q,aφ

)
(x); if β< 0,

φ(x); if β = 0,(
D

[β]
q I

[β]−β
q,a φ

)
(x); if β> 0,

(1.49)

where [β] is the integer part of β.

Example 3.10 [86] Let φ(x) = (x − a)(λ), 0 < a < x < b. Then, for all β,λ ∈ R+ \N and for

(β−λ) ∉N, we have:

RLD
β
q,a(x −a)(λ) =

Γq (λ+1)

Γq (λ−β+1)
(x −a)(λ−β). (1.50)

In effect,
RLD

β
q,a(x −a)(λ) =D

[β]
q

(
I

[β]−β
q,a (x −a)(λ)

)
.

Using the formula (1.42), we get:

RLD
β
q,a(x −a)(λ) = D

[β]
q

(
Γq (λ+1)

Γq ([β]−β+λ+1)
(x −a)([β]−β+λ)

)
,

=
Γq (λ+1)

Γq ([β]−β+λ+1)
D

[β]
q (x −a)([β]−β+λ),

=
Γq (λ+1)

Γq ([β]−β+λ+1)

Γq ([β]−β+λ+1)

Γq ([β]−β+λ+1− [β])
(x −a)([β]−β+λ−[β]),

=
Γq (λ+1)

Γq (λ−β+1)
(x −a)(λ−β).

In particular, for λ = 0, we have:(
RLD

β
q,a1

)
(x) =

(x −a)(−β)

Γq (1−β)
. (1.51)

If (β−λ) ∈N, then we have:
RLD

β
q,a(x −a)(λ) = 0. (1.52)

Remark 3.11 [86] For every φ(x) defined on (0,b) and β ∈R+, the following fact is true:(
RLD

β
q,aφ

)
(a) =

(
D

[β]
q I

[β]−β
q,a φ

)
(a) = 0. (1.53)
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Proposition 3.12 [86] For every β ∈ R+ \N and 0 < a < x < b, the following properties is

correct:

1. (
Dq

RLD
β
q,aφ

)
(x) =

(
RLD

β+1
q,a φ

)
(x). (1.54)

2. (
RLD

β
q,aDqφ

)
(x) =

(
RLD

β+1
q,a φ

)
(x)− φ(a)

Γq (−β)
(x −a)(−β−1). (1.55)

Proof.

1. According to Definitions 3.9 and 2.9, we get:(
Dq

RLD
β
q,aφ

)
(x) =

(
DqD

[β]
q I

[β]−β
q,a φ

)
(x),

=
(
D

[β]+1
q I

[β]−β
q,a φ

)
(x),

=
(

RLD
β+1
q,a φ

)
(x).

2. They exist n ∈N such as n < β < n +1, then [β] = n +1. Using Proposition 2.16, the

formulas (1.43)-(1.12) and property (1.44), according to the equation (1.54), we find:

(
RLD

β+1
q,a φ

)
(x) =

(
Dq

RLD
β
q,aφ

)
(x),

=
(
DqD

[β]
q I

[β]−β
q,a φ

)
(x),

=
(
DqD

n+1
q I

n+1−β
q,a φ

)
(x),

= Dn+2
q I

n+1−β
q,a

[(
Iq,aDqφ

)
(x)+φ(a)

]
,

=
(
Dn+2

q I
n+1−β
q,a Iq,aDqφ

)
(x)+φ(a)

(
Dn+2

q I
n+1−β
q,a 1

)
(x),

=
(
Dn+1

q DqIq,aI
n+1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (n +2−β)
Dn+2

q (x −a)(n+1−β) ,

=
(
Dn+1

q I
n+1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (n +2−β)

Γq (n +2−β)

Γq (−β)
(x −a)(−β−1) ,

=
(
D

[β]
q I

[β]−β
q,a Dqφ

)
(x)+ φ(a)

Γq (−β)
(x −a)(−β−1) ,

=
(

RLD
β
q,aDqφ

)
(x)+ φ(a)

Γq (−β)
(x −a)(−β−1) .

Corollary 3.13 [88] The semigroup property of the Riemann–Liouville’s fractional q-derivative

is not valid, i.e., for any α,β ∈R+, we have:

(
RLDα

q,a
RLD

β
q,aφ

)
(x) 6=

(
RLD

α+β
q,a φ

)
(x).
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3.3 Caputo’s Fractional q-Derivative

In this part, we review the definition and some properties of the fractional q-derivative of

the Caputo type.

Definition 3.14 [79, 88] Let φ be a function defined on [a,b] and for β ∈ R. The Caputo’s

fractional q-derivative of order β is given by:

(
CD

β
q,aφ

)
(x) =


(
I
−β
q,aφ

)
(x); if β< 0,

φ(x); if β = 0,(
I

[β]−β
q,a D

[β]
q φ

)
(x); if β> 0,

(1.56)

where [β] is the integer part of β.

Example 3.15 [86] Let φ(x) = (x −a)(λ), 0 < a< x < b. Then, for β ∈R+ \N and λ> [β]−1,

we have:
CD

β
q,a(x −a)(λ) =

Γq (λ+1)

Γq (λ−β+1)
(x −a)(λ−β). (1.57)

In effect,

CD
β
q,a(x −a)(λ) = I

[β]−β
q,a

(
D

[β]
q (x −a)(λ)

)
,

= I
[β]−β
q,a

(
Γq (λ+1)

Γq (λ+1− [β])
(x −a)(λ−[β])

)
,

=
Γq (λ+1)

Γq (λ+1− [β])
I

[β]−β
q,a (x −a)(λ−[β]).

Applying the formula (1.42), we find:

CDα
q,a(x −a)(λ) =

Γq (λ+1)

Γq (λ+1− [β])

Γq (λ+1− [β])

Γq ([β]−β+λ− [β]+1)
(x −a)([β]−β+λ−[β]),

=
Γq (λ+1)

Γq (λ−β+1)
(x −a)(λ−β).

In particular, for λ ∈N and β> λ, we have:

CD
β
q,a(x −a)(λ) = I

[β]−β
q,a

(
D

[β]
q (x −a)(λ)

)
= 0. (1.58)

Remark 3.16 The Caputo’s q-derivative of a constant function c is zero, i.e.:(
CD

β
q,ac

)
(x) =

(
I

[β]−β
q,a D

[β]
q c

)
(x) = 0. (1.59)

Remark 3.17 [86] For every φ(x) defined on (0,b) and β ∈R+, the following fact is true:(
CD

β
q,aφ

)
(a) =

(
I

[β]−β
q,a D

[β]
q φ

)
(a) = 0. (1.60)
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Proposition 3.18 [86, 88] For any β ∈ R+ \N and 0 < a < x < b, the following properties is

valid:

1. (
CD

β
q,aDqφ

)
(x) =

(
CD

β+1
q,a φ

)
(x). (1.61)

2. (
Dq

CD
β
q,aφ

)
(x) =

(
CD

β+1
q,a φ

)
(x)+

(
D

[β]
q φ

)
(a)

Γq ([β]−β)
(x −a)([β]−β−1). (1.62)

Proof.

1. If β = n+ε, n ∈N, 0 < ε< 1, then [β] = n+1 and [β+1] = n+2. According to Definition

3.14, we obtain: (
CD

β+1
q,a φ

)
(x) =

(
I

[β+1]−(β+1)
q,a D

[β+1]
q φ

)
(x),

=
(
In+2−(n+ε+1)

q,a Dn+2
q φ

)
(x),

=
(
I1−ε

q,aD
n+2
q φ

)
(x),

=
(
I1−ε

q,aD
n+1
q Dqφ

)
(x),

=
(
In+1−(n+ε)

q,a Dn+1
q Dqφ

)
(x),

=
(
I

[β]−β
q,a D

[β]
q Dqφ

)
(x),

=
(

CD
β
q,aDqφ

)
(x).

2. If β = n+ε, n ∈N, 0 < ε< 1, then [β] = n+1 and [β+1] = n+2. Using Theorem 3.5, we

find:

(
Dq

CD
β
q,aφ

)
(x) =

(
DqI

[β]−(β)
q,a D

[β]
q φ

)
(x),

=
(
DqI

n+1−(n+ε)
q,a Dn+1

q φ
)

(x),

=
(
DqI

1−ε
q,aD

n+1
q φ

)
(x),

= Dq

(
I1−ε+1

q,a DqD
n+1
q φ

)
(x)+

(
Dn+1

q φ
)

(a)

Γq (2−ε)
(x −a)(1−ε)

 ,

=
(
DqI

2−ε
q,aD

n+2
q φ

)
(x)+

(
Dn+1

q φ
)

(a)

Γq (2−ε)
Dq (x −a)(1−ε).
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By property (1.44) and relations (1.12),(1.23), we get:

(
Dq

CD
β
q,aφ

)
(x) =

(
DqIq,aI

1−ε
q,aD

n+2
q φ

)
(x)+

(
Dn+1

q φ
)

(a)

Γq (2−ε)
[1−ε]q (x −a)(−ε),

=
(
I1−ε

q,aD
n+2
q φ

)
(x)+

(
Dn+1

q φ
)

(a)

Γq (1−ε)
(x −a)(−ε),

=
(
I

1+n−β
q,a Dn+2

q φ
)

(x)+
(
Dn+1

q φ
)

(a)

Γq (1+n −β)
(x −a)(n−β),

=
(
I

n+2−(β+1)
q,a Dn+2

q φ
)

(x)+
(
Dn+1

q φ
)

(a)

Γq (1+n −β)
(x −a)(n−β),

=
(
I

[β+1]−(β+1)
q,a D

[β+1]
q φ

)
(x)+

(
D

[β]
q φ

)
(a)

Γq ([β]−β)
(x −a)([β]−β−1),

=
(

CD
β+1
q,a φ

)
(x)+

(
D

[β]
q φ

)
(a)

Γq ([β]−β)
(x −a)([β]−β−1).

Corollary 3.19 [86] The semigroup property of the Caputo’s fractional q-derivative is not

valid, i.e., for any α,β ∈R+, we have:

(
CDα

q,a
CD

β
q,aφ

)
(x) 6=

(
CD

α+β
q,a φ

)
(x). (1.63)

3.4 Relationships Between Fractional q-Operators

This part will explain the link between the two types of fractional q-derivatives, as well as

the relationships between the fractional q-integral and fractional q-derivatives.

Theorem 3.20 [86] Let β ∈ R+ \N and 0 < a < x < b. The relation among the Riemann-

Liouville’s and Caputo’s fractional q-derivatives is given as follows:

(
RLD

β
q,aφ

)
(x) =

(
CD

β
q,aφ

)
(x)+

[β]−1∑
i =0

(
Di

qφ
)

(a)

Γq (i −β+1)
(x −a)(i−β). (1.64)

Proof. For any β ∈ R+ \N with β = n + ε, where n ∈ N, ε ∈ (0,1). By using mathematical

induction, we will prove that Theorem 3.20.
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First, for n = 0, i.e.: 0 < β< 1. By Theorem 3.5 and property (1.44), we have:

(
I

1−β
q,a φ

)
(x) =

(
I

2−β
q,a Dqφ

)
(x)+ φ(a)

Γq (2−β)
(x −a)(1−β),

=
(
Iq,aI

1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (2−β)
(x −a)(1−β),

=
(
Iq,a

CD
β
q,aφ

)
(x)+ φ(a)

Γq (2−β)
(x −a)(1−β).

Applying Dq to the previous equation, we obtain:(
DqI

1−β
q,a φ

)
(x) =

(
DqIq,a

CD
β
q,aφ

)
(x)+ φ(a)

Γq (2−β)
Dq (x −a)(1−β).

Then, according to the propositions (1.23) and (1.12), we get:(
RLD

β
q,aφ

)
(x) =

(
CD

β
q,aφ

)
(x)+ φ(a)

Γq (1−β)
(x −a)(−β).

Next, we assume that the relation (1.64) holds for β = n + ε where ε ∈ (0,1), for n ∈N, and

we will show that it’s holds for β = n +ε+1. In fact, by formula (1.54), we have:(
RLD

β
q,aφ

)
(x) =

(
RLDn+ε+1

q,a φ
)

(x),

=
(
Dq

RLDn+ε
q,a φ

)
(x). (1.65)

The following hypothesis is satisfied,

(
RLDn+ε

q,a φ
)

(x) =
(

CDn+ε
q,a φ

)
(x)+

n∑
i =0

(
Di

qφ
)

(a)

Γq (i −n −ε+1)
(x −a)(i−n−ε).

Therefrom, according to the equality (1.65), we find:

(
RLD

β
q,aφ

)
(x) = Dq

(
CDn+ε

q,a φ
)

(x)+
n∑

i =0

(
Di

qφ
)

(a)

Γq (i −n −ε+1)
(x −a)(i−n−ε)

 ,

=
(
Dq

CDn+ε
q,a φ

)
(x)+

n∑
i =0

(
Di

qφ
)

(a)

Γq (i −n −ε+1)
Dq (x −a)(i−n−ε),

=
(
Dq

CDn+ε
q,a φ

)
(x)+

n∑
i =0

(
Di

qφ
)

(a)

Γq (i −n −ε)
(x −a)(i−n−ε−1).

Using the property (1.62), we get:

(
RLD

β
q,aφ

)
(x) =

(
CDn+ε+1

q,a φ
)

(x)+
(
Dn+1

q φ
)

(a)

Γq (1−ε)
(x −a)(−ε) +

n∑
i =0

(
Di

qφ
)

(a)

Γq (i −n −ε)
(x −a)(i−n−ε−1),

=
(

CD
β
q,aφ

)
(x)+

n+1∑
i =0

(
Di

qφ
)

(a)

Γq (i −n −ε)
(x −a)(i−n−ε−1).
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Lemma 3.21 [86] For β ∈ R+ and let 0 < a < x < b. The connections among fractional q-

integral and fractional q-derivative of the Riemann Liouville type are given as follows:

1. (
I
β
q,a

RLD
β
q,aφ

)
(x) =φ(x). (1.66)

2. (
RLD

β
q,aI

β
q,aφ

)
(x) =φ(x). (1.67)

Proof.

1. For 0 < β< 1, according to the property (1.24), we have:

φ(x) =
(
Iq,aDqφ

)
(x)+φ(a). (1.68)

Applying I
1−β
q,a on equality (1.68) and using the properties (1.43)-(1.44), we get:(

I
1−β
q,a φ

)
(x) =

(
I

1−β
q,a Iq,aDqφ

)
(x)+φ(a)

(
I

1−β
q,a 1

)
(x),

=
(
I

2−β
q,a Dqφ

)
(x)+ φ(a)

Γq (2−β)
(x −a)(1−β).

Then, we apply Dq to the previous equation, we find:(
RLD

β
q,aφ

)
(x) =

(
DqI

1−β
q,a φ

)
(x),

=
(
DqI

2−β
q,a Dqφ

)
(x)+ φ(a)

Γq (2−β)
Dq (x −a)(1−β),

=
(
DqIq,aI

1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (1−β)
(x −a)(−β),

=
(
I

1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (1−β)
(x −a)(−β).

By relations (1.42), (1.44) and equality (1.68), we obtain:(
I
β
q,a

RLD
β
q,aφ

)
(x) =

(
I
β
q,aI

1−β
q,a Dqφ

)
(x)+ φ(a)

Γq (1−β)
I
β
q,a(x −a)(−β),

=
(
Iq,aDqφ

)
(x)+ φ(a)

Γq (1−β)

Γq (1−β)

Γq (β+1−β)
(x −a)(β−β),

=
(
Iq,aDqφ

)
(x)+φ(a),

= φ(x).

If β = n + ε where ε ∈ (0,1), n ∈N. Placing β = β−1 and φ→RL D
β−1
q,a φ, from Theorem

3.5 and using property (1.54), we find:

(
I
β−1
q,a

RLD
β−1
q,a φ

)
(x) =

(
I
β
q,aDq

RLD
β−1
q,a φ

)
(x)+

(
RLD

β−1
q,a φ

)
(a)

Γq (β)
(x −a)(β−1),

=
(
I
β
q,a

RLD
β
q,aφ

)
(x)+

(
RLD

β−1
q,a φ

)
(a)

Γq (β)
(x −a)(β−1).
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So, by formula (1.53), we have
(

RLD
β−1
q,a φ

)
(a) = 0, and we can write:(

I
β
q,a

RLD
β
q,aφ

)
(x) =

(
I
β−1
q,a

RLD
β−1
q,a φ

)
(x).

Repeating this relationship n times, we obtain:(
I
β
q,a

RLD
β
q,aφ

)
(x) =

(
I
β−n
q,a

RLD
β−n
q,a φ

)
(x),

=
(
Iεq,a

RLDε
q,aφ

)
(x),

= φ(x).

2. Using the properties (1.44) and (1.25), for β ∈R+, then by Definition 3.9, we get:(
RLD

β
q,aI

β
q,aφ

)
(x) =

(
D

[β]
q I

[β]−β
q,a I

β
q,aφ

)
(x),

=
(
D

[β]
q I

[β]−β+β
q,a φ

)
(x),

=
(
D

[β]
q I

[β]
q,aφ

)
(x),

= φ(x).

Lemma 3.22 [86] Letβ ∈R+ and 0 < a< x < b. The connections among Riemann-Liouville’s

fractional q-integral and Caputo’s fractional q-derivative are given as follows:

1. (
I
β
q,a

CD
β
q,aφ

)
(x) =φ(x)−

[β]−1∑
i =0

(
Di

qφ
)

(a)

[i ]q !
(x −a)(i ). (1.69)

In particular, for β ∈ (0,1) and a = 0, we have:(
I
β
q

CD
β
qφ

)
(x) =φ(x)−φ(0). (1.70)

2. (
CD

β
q,aI

β
q,aφ

)
(x) =φ(x). (1.71)

Proof.

1. For β ∈R+, by applying the properties (1.44) and (1.26), we get:(
I
β
q,a

CD
β
q,aφ

)
(x) =

(
I
β
q,aI

[β]−β
q,a D

[β]
q φ

)
(x),

=
(
I
β+[β]−β
q,a D

[β]
q φ

)
(x),

=
(
I

[β]
q,aD

[β]
q φ

)
(x),

= φ(x)−
[β]−1∑

i =0

(
Di

qφ
)

(a)

[i ]q !
(x −a)(i ).

31



4. KURATOWSKI’S MEASURE OF NON-COMPACTNESS

Particularly, for β ∈ (0,1) and a = 0, we have:(
I
β
q

CD
β
qφ

)
(x) =φ(x)−φ(0).

2. For β ∈ R+, by placing φ→ I
β
q,aφ in Theorem 3.20, from the relation (1.67) and for-

mula (1.38), we find:

(
CD

β
q,aI

β
q,aφ

)
(x) =

(
RLD

β
q,aI

β
q,aφ

)
(x)−

[β]−1∑
i =0

(
Di

qI
β
q,aφ

)
(a)

Γq (i −β+1)
(x −a)(i−β),

= φ(x)−
[β]−1∑

i =0

(
I
β−i
q,a φ

)
(a)

Γq (i −β+1)
(x −a)(i−β),

= φ(x).

4 Kuratowski’s Measure of Non-Compactness

This section includes the basic concepts and certain properties of the Kuratowski’s mea-

sure of non-compactness. For more details; see references [18, 29, 94].

Definition 4.1 [29, 94] Let E be a Banach space and ΩE be the family of bounded subsets

of E. The Kuratowski’s measure of non-compactness is the map µ :ΩE→R+ defined as:

µ(A ) = inf{ε> 0 : A ⊂∪m
i =1Ai and di am(Ai ) ≤ ε}; wher e A ∈ΩE.

Properties 4.2 [29, 94] The Kuratowski’s measure of non-compactness has the following

properties:

(1) µ(A ) = 0 ⇔ A is compact (A is relatively compact).

(2) µ(A ) =µ(A ).

(3) A ⊆B ⇒µ(A ) ≤µ(B).

(4) µ(A +B) ≤µ(A )+µ(B).

(5) µ(γA ) = |γ|µ(A ), γ ∈R.

(6) µ(convA ) =µ(A ).

(7) µ(A +x0) =µ(A ), for every x0 ∈ E.

Where convA and A denote the convex hull and the closure of the bounded set A , respec-

tively.
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5 Fixed Point Theorems

Fixed point theorems are incredibly helpful tools in mathematics, especially for solving

differential equations. In fact, these theorems provide sufficient conditions for which a

certain function admits a fixed point, guaranteeing the existence of solution to a given

problem.

In this section, we will present some of fixed point theorems that we will need for this

thesis. For more information; see references [12, 50, 51, 65, 74, 87, 89].

Definition 5.1 [65](Fixed Point)
Let φ a continuous function on an interval J = [a,b], we say that z∗ ∈ J is a fixed point of φ

such that:

φ(z∗) = z∗.

Theorem 5.2 [50] (Banach Contraction Principle)
Let X be a non-empty closed subset of a Banach space E and H : X → X a contraction map-

ping , then H has a unique fixed point.

Theorem 5.3 [87](Schaefer)
Let E be a Banach space and H : E→ E be a completely continuous operator. If the set

Ω(H ) :=
{

z ∈ E : z = γH (z), f or γ ∈ (0,1)
}

is bounded, then H has at least one fixed point.

Theorem 5.4 [12, 50] (Nonlinear alternative of Leray-Schauder)
Let E be a Banach space and X a closed, convex subset of E. Let U be an open subset of X

with 0 ∈U and H : U → X a continuous and compact operator. Then either

(i) H has fixed points on U , or

(ii) There exist z ∈ ∂U and γ ∈ (0,1) with z = γH (z).

Theorem 5.5 [87] (Krasnoselskii)
Let X be a closed, convex non-empty subset of a Banach space E, suppose that A ,B : X → E

are two maps satisfying the following three conditions:

(i) A y +Bz ∈ X (∀y, z ∈ X)

(ii) A is a continuous and a compact mapping.

(iii) B is a contraction mapping.

Then, there exists z in X such that A z +Bz = z.
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Next, we review the fixed point theorem of Mönch and an essential lemma.

Theorem 5.6 [74, 89] (Mönch)
Let X be a bounded, closed and convex subset of a Banach space E such that 0 ∈ X, and let

H a continuous mapping of X into X. If the implication

V = convH (V ) or V = H (V )∪ {0} ⇒µ(V ) = 0 (1.72)

holds for every subset V of X, then H has a fixed point.

Lemma 5.7 [51] If V ⊂ C(J = [a,b],E) is a bounded and equi-continuous set, then

1. The function t →µ(V (t )) is continuous on J.

2. µ

({∫
J

z(t )d t : z ∈ V

})
≤

∫
J
µ(V (t ))d t .
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Chapter 2

Boundary Value Problem for Fractional

q-Difference Equations of Order β ∈ (0,1]

1 Introduction and Motivation

Recently, scientists have been interested in developing and expanding as several types of

fractional differential equations as possible, because of its application and modeling in

many phenomena. Among types of equations that have attracted attention are the frac-

tional q-difference equations. Therefore, researchers discussed and studied the existence

of solutions to the initial and boundary value problems for fractional q-difference equa-

tions that involves the Caputo’s fractional q-derivative. For more information; you can

see these references [5, 6, 15, 28, 98].

Bonchohra et al. in [35] established the existence of solutions to the first-order bound-

ary value problem for the following fractional differential equations involving the Caputo’s

fractional derivative:

c Dαy(t ) = f (t , y(t )); t ∈ [0,T], 0 < α< 1,

ay(0)+by(T) = c,

where c Dα is the Caputo’s fractional derivative, f : [0,T]×R→R is a continuous function,

a,b,c are real constants with a+b 6= 0. They provided two existence results: one based on

the fixed point theorem of Banach and the other on the fixed point theorem of Schaefer.

In [39], Benhamida et al. studied the existence of solutions to the boundary value

problem of the Caputo-Hadamard’s fractional differential equations of the following form:

c
HDr y(t ) = f (t , y(t )); for a.e t ∈ [1,T], 0 < r ≤ 1,

ay(1)+by(T) = c,
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where c
HDr is the Caputo-Hadamard’s fractional derivatives, f : [1,T]× E→ E is a given

function and E is a Banach space, a,b,c ∈ R such that a+ b 6= 0. The authors used the

fixed point theorem of Mönch and Kuratowski’s measure of non-compactness to study

the existence of solutions.

Motivated by the previously stated works, in this chapter, we are interested in studying

the existence and uniqueness of solutions to the boundary value problem for fractional

q-difference equations that involves the Caputo’s fractional q-derivative, which is given

as follows: 
(

CD
β
q z

)
(t ) =φ(t , z(t )); 0 < β≤ 1, t ∈ J = [0,T],

az(0)+bz(T) = c,

(2.1)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (0,1],

φ : J×E→ E is a given function with E is Banach space and a,b and c are real constants

such that a+b 6= 0.

The chapter’s remaining are organised in the following way: In Sect.2, we present the

integrable solution to the boundary value problem (2.1). Next, in Sect.3, we prove the ex-

istence and uniqueness results for solutions of the boundary value problem for fractional

q-difference equations (2.1) with E = R, by applying some fixed point theorems (Banach

contraction principal, Schaefer and Leray-Schauder non-linear alternative). In Sect.4, we

investigate another existence result for solutions of the boundary value problem for frac-

tional q-difference equations (2.1) in Banach space, which is based on the fixed point

theorem of Mönch combined with the technique of the Kuratowski’s measure of non-

compactness. In order to support our existence theorems, we conclude each section with

illustrative examples.

2 Representation of the Integrable Solution

This section contains the definition and lemma of the integral solution to the boundary

value problem (2.1), which is essential for the rest of the chapter.

To begin with, let’s define what is meant by the integral solution to the boundary value

problem (2.1).

Definition 2.1 A function z ∈ C(J,E) is said to be a solution of the boundary value problem

(2.1), if z satisfies the fractional q-difference equation
(

CD
β
q z

)
(t ) = φ(t , z(t )) on J where

β ∈ (0,1], and satisfies the boundary condition az(0)+bz(T) = c.
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The following lemma is necessary for the existence of solutions to the boundary value

problem (2.1).

Lemma 2.2 Let θ : J → E be a continuous function. The integral solution of the following

fractional boundary value problem:


(

CD
β
q z

)
(t ) = θ(t ); 0 < β≤ 1, t ∈ J = [0,T],

az(0)+bz(T) = c.

(2.2)

Given by:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
θ(s)dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
θ(s)dq s + c

a+b
. (2.3)

Proof. By applying the Riemann-Liouville’s fractional q-integral of order β ∈ (0,1] on both

sides of the equation for the problem (2.2), and according to Lemma 3.22, we have:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
θ(s)dq s + c0. (2.4)

Next, we will determine the constant c0 by utilising the boundary condition of the prob-

lem (2.2), we get:

az(0)+bz(T) = c ⇒ ac0 +b
(
I
β
qθ(T)+ c0

)
= c.

Since a+b 6= 0, hence,

c0 =
c

a+b
− b

a+b
I
β
qθ(T),

=
c

a+b
− b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
θ(s)dq s.

By changing c0 in equation (2.4), we find:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
θ(s)dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
θ(s)dq s + c

a+b
.

The proof is finished.
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3 Boundary Value Problem for Fractional q-Difference Equa-

tions

1 This section focuses on proving the results of the existence and uniqueness of solutions

to the boundary value problem (2.1) with E = R, through the use of several fixed point

theorems. This means that we will deal with the following boundary value problem:


(

CD
β
q z

)
(t ) =φ(t , z(t )); 0 < β≤ 1, t ∈ J = [0,T],

az(0)+bz(T) = c,

(2.5)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (0,1],

φ : J×R→R is a given function and a,b,c are real constants such that a+b 6= 0.

Now, we present the following hypotheses which will be used in the remaining parts:

(A1) The function φ : J×R→R is continuous.

(A2) The function φ satisfies the Lipschitz condition, i.e.: There exists a constant L > 0,

such that for every t ∈ J and every y, z ∈R, we have:

|φ(t , y)−φ(t , z)| ≤L|y − z|.

(A3) There exists a constant M > 0, such that for every t ∈ J and every z ∈R, we have:

|φ(t , z)| ≤M .

3.1 Existence and Uniqueness Result

This part shows the uniqueness of solutions to the boundary value problem (2.5), which

depends on the theorem of Banach contraction principle (Theorem 5.2).

Theorem 3.1 Suppose that the hypotheses (A1) and (A2) hold. If

0 <
(
1+ |b|

|a+b|
)

LT(β)

Γq (β+1)
< 1. (2.6)

Then, the boundary value problem (2.5) has a unique solution on J.

1N. Allouch, S. Hamani and J. Henderson, Boundary Value Problem for Fractional q-Difference Equa-
tions, Nonlinear Dynamics and Systems Theory, 24(2), (2024), 111-122.
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Proof. Firstly, we convert the problem (2.5) into a fixed point problem and define the

operator

H : C(J,R) −→ C(J,R)

By:

(H z)(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
φ(s, z(s))dq s + c

a+b
. (2.7)

According to Lemma 2.2, it is evident that the fixed points of the operator H are the solu-

tions of the boundary value problem (2.5).

Next, we will demonstrate that the operator H is a contraction mapping on C(J,R).

Let y, z ∈ C(J,R) and for each t ∈ J, then we have:

|(H y)(t )− (H z)(t )| =

∣∣∣∣∫ t

0

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

− b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ .

Thus,

|(H y)(t )− (H z)(t )| ≤
∫ t

0

(t −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s

+ |b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s.

Using the hypothesis (A2), we get:

|(H y)(t )− (H z)(t )| ≤ L

∫ t

0

(t −qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s

+ L|b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s.

Thanks to the formula (1.43) and for each t ∈ J, we obtain:

‖H (y)−H (z)‖∞ ≤ sup
t∈J

(
L

∫ t

0

(t −qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s

)
+sup

t∈J

(
L|b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s

)
,

≤ L

∫ T

0

(T−qs)(β−1)

Γq (β)
sup
t∈J

|y − z|dq s

+ L|b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)
sup
t∈J

|y − z|dq s,

≤ LT(β)

Γq (β+1)
‖y − z‖∞+ L|b|

|a+b|
T(β)

Γq (β+1)
‖y − z‖∞.
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Consequently,

‖H (y)−H (z)‖∞ ≤
(
1+ |b|

|a+b|
)

LT(β)

Γq (β+1)
‖y − z‖∞.

As a result, by condition (2.6), H is a contraction operator, and according to the theorem

of Banach contraction principle, we deduce that the operator H has a unique fixed point,

which is the unique solution to the boundary value problem (2.5).

3.2 Existence Results

This part contains the results of the existence of solutions to the boundary value problem

(2.5), so that we given two results of the existence depend on various fixed point theorems.

The first outcome depends on fixed point theorem of Schaefer (Theorem 5.3).

Theorem 3.2 Assume that the hypotheses (A1) and (A3) are satisfied. Then, the boundary

value problem (2.5) has at least one solution on J.

Proof. To demonstrate this result, we will use the fixed point theorem of Schaefer, i.e.

we’ll prove that the operator H defined by (2.7) has a fixed point. So, the proof will be

presented in four steps.

Step 1: H is a continuous operator on C(J,R).

Let {zn}n∈N be a sequence such that zn → z in C(J,R). Then, for every t ∈ J, we have:

|(H zn)(t )− (H z)(t )| ≤
∫ t

0

(t −qs)(β−1)

Γq (β)

∣∣φ(s, zn(s))−φ(s, z(s))
∣∣dq s

+ |b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)

∣∣φ(s, zn(s))−φ(s, z(s))
∣∣dq s.

Therefore, for every t ∈ J, we get:

‖H (zn)−H (z)‖∞ ≤
(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖φ(., zn(.))−φ(., z(.))‖∞.

Since φ is a continuous function, i.e.:

‖φ(., zn(.))−φ(., z(.))‖∞ → 0 as n →∞.

Then,

‖H (zn)−H (z)‖∞ → 0 as n →∞.

Hence, H is a continuous operator on C(J,R).
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Step 2: H maps bounded sets into bounded sets in C(J,R).

In fact, it suffices to prove that for all r > 0 there exists a constant R > 0, such that for

every z ∈Br = {z ∈ C(J,R) : ‖z‖∞ ≤ r }, we have ‖H (z)‖∞ ≤R.

Let z ∈Br . Then, for every t ∈ J, we have:

|(H z)(t )| =

∣∣∣∣∫ t

0

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
φ(s, z(s))dq s + c

a+b

∣∣∣∣ ,

≤
∫ t

0

(t −qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |c|

|a+b| .

According to the hypothesis (A3), we find:

|(H z)(t )| ≤ M

∫ t

0

(t −qs)(β−1)

Γq (β)
dq s +M

|b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)
dq s + |c|

|a+b| .

Using the formula (1.43) and for each t ∈ J, we get:

|(H z)(t )| ≤ MT(β)

Γq (β+1)
+ |b|
|a+b|

MT(β)

Γq (β+1)
+ |c|
|a+b| .

So,

‖H (z)‖∞ ≤
(
1+ |b|

|a+b|
)

MT(β)

Γq (β+1)
+ |c|
|a+b| :=R.

Hence, H is an uniformly bounded operator on Br .

Step 3: H maps bounded sets into equi-continuous sets of C(J,R).

Let t1, t2 ∈ J such that t1 < t2 and letBr be a bounded set of C(J,R) as in Step 2. For z ∈Br ,

then we have:

|(H z)(t2)− (H z)(t1)| =

∣∣∣∣∫ t2

0

(t2 −qs)(β−1)

Γq (β)
φ(s, z(s))dq s −

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣∣ .

Therefore,

|(H z)(t2)− (H z)(t1)| ≤
∫ t1

0

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
Γq (β)

|φ(s, z(s))|dq s

+
∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s.

Applying the hypothesis (A3), we obtain:

|(H z)(t2)− (H z)(t1)| ≤ M

Γq (β)

∫ t1

0

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
dq s

+ M

Γq (β)

∫ t2

t1

(t2 −qs)(β−1)dq s.
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After calculating the integrals, we find:

|(H z)(t2)− (H z)(t1)| ≤ M

Γq (β+1)

(
t (β)

2 − t (β)
1

)
.

As t1 → t2, the inequality above’s right-hand side tends to zero, i.e.:

|(H z)(t2)− (H z)(t1)|→ 0 as t1 → t2.

Consequently, H is an equi-continuous operator. Due to the results obtained in Steps 1,

2 and 3, and according to the theorem of Arzela-Ascoli (Theorem 1.9), we can deduce that

H is a completely continuous operator.

Step 4: A priori bound.

Now, we’ll show that the setΩ =
{

z ∈ C(J,R) : z = γH (z),0 < γ< 1
}

is bounded.

Let z ∈Ω. Then, for every t ∈ J, we have:

z(t ) = γ(H z)(t ),

= γ

(∫ t

0

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
φ(s, z(s))dq s + c

a+b

)
.

Therefore, from the hypothesis (A3) and by estimation in Step 2, it follows that for γ ∈ (0,1)

and for each t ∈ J, we obtain:

|z(t )| ≤ γ|(H z)(t )|,
≤ ‖H (z)‖∞,

≤
(
1+ |b|

|a+b|
)

MT(β)

Γq (β+1)
+ |c|
|a+b| :=R.

So,

‖z‖∞ ≤R<+∞.

Consequently, the setΩ is bounded.

As a result of Steps 1 to 4 and according to the fixed point theorem of Shaefer, we conclude

that the operator H has at least one fixed point which is the solution to the boundary

value problem (2.5).
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The second outcome depends on non-linear alternative of Leray-Schauder theorem

(Theorem 5.4).

Theorem 3.3 Suppose that the hypothesis (A1) is satisfied and the following hypotheses

hold:

(A4) There existΦφ ∈ L1(J,R+) and Ψ :R+ →R+ continuous and non-decreasing, such that

for each t ∈ J and each z ∈R, we have:

|φ(t , z)| ≤Φφ(t )Ψ(|z|).

(A5) There exists a constant positive ν> 0, such that:

ν(
1+ |b|

|a+b|
)
Ψ(ν)(IβqΦφ)(T)+ |c|

|a+b|
> 1.

Then, the boundary value problem (2.5) has at least one solution on J.

Proof. To establish that the operator H defined by (2.7) has a fixed point, we will apply

the non-linear alternative of Leray-Schauder theorem. The operator H is continuous and

completely continuous as shown in Theorem 3.2.

Let z be such that for every t ∈ J, we use the equation z(t ) = γ(H z)(t ) for γ ∈ (0,1). Then,

thanks to the hypothesis (A4) and for each t ∈ J, we have:

|z(t )| ≤
∫ t

0

(t −qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |c|

|a+b| ,

≤
∫ t

0

(t −qs)(β−1)

Γq (β)
Φφ(s)Ψ(|z|)dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
Φφ(s)Ψ(|z|)dq s + |c|

|a+b| .

Therefore, for every t ∈ J, we get:

‖z‖∞ ≤ (IβqΦφ)(T)Ψ(‖z‖∞)+ |b|
|a+b| (I

β
qΦφ)(T)Ψ(‖z‖∞)+ |c|

|a+b| ,

≤
(
1+ |b|

|a+b|
)
Ψ(‖z‖∞)(IβqΦφ)(T)+ |c|

|a+b| .

Thus,

‖z‖∞(
1+ |b|

|a+b|
)
Ψ(‖y‖∞)(IβqΦφ)(T)+ |c|

|a+b|
≤ 1.

So, by hypothesis (A5), there exists ν such that ‖z‖∞ 6= ν. Let’s set

U = {z ∈ C(J,R) : ‖z‖∞ < ν} .
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Clearly, the operator H : U → C(J,R) is completely continuous. From the choice of U ,

there is no z ∈ ∂U such that z = γH (z), for some γ ∈ (0,1). Therefore, according to the

theorem of Leray-Schauder non-linear alternative, we conclude that the operator H has

at least one fixed point z ∈U , which is the solution to the boundary value problem (2.5).

3.3 An Example

Consider the following boundary value problem for fractional q-difference equation:
(

CD1/2
1/3z

)
(t ) = e−t2

z(t )
(6+t )(1+z(t )) ; 0 < β≤ 1, t ∈ J = [0,1],

z(0)+ z(1) = 0,

(2.8)

where q = 1
3 , β = 1

2 , a = b = 1, c = 0, T = 1, and

φ(t , z) =
e−t 2

z

(6+ t )(1+ z)
; (t , z) ∈ J×R+.

Let y, z ∈R+ and for each t ∈ J = [0,1]. Then, we have:

|φ(t , y)−φ(t , z)| =

∣∣∣∣∣ e−t 2

(6+ t )

(
y

1+ y
− z

1+ z

)∣∣∣∣∣ ,

≤ e−t 2

(6+ t )
|y − z|,

≤ 1

6
|y − z|.

Since L = 1
6 , then the hypothesis (A2) holds. Next, we will check that the condition (2.6) is

satisfied with T = 1. In fact,

(
1+ |b|

|a+b|
)

LT(β)

Γq (β+1)
=

(
1+ 1

2

)
1

6Γ1/3( 3
2 )

,

' 0.2666 < 1.

Consequently, according to Theorem 3.1, the boundary value problem (2.8) has a unique

solution on [0,1].
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4 Boundary Value Problem for Fractional q-Difference Equa-

tions in Banach Space

2 This section discusses the study of the existence of solutions to the boundary value prob-

lem (2.1) in Banach space Ewith the norm ‖.‖, by using the fixed point theorem of Mönch

and the Kuratowski’s measure of non-compactness. which is an essential technique for

finding differential equations solutions.

Below, we present the following hypotheses that will be employed in the remaining

part:

(A6) The function φ : J×E→ E satisfy the Carathéodory conditions.

(A7) There exists p ∈ L∞(J,R+), such that for every t ∈ J and every z ∈ E, we have:

‖φ(t , z)‖ ≤ p(t )‖z‖.

(A8) For every t ∈ J and every bounded set B ⊂ E, we have:

µ(φ(t ,B)) ≤ p(t )µ(B).

4.1 Existence Result

This part focuses on proving the result of the existence of solutions to the boundary value

problem (2.1), which is based on Mönch’s fixed point theorem (Theorem 5.6).

Theorem 4.1 Assume that the hypotheses (A6),(A7) and (A8) are satisfied. If

(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖p‖L∞ < 1. (2.9)

Then, the boundary value problem (2.1) has at least one solution on J.

Proof. To begin with, we convert the problem (2.1) into a fixed point problem and define

the operator

H : C(J,E) −→ C(J,E)

Given by:

(H z)(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s − b

a+b

∫ T

0

(T−qs)(β−1)

Γq (β)
φ(s, z(s))dq s + c

a+b
.

2N. Allouch and S. Hamani, Boundary Value Problem for Fractional q-Difference Equations in Banach
Space, Rocky Mountain J. Math., 53(4), (2023), 1001-1010.
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From Lemma 2.2, it is evident that the fixed points of the operator H are the solutions of

the boundary value problem (2.1).

Let ω> 0, we consider the set:

Dω = {z ∈ C(J,E) : ‖z‖∞ ≤ω}. (2.10)

Evidently, the set Dω is closed, bounded and convex of C(J,E).

Next, we are going to prove that the operator H satisfies the conditions of Mönch’s

fixed point theorem. Thus, we offer the proof in three steps.

Step 1: H is a continuous operator on C(J,E).

Let {zn}n∈N be a sequence such that zn → z in C(J,E). Then, for every t ∈ J, we have:

|(H zn)(t )− (H z)(t )| ≤
∫ t

0

(t −qs)(β−1)

Γq (β)

∣∣φ(s, zn(s))−φ(s, z(s))
∣∣dq s

+ |b|
|a+b|

∫ T

0

(T−qs)(β−1)

Γq (β)

∣∣φ(s, zn(s))−φ(s, z(s))
∣∣dq s.

Therefore, for each t ∈ J, we give:

‖H (zn)−H (z)‖ ≤
(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖φ(s, zn(s))−φ(s, z(s))‖.

Let ρ> 0, such that:

‖zn‖∞ ≤ ρ and ‖z‖∞ ≤ ρ.

From the hypothesis (A7), we get:

‖φ(s, zn(s))−φ(s, z(s))‖ ≤ 2ρp(s) := δ(s); δ(s) ∈ L∞(J,R+).

Since φ is a Carathéodory’s function, and thanks to the Lebesgue’s dominated conver-

gence theorem, we find:

‖H (zn)−H (z)‖∞ → 0 as n →∞.

Thus, H is a continuous operator on C(J,E).

Step 2: H maps Dω into Dω.

Let z ∈Dω and using hypothesis (A7), for every t ∈ J, we have:

|(H z)(t )| ≤
∫ t

0

(t −qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s + |c|

|a+b| ,

≤
∫ t

0

(t −qs)(β−1)

Γq (β)
p(s)‖z‖dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
p(s)‖z‖+ |c|

|a+b| .
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By the set (2.10) and for all t ∈ J, we find:

‖H (z)‖ ≤ ωT(β)

Γq (β+1)
‖p‖L∞ + |b|

|a+b|
ωT(β)

Γq (β+1)
‖p‖L∞ + |c|

|a+b| ,

≤ ω

(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖p‖L∞ + |c|

|a+b| ,
≤ ω.

Consequently,

‖H (z)‖∞ ≤ ω.

Step 3: H (Dω) is bounded and equi-continuous.

According to Step 2, it’s clear that H (Dω) ⊂ C(J,E) is bounded.

Next, we prove that the equi-continuity of H (Dω). Let z ∈ Dω and let t1, t2 ∈ J such that

t1 < t2, we have:

|(H z)(t2)− (H z)(t1)| =

∣∣∣∣∫ t2

0

(t2 −qs)(β−1)

Γq (β)
φ(s, z(s))dq s −

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣∣ ,

≤
∫ t1

0

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
Γq (β)

|φ(s, z(s))|dq s

+
∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
|φ(s, z(s))|dq s.

Applying the hypothesis (A7) and by the set (2.10), we get:

|(H z)(t2)− (H z)(t1)| ≤ 1

Γq (β)

∫ t1

0

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
p(s)‖z‖dq s

+ 1

Γq (β)

∫ t2

t1

(t2 −qs)(β−1)p(s)‖z‖dq s,

≤ ω‖p‖L∞

Γq (β)

∫ t1

0

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
dq s

+ω‖p‖L∞

Γq (β)

∫ t2

t1

(t2 −qs)(β−1)dq s.

After calculating the integrals, we obtain:

|(H z)(t2)− (H z)(t1)| ≤ ω‖p‖L∞

Γq (β+1)

(
t (β)

2 − t (β)
1

)
.

As t1 → t2, the inequality above’s right-hand side tends to zero, i.e.:

|(H z)(t2)− (H z)(t1)|→ 0 as t1 → t2.

Consequently, the equi-continuity of H (Dω). So, H (Dω) ⊂Dω.
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4. BOUNDARY VALUE PROBLEM FOR FRACTIONAL Q-DIFFERENCE EQUATIONS IN
BANACH SPACE

Finally, we prove that the implication (1.72) holds.

Let V be a subset of Dω such that V ⊂ conv(H (V ∪ {0}). Since V is bounded and equi-

continuous, and thus the function t → v(t ) = µ(V (t )) is continuous on J. Thank to the

hypothesis (A8), Lemma 5.7, and using the properties of the measure µ, then for every

t ∈ J, we have:

v(t ) ≤ µ(H (V )(t )∪ {0}),

≤ µ(H (V )(t )),

≤
∫ t

0

(t −qs)(β−1)

Γq (β)
p(s)µ(V (s))dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
p(s)µ(V (s))dq s,

≤
∫ t

0

(t −qs)(β−1)

Γq (β)
‖p‖L∞‖v‖∞dq s + |b|

|a+b|
∫ T

0

(T−qs)(β−1)

Γq (β)
‖p‖L∞‖v‖∞dq s.

Thus, for each t ∈ J, we find:

v(t ) ≤ T(β)

Γq (β+1)
‖p‖L∞‖v‖∞+ |b|

|a+b|
T(β)

Γq (β+1)
‖p‖L∞‖v‖∞,

≤ ‖v‖∞
(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖p‖L∞ .

This implies that,

‖v‖∞
[

1−
(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖p‖L∞

]
≤ 0.

According to the condition (2.9), we obtain ‖v‖∞ = 0, i.e.: v(t ) = 0 for every t ∈ J. So, V (t )

is relatively compact in E. In light of the theorem of Ascoli-Arzela (Theorem 1.9), V is

relatively compact in Dω. Thanks to Theorem 5.6, we deduce that the operator H has a

fixed point which represents a solution to the boundary value problem (2.1).

4.2 An Example

Let

E = l 1 =
{

(z1, z2, · · · , zn , · · · ) :
∞∑

n=1
|zn | <∞

}
,

be our Banach space with the norm

‖z‖ =
∞∑

n=1
|zn |.
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5. CONCLUSION

Following that, we examine the boundary value problem for fractional q-difference

equation of the from:
(

CD1/4
1/2zn

)
(t ) =

Γ1/2( 3
4 )t 2 cos(t )|zn (t )|

16(|zn (t )|+1) ; 0 < β≤ 1, t ∈ J = [0,1],

zn(0)+ zn(1) = 1,

(2.11)

where q = 1
2 , β = 1

4 , T = 1, a = b = c = 1, and

z = (z1, z2, . . . , zn , . . .),

φ = (φ1,φ2, . . . ,φn , . . .).

And

φn(t , z) =
Γ1/2( 3

4 )t 2 cos(t )|zn |
16(|zn |+1)

; (t , z) ∈ J×E.

It is evident that the hypotheses (A6) and (A7) are satisfied, where:

p(t ) =
Γ1/2( 3

4 )t 2 cos(t )

16
.

Next, we will verify that the condition (2.9) is satisfied. In fact,(
1+ |b|

|a+b|
)

T(β)

Γq (β+1)
‖p‖L∞ =

(
1+ 1

2

)
Γ1/2( 3

4 )

16Γ1/2( 5
4 )

' 0.1172 < 1.

Consequently, according to Theorem 4.1, the boundary value problem (2.11) has at least

one solution on [0,1].

5 Conclusion

In this chapter, we have provided sufficient conditions for the existence of solutions to the

boundary value problem for fractional q-difference equations involving the Caputo’s frac-

tional q-derivative. Consequently, we obtained the results of the existence and unique-

ness of solutions to the boundary value problem for fractional q-difference equations,

through the use of different fixed point theorems (Banach contraction principle, Schae-

fer and non-linear alternative of Leray-Schauder). Additionally, we studied another exis-

tence result for solutions of the boundary value problem for fractional q-difference equa-

tion in Banach space. This result is based on Kuratowski’s measure technique of non-

compactness and Mönch’s fixed point theorem. To illustrate our findings, we presented

numerical examples.
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Chapter 3

Boundary Value Problem for Fractional

q-Difference Equations of Order β ∈ (1,2]

with Integral Conditions

1 Introduction and Motivation

Fractional q-difference equations play an essential role in modeling many phenomena

in different areas, and are currently studied by many academics in various fields of sci-

ence and engineering. In recent years, several scholars have investigated the existence

and Ulam stability of solutions to the boundary value problems for fractional q-difference

equations involving the Caputo’s fractional q-derivative. For more details; see the works

[1, 6, 56, 68, 98].

In [33], Benchohra et al. established the existence and uniqueness of solutions to the

boundary value problem (BVP for short) with fractional order differential equations and

non-linear integral conditions involving the Caputo’s fractional derivative of the following

form:
c Dαy(t ) = f (t , y(t )); t ∈ [0,T], 1 < α≤ 2,

y(0)− y ′(0) =
∫ T

0
g (s, y(s))d s,

y(T)+ y ′(T) =
∫ T

0
h(s, y(s))d s,

where c Dα is the Caputo’s fractional derivative, and f , g ,h : [0,T]×R→ R are given con-

tinuous functions. The researchers used some fixed point theorems (Banach, Schaefer,

Leray-Schuder, Burton-Kirk) to verify the existence of solutions.
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2. REPRESENTATION OF THE INTEGRABLE SOLUTION

Primarily motivated by the work mentioned above, our main goal in this chapter is to

examine the existence, uniqueness and Ulam stability of solutions to the boundary value

problem for fractional q-difference equations involving Caputo’s fractional q-derivative

with non-linear integral conditions of the following type:



(
CD

β
q z

)
(t ) =φ(t , z(t )); 1 < β≤ 2, t ∈ J = [0,T],

z(0)− z ′(0) =
∫ T

0 ϕ(s, z(s))d s,

z(T)+ z ′(T) =
∫ T

0 ψ(s, z(s))d s,

(3.1)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (1,2],

φ : J× E→ E is a given function and ϕ,ψ : J× E→ E are continuous functions with E is

Banach space.

The rest of the chapter is structured as follows: In Section 2, we offer the integrable

solution of the boundary value problem (3.1). The Section 3 focuses on studying the exis-

tence and Ulam stability of fractional q-difference equations with integral boundary con-

ditions (3.1) with E = R, so that we provide two results for the existence: one depends on

Banach contraction principal theorem and the other on Schaefer’s fixed point theorem. In

addition to presenting the stabilities results, which are based on Ulam-Hyers and Ulam-

Hyers-Rassias stabilities techniques. In Section 4, we establish another existence result

for solutions to the boundary value problem for fractional q-difference equations with

integral conditions (3.1) in Banach spaces that depends on Mönch’s fixed point theorem

and Kuratowski’s measure of non-compactness. To illustrate our results, we give examples

at the end of each section.

2 Representation of the Integrable Solution

The definition and lemma of the integral solution to the problem (3.1) are presented in

this section and are important for understanding the remainder of the chapter.

Firstly, let us define what is meant by the integral solution to the problem (3.1).

Definition 2.1 A function z ∈ C(J,E) is said to be a solution of the problem (3.1), if z sat-

isfies the fractional q-difference equation
(

CD
β
q z

)
(t ) = φ(t , z(t )) on J where β ∈ (1,2], and

satisfies the following integral boundary conditions:

z(0)− z ′(0) =
∫ T

0
ϕ(s, z(s))d s and z(T)+ z ′(T) =

∫ T

0
ψ(s, z(s))d s.
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2. REPRESENTATION OF THE INTEGRABLE SOLUTION

The following lemma is essential for the existence of solutions to the problem (3.1).

Lemma 2.2 Let w,u, v ∈ C(J,E). The integral solution of the following fractional problem:

(
CD

β
q z

)
(t ) = w(t ); 1 < β≤ 2, t ∈ J = [0,T],

z(0)− z ′(0) =
∫ T

0 u(s)d s,

z(T)+ z ′(T) =
∫ T

0 v(s)d s.

(3.2)

Given by:

z(t ) = K (t )+
∫ T

0
Gq (t , s)w(s)dq s, (3.3)

where

K (t ) =
(1+T− t )

(2+T)

∫ T

0
u(s)d s + (1+ t )

(2+T)

∫ T

0
v(s)d s, (3.4)

and

Gq (t , s) =


(t−qs)(β−1)

Γq (β)
− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; 0 ≤ s < t ,

− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; t ≤ s ≤ T.

(3.5)

Proof. Let’s start by applying the Riemann-Liouville’s fractional q-integral of order β ∈
(1,2] to both sides of the equation for the problem (3.2), and thanks to Lemma 3.22, we

obtain:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
w(s)dq s + c0 + c1t . (3.6)

Next, we use the integral conditions of the problem (3.2) to find the constants c0 and c1.

This gives us:

c0 − c1 =
∫ T

0
u(s)d s, (3.7)

and

c0 + (1+T)c1 +
∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s +

∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s =

∫ T

0
v(s)d s. (3.8)
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2. REPRESENTATION OF THE INTEGRABLE SOLUTION

From the equations (3.7) and (3.8), we find:

c1 =
1

(2+T)

(∫ T

0
v(s)d s −

∫ T

0
u(s)d s −

∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s −

∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s

)
,

and

c0 =
(1+T)

(2+T)

∫ T

0
u(s)d s + 1

(2+T)

(∫ T

0
v(s)d s −

∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s −

∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s

)
.

By substituting c0 and c1 into equation (3.6), we get:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
w(s)dq s + (1+T)

(2+T)

∫ T

0
u(s)d s + 1

(2+T)

(∫ T

0
v(s)d s −

∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s

−
∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s

)
+ t

(2+T)

(∫ T

0
v(s)d s −

∫ T

0
u(s)d s −

∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s

−
∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s

)
,

=
(1+T− t )

(2+T)

∫ T

0
u(s)d s + (1+ t )

(2+T)

∫ T

0
v(s)d s +

∫ t

0

(t −qs)(β−1)

Γq (β)
w(s)dq s

− (1+ t )

(2+T)

∫ T

0

(T−qs)(β−1)

Γq (β)
w(s)dq s − (1+ t )

(2+T)

∫ T

0

(T−qs)(β−2)

Γq (β−1)
w(s)dq s.

According to the fact that
∫ T

0 =
∫ t

0 +∫ T
t , we obtain:

z(t ) = K (t )+
∫ T

0
Gq (t , s)w(s)dq s,

with

K (t ) =
(1+T− t )

(2+T)

∫ T

0
u(s)d s + (1+ t )

(2+T)

∫ T

0
v(s)d s,

and

Gq (t , s) =


(t−qs)(β−1)

Γq (β)
− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; 0 ≤ s < t ,

− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; t ≤ s ≤ T.

Lastly, we confirm that z is a solution to the problem (3.2). The proof is completed.
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3. EXISTENCE AND ULAM STABILITY FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
WITH INTEGRAL BOUNDARY CONDITIONS

3 Existence and Ulam Stability for Fractional q-Difference

Equations with Integral Boundary Conditions

1 In the following section, we will establish the results for the existence, uniqueness and

stability of solutions to the problem (3.1) with E = R, by employing certain fixed point

theorems and Ulam stability techniques. This implies that the following problem will be

addressed: 

(
CD

β
q z

)
(t ) =φ(t , z(t )); 1 < β≤ 2, t ∈ J = [0,T],

z(0)− z ′(0) =
∫ T

0 ϕ(s, z(s))d s,

z(T)+ z ′(T) =
∫ T

0 ψ(s, z(s))d s,

(3.9)

where q ∈ (0,1), T > 0 and CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (1,2],

φ : J×R→R is a given function and ϕ,ψ : J×R→R are continuous functions.

3.1 Existence and Uniqueness Result

In this part, we discusses the uniqueness of solutions to the problem (3.9) by applying the

Banach contraction principle theorem (Theorem 5.2).

Theorem 3.1 Suppose that the following hypotheses are satisfied:

(H1) The function φ : J×R→R is continuous.

(H2) There exist positive constants Lφ,Lϕ and Lψ, such that for every t ∈ J and every

y, z ∈R, we have:

|φ(t , y)−φ(t , z)| ≤Lφ|y − z|,

|ϕ(t , y)−ϕ(t , z)| ≤Lϕ|y − z|,

|ψ(t , y)−ψ(t , z)| ≤Lψ|y − z|.

If

0 < (Lϕ+Lψ)
T(1+T)

(2+T)
+LφG∗

q T < 1, (3.10)

where

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)|.

Then, the problem (3.9) has a unique solution on J.

1N. Allouch and S. Hamani, Existence and Ulam Stability for Fractional q-Difference Equation with Inte-
gral Boundary Conditions. (Submitted)
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3. EXISTENCE AND ULAM STABILITY FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
WITH INTEGRAL BOUNDARY CONDITIONS

Proof. To prove this result, we first transform problem (3.9) into a fixed point problem

and consider the operator:

N : C(J,R) −→ C(J,R)

Given by:

(N z)(t ) = K (t )+
∫ T

0
Gq (t , s)φ(s, z(s))dq s, (3.11)

where

K (t ) =
(1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s + (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s, (3.12)

and

Gq (t , s) =


(t−qs)(β−1)

Γq (β)
− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; 0 ≤ s < t ,

− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; t ≤ s ≤ T.

(3.13)

It is clear from Lemma 2.2 that the solutions of the problem (3.9) are the fixed points of

the operator N .

Following that, we will show that the operator N is a contraction mapping on C(J,R).

Let y, z ∈ C(J,R) and for every t ∈ J, then we have:

|(N y)(t )− (N z)(t )| =

∣∣∣∣ (1+T− t )

(2+T)

∫ T

0

(
ϕ(s, y(s))−ϕ(s, z(s))

)
d s

+ (1+ t )

(2+T)

∫ T

0

(
ψ(s, y(s))−ψ(s, z(s))

)
d s

+
∫ T

0
Gq (t , s)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ .

This means that,

|(N y)(t )− (N z)(t )| ≤ (1+T− t )

(2+T)

∫ T

0

∣∣ϕ(s, y(s))−ϕ(s, z(s))
∣∣d s

+ (1+ t )

(2+T)

∫ T

0

∣∣ψ(s, y(s))−ψ(s, z(s))
∣∣d s

+
∫ T

0
|Gq (t , s)| ∣∣φ(s, y(s))−φ(s, z(s))

∣∣dq s.

Applying the hypothesis (H2), we obtain:

|(N y)(t )− (N z)(t )| ≤ Lϕ
(1+T− t )

(2+T)

∫ T

0

∣∣y(s)− z(s)
∣∣d s +Lψ

(1+ t )

(2+T)

∫ T

0

∣∣y(s)− z(s)
∣∣d s

+Lφ
∫ T

0
|Gq (t , s)| ∣∣y(s)− z(s)

∣∣dq s.
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3. EXISTENCE AND ULAM STABILITY FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
WITH INTEGRAL BOUNDARY CONDITIONS

Therefore, for each t ∈ J, we get:

‖N (y)−N (z)‖∞ ≤ sup
t∈J

(
Lϕ

(1+T− t )

(2+T)

∫ T

0

∣∣y(s)− z(s)
∣∣d s

)
+ sup

t∈J

(
Lψ

(1+ t )

(2+T)

∫ T

0

∣∣y(s)− z(s)
∣∣d s

)
+sup

t∈J

(
Lφ

∫ T

0
|Gq (t , s)| ∣∣y(s)− z(s)

∣∣dq s

)
,

≤ Lϕ
T(1+T)

(2+T)

∥∥y − z
∥∥∞+Lψ

T(1+T)

(2+T)

∥∥y − z
∥∥∞+LφG∗

q T
∥∥y − z

∥∥∞ .

Thus,

‖N (y)−N (z)‖∞ ≤
(
(Lϕ+Lψ)

T(1+T)

(2+T)
+LφG∗

q T

)
‖y − z‖∞.

Consequently, from condition (3.10), the operator N is a contraction, and according to

the theorem of Banach contraction principle, we conclude that the operator N has a

unique fixed point, which is the unique solution to the problem (3.9).

3.2 Existence Result

In the next part, we investigate the existence of solutions to the problem (3.9) through the

use of Schaefer’s fixed point theorem (Theorem 5.3).

Theorem 3.2 Suppose that the hypothesis (H1) holds and the following hypothesis is satis-

fied:

(H3) There exist positive constants Mφ,Mϕ and Mψ, such that for every t ∈ J and every

z ∈R, we have:

|φ(t , z)| ≤Mφ,

|ϕ(t , z)| ≤Mϕ,

|ψ(t , z)| ≤Mψ.

Then, the problem (3.9) has at least one solution on J.

Proof. In order to demonstrate that the operator N defined by (3.11) has a fixed point,

we will apply the fixed point theorem of Schaefer. There will be four steps to proof.

Let us consider:

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)|.
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3. EXISTENCE AND ULAM STABILITY FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
WITH INTEGRAL BOUNDARY CONDITIONS

Step 1: N is a continuous operator on C(J,R).

Let {zn}n∈N be a sequence such that zn → z in C(J,R). Then, for every t ∈ J, we have:

|(N zn)(t )− (N z)(t )| ≤ (1+T− t )

(2+T)

∫ T

0

∣∣ϕ(s, zn(s))−ϕ(s, z(s))
∣∣d s

+ (1+ t )

(2+T)

∫ T

0

∣∣ψ(s, zn(s))−ψ(s, z(s))
∣∣d s

+
∫ T

0
|Gq (t , s)| ∣∣φ(s, zn(s))−φ(s, z(s))

∣∣dq s.

Thus, for each t ∈ J, we find:

‖N (zn)−N (z)‖∞ ≤ T(1+T)

(2+T)

∥∥ϕ(., zn(.))−ϕ(., z(.))
∥∥∞+ T(1+T)

(2+T)

∥∥ψ(., zn(.))−ψ(., z(.))
∥∥∞

+G∗
q T

∥∥φ(., zn(.))−φ(., z(.))
∥∥∞ .

Since φ,ϕ and ψ are continuous functions, i.e.:

‖φ(., zn(.))−φ(., z(.))‖∞ → 0 as n →∞,

‖ϕ(., zn(.))−ϕ(., z(.))‖∞ → 0 as n →∞,

‖ψ(., zn(.))−ψ(., z(.))‖∞ → 0 as n →∞.

So,
‖N (zn)−N (z)‖∞ → 0 as n →∞.

As a consequence, the operator N is continuous on C(J,R).

Step 2: N maps bounded sets into bounded sets in C(J,R).

In actually, It is sufficient to show that for all r ∗ > 0 there exists a positive constant R∗ > 0,

such that for every z ∈B∗
r∗ =

{
z ∈ C(J,R) : ‖z‖∞ ≤ r ∗}

, we have ‖N (z)‖∞ ≤R∗.

Let z ∈B∗
r∗ . Then, for every t ∈ J, we have:

|(N z)(t )| =

∣∣∣∣ (1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s + (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s +

∫ T

0
Gq (t , s)φ(s, z(s))dq s

∣∣∣∣ ,

≤ (1+T− t )

(2+T)

∫ T

0
|ϕ(s, z(s))|d s + (1+ t )

(2+T)

∫ T

0
|ψ(s, z(s))|d s +

∫ T

0
|Gq (t , s)||φ(s, z(s))|dq s.

Applying the hypothesis (H3) and for each t ∈ J, we obtain:

|(N z)(t )| ≤ Mϕ
T(1+T)

(2+T)
+Mψ

T(1+T)

(2+T)
+MφG∗

q T.

Consequently,

‖N (z)‖∞ ≤ (Mϕ+Mψ)
T(1+T)

(2+T)
+MφG∗

q T :=R∗.

Thus, the operator N is uniformly bounded on B∗
r∗ .
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Step 3:N maps bounded sets into equi-continuous sets of C(J,R).

Let t1, t2 ∈ J such that t1 < t2 and let B∗
r∗ be a bounded set of C(J,R) as in Step 2. For

z ∈B∗
r∗ , then we have:

|(N z)(t2)− (N z)(t1)| =

∣∣∣∣ (t1 − t2)

(2+T)

∫ T

0
ϕ(s, z(s))d s + (t2 − t1)

(2+T)

∫ T

0
ψ(s, z(s))d s

+
∫ T

0

(
Gq (t2, s)−Gq (t1, s)

)
φ(s, z(s))dq s

∣∣∣∣ ,

≤ |t1 − t2|
(2+T)

∫ T

0
|ϕ(s, z(s))|d s + (t2 − t1)

(2+T)

∫ T

0
|ψ(s, z(s))|d s

+
∫ T

0

∣∣Gq (t2, s)−Gq (t1, s)
∣∣ |φ(s, z(s))|dq s.

From hypothesis (H3), we find:

|(N z)(t2)− (N z)(t1)| ≤ Mϕ
T|t1 − t2|

(2+T)
+Mψ

T(t2 − t1)

(2+T)
+MφT sup

s∈J

∣∣Gq (t2, s)−Gq (t1, s)
∣∣ .

As t1 → t2, the inequality above’s right-hand side tends to zero, i.e.:

|(N z)(t2)− (N z)(t1)|→ 0 as t1 → t2.

Thus, the operator N is equi-continuous.

As a result of Steps 1 to 3 and thanks to the Arzela-Ascoli’s theorem (Theorem 1.9), we

deduce that the operator N is completely continuous.

Step 4: A priori bound.

Let’s now show that the setΩ∗ =
{

z ∈ C(J,R) : z = γN (z),γ ∈ (0,1)
}

is bounded.

Let z ∈Ω∗ and for each t ∈ J, then we have:

z(t ) = γ(N z)(t ),

= γ

(
(1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s + (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s +

∫ T

0
Gq (t , s)φ(s, z(s))dq s

)
.

Hence, by hypothesis (H3) and using the estimation in Step 2, it follows that for γ ∈ (0,1)

and for every t ∈ J, we find:

|z(t )| ≤ γ|(N z)(t )|,
≤ ‖N (z)‖∞,

≤ (Mϕ+Mψ)
T(1+T)

(2+T)
+MφG∗

q T :=R∗.

Then,

‖z‖∞ ≤R∗ <+∞.

Thus, the setΩ∗ is bounded.
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As a consequence of Steps 1 to 4 and according to Schaefer’s fixed point theorem, we de-

duce that the operator N has at least one fixed point which is the solution to the problem

(3.9).

3.3 Ulam Stability Results

This section focuses on defining and studying different types of Ulam stability to the prob-

lem (3.9), by applying Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

Relying on the references [1, 6, 22, 46, 56, 82, 83, 91], we give the following definitions:

Definition 3.3 The problem (3.9) is Ulam-Hyers stable if there exists a real number η > 0,

such that for every ε> 0 and for every solution y ∈ C(J,R) of the following inequality:

|(CD
β
q y)(t )−φ(t , y(t ))| ≤ ε, 1 < β≤ 2, t ∈ J, (3.14)

there exists a solution z ∈ C(J,R) of the problem (3.9) with the norm

‖y − z‖∞ ≤ ηε.

Definition 3.4 The problem (3.9) is generalized Ulam-Hyers stable if there existsκ ∈ C(R+,R+)

with κ(0) = 0, such that for every ε > 0 and for every solution y ∈ C(J,R) of the inequality

(3.14), there exists a solution z ∈ C(J,R) of the problem (3.9) with the norm

‖y − z‖∞ ≤ κ(ε).

Definition 3.5 The problem (3.9) is Ulam-Hyers-Rassias stable with respect to σ if there

exists ησ > 0, such that for every ε > 0 and for every solution y ∈ C(J,R) of the following

inequality:

|(CD
β
q y)(t )−φ(t , y(t ))| ≤ εσ(t ), 1 < β≤ 2, t ∈ J, (3.15)

there exists a solution z ∈ C(J,R) of the problem (3.9) with the norm

‖y − z‖∞ ≤ ησεσ(t ), t ∈ J.

Remark 3.6 Clearly : Definition 3.3 ⇒ Definition 3.4.
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Now, we present main results related to Ulam stabilities of the problem (3.9).

Theorem 3.7 Suppose that the hypotheses (H1)-(H2) and condition (3.10) are satisfied. Then,

the problem (3.9) is Ulam-Hyers stable.

Proof. Let y ∈ C(J,R) be a solution of the inequality (3.14) and let z ∈ C(J,R) be the unique

solution of the problem (3.9). Then, from Lemma 2.2, we have:

z(t ) = K (t )+
∫ T

0
Gq (t , s)φ(s, z(s))dq s,

where the functions K (t ) and Gq (t , s) are given by the equations (3.12) and (3.13), respec-

tively. By integration of the inequality (3.14) and for every t ∈ J, we get:

∣∣∣∣∣ y(t )− (1+T−t )
(2+T)

∫ T
0 ϕ(s, y(s))d s

− (1+t )
(2+T)

∫ T
0 ψ(s, y(s))d s −∫ T

0 Gq (t , s)φ(s, y(s))dq s

∣∣∣∣∣ ≤ I
β
qε,

≤ t (β)

Γq (β+1)
ε.

Therefore, we can write:

|y(t )− z(t )| ≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s

−
∫ T

0
Gq (t , s)φ(s, z(s))dq s

∣∣∣∣ ,

≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, y(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, y(s))d s

−
∫ T

0
Gq (t , s)φ(s, y(s))dq s + (1+T− t )

(2+T)

∫ T

0

(
ϕ(s, y(s))−ϕ(s, z(s))

)
d s

+ (1+ t )

(2+T)

∫ T

0

(
ψ(s, y(s))−ψ(s, z(s))

)
d s +

∫ T

0
Gq (t , s)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ ,

≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, y(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, y(s))d s

−
∫ T

0
Gq (t , s)φ(s, y(s))dq s

∣∣∣∣+ ∣∣∣∣ (1+T− t )

(2+T)

∫ T

0

(
ϕ(s, y(s))−ϕ(s, z(s))

)
d s

+ (1+ t )

(2+T)

∫ T

0

(
ψ(s, y(s))−ψ(s, z(s))

)
d s +

∫ T

0
Gq (t , s)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ .

Then, for each t ∈ J, we obtain:

|y(t )− z(t )| ≤ t (β)

Γq (β+1)
ε+ (1+T− t )

(2+T)

∫ T

0

∣∣ϕ(s, y(s))−ϕ(s, z(s))
∣∣d s + (1+ t )

(2+T)

×
∫ T

0

∣∣ψ(s, y(s))−ψ(s, z(s))
∣∣d s +

∫ T

0
|Gq (t , s)| ∣∣φ(s, y(s))−φ(s, z(s))

∣∣dq s.
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Applying the hypothesis (H2) and for every t ∈ J, we find:

‖y − z‖∞ ≤ T(β)

Γq (β+1)
ε+

(
(Lϕ+Lψ)

T(1+T)

(2+T)
+LφG∗

q T

)
‖y − z‖∞.

By condition (3.10), we get:

‖y − z‖∞ ≤
T(β)

Γq (β+1)

1−
(
(Lϕ+Lψ) T(1+T)

(2+T) +LφG∗
q T

)ε,

:= ηε.

Thus, the problem (3.9) is Ulam-Hyers stable.

Corollary 3.8 If we take κ(ε) = ηε; κ(0) = 0, we conclude that the problem (3.9) is general-

ized Ulam-Hyers stable.

Theorem 3.9 Suppose that the hypotheses (H1)-(H2) and condition (3.10) are satisfied, and

the following hypothesis holds:

(H4) Let σ ∈ C(J,R+) be an increasing function. There exists λσ > 0, such that for every

t ∈ J, we have:

I
β
qσ(t ) ≤ λσσ(t ).

Then, the problem (3.9) is Ulam-Hyers-Rassias stable.

Proof. Let y ∈ C(J,R) be a solution of the inequality (3.15) and let z ∈ C(J,R) be the unique

solution of the problem (3.9). Then, according to Lemma 2.2, we have:

z(t ) = K (t )+
∫ T

0
Gq (t , s)φ(s, z(s))dq s,

where the functions K (t ) and Gq (t , s) are given by the equations (3.12) and (3.13), respec-

tively. Through integration of the inequality (3.15) and for every t ∈ J, we find:

∣∣∣∣∣ y(t )− (1+T−t )
(2+T)

∫ T
0 ϕ(s, y(s))d s

− (1+t )
(2+T)

∫ T
0 ψ(s, y(s))d s −∫ T

0 Gq (t , s)φ(s, y(s))dq s

∣∣∣∣∣ ≤ I
β
qεσ(t ),

≤ ελσσ(t ).
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Then, we can write:

|y(t )− z(t )| ≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s

−
∫ T

0
Gq (t , s)φ(s, z(s))dq s

∣∣∣∣ ,

≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, y(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, y(s))d s

−
∫ T

0
Gq (t , s)φ(s, y(s))dq s + (1+T− t )

(2+T)

∫ T

0

(
ϕ(s, y(s))−ϕ(s, z(s))

)
d s

+ (1+ t )

(2+T)

∫ T

0

(
ψ(s, y(s))−ψ(s, z(s))

)
d s +

∫ T

0
Gq (t , s)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ ,

≤
∣∣∣∣y(t )− (1+T− t )

(2+T)

∫ T

0
ϕ(s, y(s))d s − (1+ t )

(2+T)

∫ T

0
ψ(s, y(s))d s

−
∫ T

0
Gq (t , s)φ(s, y(s))dq s

∣∣∣∣+ ∣∣∣∣ (1+T− t )

(2+T)

∫ T

0

(
ϕ(s, y(s))−ϕ(s, z(s))

)
d s

+ (1+ t )

(2+T)

∫ T

0

(
ψ(s, y(s))−ψ(s, z(s))

)
d s +

∫ T

0
Gq (t , s)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ ,

Therefore, for each t ∈ J, we give:

|y(t )− z(t )| ≤ ελσσ(t )+ (1+T− t )

(2+T)

∫ T

0

∣∣ϕ(s, y(s))−ϕ(s, z(s))
∣∣d s + (1+ t )

(2+T)

×
∫ T

0

∣∣ψ(s, y(s))−ψ(s, z(s))
∣∣d s +

∫ T

0
|Gq (t , s)| ∣∣φ(s, y(s))−φ(s, z(s))

∣∣dq s.

Using the hypothesis (H2) and for every t ∈ J, we get:

‖y − z‖∞ ≤ ελσσ(t )+
(
(Lϕ+Lψ)

T(1+T)

(2+T)
+LφG∗

q T

)
‖y − z‖∞.

From condition (3.10), we obtain:

‖y − z‖∞ ≤ ελσσ(t )

1−
(
(Lϕ+Lψ) T(1+T)

(2+T) +LφG∗
q T

) ,

:= ησεσ(t ).

Consequently, the problem (3.9) is Ulam-Hyers-Rassias stable.
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3.4 Examples

This part includes two examples that illustrate our main results.

Example 3.10 Consider the following boundary value problem for fractional q-difference

equation: 

(
CD8/7

1/7z
)

(t ) = te−t

t+6 cos(z(t )); 1 < β≤ 2, t ∈ J = [0,1],

z(0)− z ′(0) =
∫ 1

0
s
2 cos(z(s))d s,

z(1)+ z ′(1) =
∫ 1

0
s
2 sin(z(s))d s,

(3.16)

where β = 8
7 , q = 1

7 ,T = 1, and

φ(t , z) =
te−t

t +6
cos(z), (t , z) ∈ J×R,

ϕ(t , z) =
t

2
cos(z), (t , z) ∈ J×R,

ψ(t , z) =
t

2
sin(z), (t , z) ∈ J×R.

Obviously, the functions φ,ϕ and ψ are continuous.

Let y, z ∈R and for every t ∈ J = [0,1]. Then, we have:

|φ(t , y)−φ(t , z)| =

∣∣∣∣ te−t

t +6

(
cos(y)−cos(z)

)∣∣∣∣ ,

≤ te−t

t +6
|cos(y)−cos(z)|,

≤ 1

6
|y − z|,

and

|ϕ(t , y)−ϕ(t , z)| ≤ 1

2
|y − z|,

|ψ(t , y)−ψ(t , z)| ≤ 1

2
|y − z|.

Then, the hypothesis (H2) is satisfied with Lφ = 1
6 and Lϕ = Lψ = 1

2 . Hence, from the equa-

tion (3.13) and for each J = [0,1], we give:

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)| =

5

3Γq (β)
+ 2

3Γq (β−1)
.
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Now, we will verify that the condition (3.17) is satisfied with T = 1. In effect,

(Lϕ+Lψ)
T(1+T)

(2+T)
+LφG∗

q T =
2

3

(
1

2
+ 1

2

)
+ 1

6

(
5

3Γ1/7( 8
7 )

+ 2

3Γ1/7( 1
7 )

)
,

' 0.9833 < 1.

Hence, thanks to Theorem 3.1, the problem (3.16) has a unique solution on [0,1] and all the

conditions of Theorem 3.7 are satisfied. Thus, the problem (3.16) is Ulam-Hyers stable.

Next, let σ(t ) = t 2 for each t ∈ J = [0,1], then we have:

I8/7
1/7σ(t ) =

Γ1/7(3)

Γ1/7( 29
7 )

t 2+ 8
7 ≤ Γ1/7(3)

Γ1/7( 29
7 )

t 2 = λσσ(t ).

Then, the hypothesis (H4) holds with σ(t ) = t 2 and λσ = Γ1/7(3)
Γ1/7( 29

7 )
. Hence, all the hypotheses

of Theorem 3.9 are satisfied. So, the problem (3.16) is Ulam-Hyers-Rassias stable.

On the other hand, let z ∈R and for each t ∈ J, we have:

|φ(t , z)| ≤ 1

6
,

|ϕ(t , z)| ≤ 1

2
,

|ψ(t , z)| ≤ 1

2
.

Hence, the hypothesis (H3) holds with Mφ = 1
6 and Mϕ = Mψ = 1

2 .

Consequently, according to Theorem 3.2, the problem (3.16) has at least one solution on

[0,1].

Example 3.11 Consider the following boundary value problem for fractional q-difference

equation: 

(
CD4/3

1/2z
)

(t ) = t 2|z(t )|+1
6e t (1+|z(t )|) ; 1 < β≤ 2, t ∈ J = [0,1],

z(0)− z ′(0) =
∫ 1

0
s2+1

3 |z(s)|d s,

z(1)+ z ′(1) =
∫ 1

0
s2−1

5 |z(s)|d s,

(3.17)

where β = 4
3 , q = 1

2 ,T = 1, and

φ(t , z) =
t 2z +1

6e t (1+ z)
, (t , z) ∈ J×R+,

ϕ(t , z) =
t 2 +1

3
z, (t , z) ∈ J×R+,

ψ(t , z) =
t 2 −1

5
z, (t , z) ∈ J×R+.

Evidently, the functions φ,ϕ and ψ are continuous.
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Let y, z ∈R+ and for each t ∈ J = [0,1]. Then, we have:

|φ(t , y)−φ(t , z)| ≤ t 2

6e t
|y − z|,

≤ 1

6
|y − z|,

and

|ϕ(t , y)−ϕ(t , z)| ≤ 1

3
|y − z|,

|ψ(t , y)−ψ(t , z)| ≤ 1

5
|y − z|.

So, the hypothesis (H2) holds with Lφ = 1
6 , Lϕ = 1

3 and Lψ = 1
5 . Therefore, according to the

equation (3.13) and for every J = [0,1], we give:

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)| =

5

3Γq (β)
+ 2

3Γq (β−1)
.

Now, we will verify that the condition (3.17) is satisfied with T = 1. In effect,

(Lϕ+Lψ)
T(1+T)

(2+T)
+LφG∗

q T =
2

3

(
1

3
+ 1

5

)
+ 1

6

(
5

3Γ1/2( 4
3 )

+ 2

3Γ1/2( 1
3 )

)
,

' 0.7057 < 1.

Thus, according to Theorem 3.1, the problem (3.17) has a unique solution on [0,1] and all

the conditions of Theorem 3.7 are satisfied. So, the problem (3.17) is Ulam-Hyers stable.

Next, let σ(t ) = t 2 for every t ∈ J = [0,1], then we have:

I4/3
1/2σ(t ) =

Γ1/2(3)

Γ1/2( 13
3 )

t 2+ 3
4 ≤ 3

2Γ1/2( 13
3 )

t 2 = λσσ(t ).

Hence, the hypothesis (H4) holds with σ(t ) = t 2 and λσ = 3
2Γ1/2( 13

3 )
. Therefore, all the condi-

tions of Theorem 3.9 are satisfied. Thus, the problem (3.17) is Ulam-Hyers-Rassias stable.

On the other hand, let z ∈R+ and for every t ∈ J, we have:

|φ(t , z)| ≤ 1

6
,

|ϕ(t , z)| ≤ 1

3
,

|ψ(t , z)| ≤ 1

5
.

Then, the hypothesis (H3) is satisfied with Mφ = 1
6 , Mϕ = 1

3 and Mψ = 1
5 .

Consequently, thanks to Theorem 3.2, the problem (3.17) has at least one solution on [0,1].
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4 Boundary Value Problem for Fractional q-Difference Equa-

tions with Integral Conditions in Banach Spaces

2 The main goal of this section is to show the result of the existence of solutions to the

boundary value problem (3.1) in Banach space Ewith the norm ‖.‖, through the use of the

Kuratowski’s measure of non-compactness and Mönch’s fixed point theorem.

4.1 Existence Result

In this part, we prove the existence of solutions to the problem (3.1), which depends on

the fixed point theorem of Mönch (Theorem 5.6).

Theorem 4.1 Suppose that the following hypotheses are satisfied:

(H5) The functions φ,ϕ,ψ : J×E→ E satisfy the Carathéodory conditions.

(H6) There exist pφ,pϕ,pψ ∈ L∞(J,R+), such that for every t ∈ J and every z ∈ E, we have:

‖φ(t , z)‖ ≤ pφ(t )‖z‖,

‖ϕ(t , z)‖ ≤ pϕ(t )‖z‖,

‖ψ(t , z)‖ ≤ pψ(t )‖z‖.

(H7) For all t ∈ J and every bounded set B ⊂ E, we have:

µ(φ(t ,B)) ≤ pφ(t )µ(B),

µ(ϕ(t ,B)) ≤ pϕ(t )µ(B),

µ(ψ(t ,B)) ≤ pψ(t )µ(B).

If
T(1+T)

(2+T)

(‖pϕ‖L∞ +‖pψ‖L∞
)+G∗

q T‖pφ‖L∞ < 1. (3.18)

where

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)|.

Then, the problem (3.1) has at least one solution J.

2N. Allouch, J.R. Graef and S.Hamani, Boundary Value Problem for Fractional q-Difference Equations
with Integral Conditions in Banach space, Fractal Fract., 6 (5), (2022), 11 page.
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Proof. In order to illustrate this result, we first convert the problem (3.1) into a fixed point

problem and consider the operator:

N : C(J,E) −→ C(J,E)

By:

(N z)(t ) = K (t )+
∫ T

0
Gq (t , s)φ(s, z(s))dq s, (3.19)

where

K (t ) =
(1+T− t )

(2+T)

∫ T

0
ϕ(s, z(s))d s + (1+ t )

(2+T)

∫ T

0
ψ(s, z(s))d s,

and

Gq (t , s) =


(t−qs)(β−1)

Γq (β)
− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; 0 ≤ s < t ,

− (1+t )(T−qs)(β−1)

(2+T)Γq (β)
− (1+t )(T−qs)(β−2)

(2+T)Γq (β−1)
; t ≤ s ≤ T.

Obviously, according to Lemma 2.2, the fixed points of the operator N are solutions of

the problem (3.1).

Let ω∗ > 0, we consider the set:

D∗
ω∗ = {z ∈ C(J,E) : ‖z‖∞ ≤ω∗}. (3.20)

It is clear that D∗
ω∗ is a bounded, closed and convex set of C(J,E).

Next, we shall show that the operator N satisfies the assumptions of Mönch’s fixed

point theorem. The proof will be provided in three steps.

Step 1: N is a continuous operator on C(J,E).

Let {zn}n∈N be a sequence with zn → z in C(J,E). Then, for every t ∈ J, we have:

|(N zn)(t )− (N z)(t )| ≤ (1+T− t )

(2+T)

∫ T

0

∣∣ϕ(s, zn(s))−ϕ(s, z(s))
∣∣d s

+ (1+ t )

(2+T)

∫ T

0

∣∣ψ(s, zn(s))−ψ(s, z(s))
∣∣d s

+
∫ T

0
|Gq (t , s)| ∣∣φ(s, zn(s))−φ(s, z(s))

∣∣dq s.
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Therefore, for each t ∈ J, we obtain:

‖N (zn)−N (z)‖ ≤ T(1+T)

(2+T)

∥∥ϕ(s, zn(s))−ϕ(s, z(s))
∥∥+ T(1+T)

(2+T)

∥∥ψ(s, zn(s))−ψ(s, z(s))
∥∥

+G∗
q T

∥∥φ(s, zn(s))−φ(s, z(s))
∥∥ .

Let ρ> 0 be such that:

‖zn‖∞ ≤ ρ and ‖z‖∞ ≤ ρ.

Using the hypothesis (H6), we give:

‖φ(s, zn(s))−φ(s, z(s))‖ ≤ 2ρpφ(s) := δφ(s); δφ(s) ∈ L∞(J,R+).

‖ϕ(s, zn(s))−ϕ(s, z(s))‖ ≤ 2ρpϕ(s) := δϕ(s); δϕ(s) ∈ L∞(J,R+).

‖ψ(s, zn(s))−ψ(s, z(s))‖ ≤ 2ρpψ(s) := δψ(s); δψ(s) ∈ L∞(J,R+).

Since φ, ϕ, and ψ are Carathéodory’s functions, and thanks to the Lebesgue dominated

convergence theorem, we get:

‖N (zn)−N (z)‖∞ → 0 as n →∞.

Thus, N is a continuous operator on C(J,E).

Step 2: N maps D∗
ω∗ into D∗

ω∗ .

Let z ∈D∗
ω∗ and applying hypothesis (H6), for every t ∈ J, we have:

|(N z)(t )| ≤ (1+T− t )

(2+T)

∫ T

0
|ϕ(s, z(s))|d s + (1+ t )

(2+T)

∫ T

0
|ψ(s, z(s))|d s +

∫ T

0
|Gq (t , s)||φ(s, z(s))|dq s,

≤ (1+T− t )

(2+T)

∫ T

0
pϕ(s)‖z‖d s + (1+ t )

(2+T)

∫ T

0
pψ(s)‖z‖d s +

∫ T

0
|Gq (t , s)|pφ(s)‖z‖dq s.

From the set (3.20) and for each t ∈ J, we obtain:

|(N z)(t )| ≤ ω∗T(1+T)

(2+T)
‖pϕ‖L∞ + ω∗T(1+T)

(2+T)
‖pψ‖L∞ +ω∗G∗

q T‖pφ‖L∞ ,

≤ ω∗
((‖pϕ‖L∞ +‖pψ‖L∞

) T(1+T)

(2+T)
+G∗

q T‖pφ‖L∞

)
,

≤ ω∗.

Thus,

‖N (z)‖∞ ≤ ω∗.
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Step 3: N (D∗
ω∗) is bounded and equi-continuous.

In light of Step 2, It is evident that N (D∗
ω∗) ⊂ C(J,E) is bounded.

Next, we demonstrate that the equi-continuity of N (D∗
ω∗). Let z ∈ D∗

ω∗ and let t1, t2 ∈ J

such that t1 < t2, then we have:

|(N z)(t2)− (N z)(t1)| =

∣∣∣∣ (t1 − t2)

(2+T)

∫ T

0
ϕ(s, z(s))d s + (t2 − t1)

(2+T)

∫ T

0
ψ(s, z(s))d s

+
∫ T

0

(
Gq (t2, s)−Gq (t1, s)

)
φ(s, z(s))dq s

∣∣∣∣ ,

≤ |t1 − t2|
(2+T)

∫ T

0
‖ϕ(s, z(s))‖d s + (t2 − t1)

(2+T)

∫ T

0
|ψ(s, z(s))|d s

+
∫ T

0

∣∣Gq (t2, s)−Gq (t1, s)
∣∣ |φ(s, z(s))|dq s.

Using the hypothesis (H6), we find:

|(N z)(t2)− (N z)(t1)| ≤ |t1 − t2|
(2+T)

∫ T

0
pϕ(s)‖z‖d s + (t2 − t1)

(2+T)

∫ T

0
pψ(s)‖z‖d s

+
∫ T

0
|G (t2, s)−G (t1, s)|pφ(s)‖z‖dq s.

Therefore,

|(N z)(t2)− (N z)(t1)| ≤ ω∗T
|t1 − t2|
(2+T)

‖pϕ‖L∞ +ω∗T
(t2 − t1)

(2+T)
‖pψ‖L∞

+ω∗T‖pφ‖L∞ sup
s∈J

∣∣Gq (t2, s)−Gq (t1, s)
∣∣ .

As t1 → t2, the inequality above’s right-hand side tends to zero, i.e.:

|(N z)(t2)− (N z)(t1)|→ 0 as t1 → t2.

Thus, the equi-continuity of N (D∗
ω∗). So, N (D∗

ω∗) ⊂D∗
ω∗ .

Lastly, we show the validity of the implication (1.72).

Let V be a subset of D∗
ω∗ such that V ⊂ conv(N (V ∪ {0}). Since V is bounded and equi-

continuous, the function t → v(t ) = µ(V (t )) is continuous on J. Then, from hypothesis

(H7), Lemma 5.7, and applying the properties of the measure µ, for every t ∈ J, we have:

v(t ) ≤ µ(N (V )(t )∪ {0}),

≤ µ(N (V )(t )),

≤ (1+T− t )

(2+T)

∫ T

0
pϕ(s)µ(V (s))d s + (1+ t )

(2+T)

∫ T

0
pψ(s)µ(V (s))d s +

∫ T

0
|Gq (t , s)|pφ(s)µ(V (s))dq s.
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So, for each t ∈ J, we get:

v(t ) ≤ T(1+T)

(2+T)
‖pϕ‖L∞‖v‖∞+ T(1+T)

(2+T)
‖pψ‖L∞‖v‖∞+G∗

q T‖pφ‖L∞‖v‖∞,

≤ ‖v‖∞
(

T(1+T)

(2+T)

(‖pϕ‖L∞ +‖pψ‖L∞
)+G∗

q T‖pφ‖L∞

)
.

This implies that,

‖v‖∞
[

1−
(

T(1+T)

(2+T)

(‖pϕ‖L∞ +‖pψ‖L∞
)+G∗

q T‖pφ‖L∞

)]
≤ 0.

By condition (3.18), we observe that ‖v‖∞ = 0, i.e.: v(t ) = 0 for all t ∈ J. Thus, V (t ) is

relatively compact in E. Thanks to Ascoli-Arzelà theorem (Theorem 1.9), V is relatively

compact in D∗
ω∗ . According to Mönch’s fixed point theorem, we conclude that the opera-

tor N has a fixed point that represents the solution to the problem (3.1).

4.2 An Example

Let

E = l 1 =
{

(z1, z2, · · · , zn , · · · ) :
∞∑

n=1
|zn | <∞

}
,

be our Banach space with the norm

‖z‖ =
∞∑

n=1
|zn |.

Now, we consider the following boundary value problem for fractional q-difference

equation: 

(
CD3/2

1/4zn
)

(t ) = zn (t )
(e t+5)(zn (t )+1) ; 1 < β≤ 2, t ∈ J = [0,1],

zn(0)− z ′
n(0) =

∫ 1
0

s3−1
9 zn(s)d s,

zn(1)+ z ′
n(1) =

∫ 1
0

s3+1
6 zn(s)d s,

(3.21)

where β = 3
2 , q = 1

4 , T = 1, and

φn(t , z) =
zn(t )

(e t +5)(zn(t )+1)
; (t , z) ∈ J×E,

ϕn(t , z) =
t 3 −1

9
zn ; (t , z) ∈ J×E,

ψn(t , z) =
t 3 +1

6
zn ; (t , z) ∈ J×E.
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with

z = (z1, z2, . . . , zn , . . .),

φ = (φ1,φ2, . . . ,φn , . . .),

ϕ = (ϕ1,ϕ2, . . . ,ϕn , . . .),

ψ = (ψ1,ψ2, . . . ,ψn , . . .).

Evidently, the hypotheses (H5) and (H6) are satisfied, with

pφ(t ) =
1

e t +5
, pϕ(t ) =

t 3

9
and pψ(t ) =

t 3

6
.

By equation (3.13), we give:

G∗
q = sup

(t ,s)∈J×J
|Gq (t , s)| =

5

3Γq (β)
+ 2

3Γq (β−1)
.

Next, we confirm that the condition (3.18) holds with T = 1. In fact,

T(1+T)

(2+T)

(‖pϕ‖L∞ +‖pψ‖L∞
)+G∗

q T‖pφ‖L∞ =
2

3

(
1

9
+ 1

6

)
+ 1

6

(
5

3Γ1/4( 3
2 )

+ 2

3Γ1/4( 1
2 )

)
,

' 0.5564 < 1.

Thus, thanks to Theorem 4.1, the problem (3.21) has a solution on [0,1].

5 Conclusion

In this study, we have presented the results of the existence, uniqueness and stability of

solutions to the boundary value problem for fractional q-difference equations involving

the Caputo’s fractional q-derivative with non-linear integral conditions, by using some

fixed point theorems and Ulam stability techniques. Moreover, we have also given an ad-

ditional result for the existence of solutions to the boundary value problem for fractional

q-difference equations with non-linear integral conditions in Banach spase, by applying

the Kuratowski’s measure of non-compactness and Mönch’s fixed point theorem. To sup-

port our findings , we include illustrative examples.
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Chapter 4

Existence and Ulam Stability of Initial

Value Problem for Impulsive Fractional

q-Difference Equations

1 Introduction and Motivation

Impulsive fractional differential equations have played an important role in certain math-

ematical models of real phenomena, especially in the domains of biology and medicine(such

as observe blood flow phenomena). In recent years, many researchers have been inter-

ested in the impulsive fractional q-difference equations, so that they achieved the exis-

tence and stability of their solutions; see references [26, 13, 17, 61, 75, 93] for example.

Hammou and Hamani in [54] established the existence results for solutions of the ini-

tial value problems for impulsive fractional differential equations involving the Caputo-

Hadamard’s fractional derivative of the following form:

CHDr y(t ) = f (t , y(t )); t ∈ [a,T], t 6= tk , k = 1, · · · ,m, 1 < r ≤ 2,

∆y |t=tk = Ik (y(t−k )), k = 1, · · · ,m,

∆y ′ |t=tk = Ik (y(t−k )), k = 1, · · · ,m,

y(a) = y1, y ′(a) = y2,

where CHDr
q is the Caputo-Hadamard’s fractional derivative, f : [a,T]× E→ E is a func-

tion, Ik , Ik : E→ E, k = 1, · · · ,m are functions, a = t0 < t1 < ·· · < tm < tm+1 = T, ∆y |t=tk =

y(t+k )−y(t−k ),∆y ′ |t=tk = y ′(t+k )−y ′(t−k ), y(t+k ) = limε→0+ y(tk+ε) and y(t−k ) = limε→0− y(tk+ε)

represent the right and left limits of y at t = tk , k = 1, · · · ,m and E is a Banach space.

They used Mönch’s fixed point theorem and Kuratowski’s measure of non-compactness

to study the existence of solutions.
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Motivated by the aforementioned work, in this chapter, we investigate the existence,

uniqueness and Ulam stability of solutions to the initial value problem for impulsive frac-

tional q-difference equations involving Caputo’s fractional q-derivative, which is given as

follows: 

(
CD

β
q z

)
(t ) =φ(t , z(t )); 1 < β≤ 2, t ∈ J = [0,T], t 6= ti , i = 1, · · · ,n,

∆z |t=ti = Ii (z(t−i )), i = 1, · · · ,n,

∆z ′ |t=ti = I i (z(t−i )), i = 1, · · · ,n,

z(0) = z0, z ′(0) = z∗
0 ,

(4.1)

where q ∈ (0,1), T > 0, CD
β
q is the Caputo’s fractional q-derivative of order β ∈ (1,2], and

φ : J×R → R is a continuous function, Ii ,I i : R → R, i = 1, · · · ,n are given functions,

and z0, z∗
0 ∈ R, 0 = t0 < t1 < ·· · < tn < tn+1 = T < +∞, ∆z |t=ti = z(t+i )− z(t−i ) and ∆z ′ |t=ti =

z ′(t+i )−z ′(t−i ), z(t+i ) = limε→0+ z(ti +ε) and z(t−i ) = limε→0− z(ti +ε) represent the right and

left limits of z at t = ti , i = 1, · · · ,n.

The remainder of the chapter is organized in the following format: In Section 2, we

give the integrable solution of the initial value problem (4.1). After that in Section 3, we

present the main results regarding the existence and Ulam stability of solutions to the ini-

tial value problem for impulsive fractional q-difference equations, which are two results

of existence: one depends on Banach contraction principal theorem and the other on

Krasnoselskii’s fixed point theorem. In addition to the stabilities results which are depend

the techniques of Ulam-Hyers and Ulam-Hyers-Rassias stabilities. In Section 4, we finish

by providing an example that illustrates our main results.

2 Representation of the Integrable Solution

1 In this section, we introduce the definition and lemma of the integral solution to the

initial value problem for impulsive fractional q-difference equations (4.1), which is nec-

essary for the continuation of the chapter.

First of all, we introduce the Banach space PC defined by:

PC(J,R) =
{

z : J→R |z ∈ C2(Ji ,R), and z(t+i ), z(t−i ) exist, with z(t−i ) = z(t+i ), i = 1, · · · ,n
}

,

where J0 = (t0, t1], J1 = (t1, t2],· · · , Ji = (ti , ti+1], i = 1, · · · ,n, with the norm

‖z‖PC = sup
t∈J

|z(t )|.

1N. Allouch and S. Hamani, Existence and Ulam Stability of Initial Value Problem for Impulsive Fractional
q-Difference Equations. (Submitted)
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Now, let’s define what is meant by the integral solution to the initial value problem

(4.1).

Definition 2.1 A function z ∈ PC(J,R) is said to be a solution of the problem (4.1) if z sat-

isfies the fractional q-difference equation
(

CD
β
q z

)
(t ) = φ(t , z(t )) on J where β ∈ (1,2], and

satisfies the following conditions:

∆z |t=ti = Ii (z(t−i )), i = 1, · · · ,n,

∆z ′ |t=ti = I i (z(t−i )), i = 1, · · · ,n,

z(0) = z0, z ′(0) = z∗
0 .

Next, we need the following lemma to determine the main results of the initial value

problem (4.1).

Lemma 2.2 Let θ : J → R be a continuous function. The integral solution of the following

initial value problem:

(
CD

β
q z

)
(t ) = θ(t ); 1 < β≤ 2, t ∈ J = [0,T], t 6= ti , i = 1, · · · ,n,

∆z |t=ti = Ii (z(t−i )), i = 1, · · · ,n,

∆z ′ |t=ti = I i (z(t−i )), i = 1, · · · ,n,

z(0) = z0, z ′(0) = z∗
0 ,

(4.2)

Given as follows:

z(t ) =



z0 + z∗
0 t +∫ t

0
(t−qs)(β−1)

Γq (β)
θ(s)dq s; t ∈ J0 = [0, t1],

z0 + z∗
0 t +∑n

i =1 Ii (z(t−i ))+∑n
i =1(t − ti )I i (z(t−i ))

+∑n
i =1

∫ ti
ti−1

(ti−qs)(β−1)

Γq (β)
θ(s)dq s

+∑n
i =1(t − ti )

∫ ti
ti−1

(ti−qs)(β−2)

Γq (β−1)
θ(s)dq s

+∫ t
ti

(t−qs)(β−1)

Γq (β)
θ(s)dq s; t ∈ Ji = (ti , ti+1], i = 1, · · · ,n.

(4.3)

Proof. By applying the Riemann-Liouville’s fractional q-integral of order β ∈ (1,2] on both

sides of the equation for the problem (4.2), and according to Lemma 3.22.

If t ∈ J0 = [0, t1], then we have:

z(t ) =
∫ t

0

(t −qs)(β−1)

Γq (β)
θ(s)dq s + c0 + c1t .

Thank to the initial conditions of the problem (4.2), we find:

z(0) = c0 = z0 and z ′(0) = c1 = z∗
0 .
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Thus,

z(t ) = z0 + z∗
0 t +

∫ t

0

(t −qs)(β−1)

Γq (β)
θ(s)dq s. (4.4)

If t ∈ J1 = (t1, t2], then we have:

z(t ) =
∫ t

t1

(t −qs)(β−1)

Γq (β)
θ(s)dq s + c0 + c1(t − t1). (4.5)

By impulsive conditions of the problem (4.2), we give:

∆z |t=t1 = z(t+1 )− z(t−1 ) = I1(z(t−1 )).

This means that,

I1(z(t−1 )) = c0 −
(

z0 + z∗
0 t1 +

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s

)
.

So,

c0 = z0 + z∗
0 t1 +I1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s.

Also, we have:

∆z ′ |t=t1 = z ′(t+1 )− z ′(t−1 ) = I 1(z(t−1 )).

This implies that,

I 1(z(t−1 )) = c1 −
(

z∗
0 +

∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s

)
.

So,

c1 = z∗
0 +I 1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s.

Changing c0, c1 in equation (4.5), we get:

z(t ) = z0 + z∗
0 t +I1(z(t−1 ))+ (t − t1)I 1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s

+(t − t1)
∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t

t1

(t −qs)(β−1)

Γq (β)
θ(s)dq s.

If t ∈ J2 = (t2, t3], then we have:

z(t ) =
∫ t

t2

(t −qs)(β−1)

Γq (β)
θ(s)dq s + c0 + c1(t − t2). (4.6)
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From the impulsive conditions of the problem (4.2), we give:

∆z |t=t2 = z(t+2 )− z(t−2 ) = I2(z(t−2 )).

This means that,

I2(z(t−2 )) = c0 −
(

z0 + z∗
0 t2 +I1(z(t−1 ))+ (t2 − t1)I 1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s

+(t2 − t1)
∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
θ(s)dq s

)
.

Thus,

c0 = z0 + z∗
0 t2 +I1(z(t−1 ))+I2(z(t−2 ))+ (t2 − t1)I 1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s

+(t2 − t1)
∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
θ(s)dq s.

Also, we have:

∆z ′ |t=t2 = z ′(t+2 )− z ′(t−2 ) = I 2(z(t−2 )).

This implies that,

I 2(z(t−2 )) = c1 −
(

z∗
0 +I 1(z(t−1 ))+

∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t2

t1

(t2 −qs)(β−2)

Γq (β−1)
θ(s)dq s

)
.

Thus,

c1 = z∗
0 +I 1(z(t−1 ))+I 2(z(t−2 ))+

∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t2

t1

(t2 −qs)(β−2)

Γq (β−1)
θ(s)dq s.

Substituting c0, c1 into equation (4.6), we find:

z(t ) = z0 + z∗
0 t +I1(z(t−1 ))+I2(z(t−2 ))+ (t − t1)I 1(z(t−1 ))+ (t − t2)I 2(z(t−2 ))

+
∫ t1

0

(t1 −qs)(β−1)

Γq (β)
θ(s)dq s +

∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
θ(s)dq s

+(t − t1)
∫ t1

0

(t1 −qs)(β−2)

Γq (β−1)
θ(s)dq s + (t − t2)

∫ t2

t1

(t2 −qs)(β−2)

Γq (β−1)
θ(s)dq s

+
∫ t

t2

(t −qs)(β−1)

Γq (β)
h(s)dq s.
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Generalizing in this manner, if t ∈ Jn = (tn , tn+1], then we give:

z(t ) = z0 + z∗
0 t +

n∑
i =1

Ii (z(t−i ))+
n∑

i =1
(t − ti )I i (z(t−i ))+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
θ(s)dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
θ(s)dq s +

∫ t

tn

(t −qs)(β−1)

Γq (β)
θ(s)dq s. (4.7)

Consequently, according to the equations (4.4) and (4.7) we find the solution (4.3). The

proof is finished.

3 Main Results

The purpose of this section is to provide results for the existence, uniqueness and stabil-

ity of solutions to the initial value problem for impulsive fractional q-difference equations

(4.1), by using the fixed point theorems and Ulam stability techniques.

The following assumptions are necessary in order to determine the main results:

(P1) The function φ : J×R→R is continuous.

(P2) There exists a positive constant Lφ, such that for every t ∈ J and every y, z ∈ R, we

have:

|φ(t , y)−φ(t , z)| ≤Lφ|y − z|.

(P3) There exist positive constants LIi ,L
I i

, i = 1, · · · ,n, such that for every y, z ∈ R, we

have:

|Ii (y)−Ii (z)| ≤LIi |y − z| and |I i (y)−I i (z)| ≤L
I i

|y − z|.

(P4) There exists a positive constant Mφ, such that for every t ∈ J and every z ∈ R, we

have:

|φ(t , z)| ≤Mφ.

(P5) The functions Ii ,I i :R→R are continuous and there exist positive constants MIi ,M
I i

,

i = 1, · · · ,n, such that for every z ∈R, we have:

|Ii (z)| ≤MIi and |I i (z)| ≤M
I i

.
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3.1 Existence and Uniqueness Result

In the following part, we apply Banach contraction principle theorem (Theorem 5.2) to

examine the uniqueness of solutions to the initial value problem (4.1).

Theorem 3.1 Suppose that the hypotheses (P1)-(P2) and (P3) hold. If

0 < nLIi +nL
I i

T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)
< 1. (4.8)

Then, the initial value problem (4.1) has a unique solution on J.

Proof. In order to demonstrate this result, we first transform the problem (4.1) into a fixed

point problem and define the operator

T :PC(J,R) −→PC(J,R)

Given by:

(Tz)(t ) = z0 + z∗
0 t +

n∑
i =1

Ii (z(t−i ))+
n∑

i =1
(t − ti )I i (z(t−i ))+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s,

t ∈ J = (ti , ti+1], i = 0, · · · ,n.

Thanks to Lemma 2.2, it’s clear that the fixed points of the operator T are solutions of the

initial value problem (4.1).

Next, we will show that the operator T is a contraction mapping on PC(J,R).

Let y, z ∈PC(J,R) and for every t ∈ J, we have:

|(Ty)(t )− (Tz)(t )| =

∣∣∣∣∣ n∑
i =1

(
Ii (y(t−i ))−Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)
+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣∣ .
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This implies that,

|(Ty)(t )− (Tz)(t )| ≤
n∑

i =1

∣∣Ii (y(t−i ))−Ii (z(t−i ))
∣∣+ n∑

i =1
(t − ti )

∣∣∣I i (y(t−i ))−I i (z(t−i ))
∣∣∣

+
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s.

Using the hypotheses (P2)-(P3), we obtain:

|(Ty)(t )− (Tz)(t )| ≤ LIi

n∑
i =1

∣∣y(t−i )− z(t−i )
∣∣+L

I i

n∑
i =1

(t − ti )
∣∣y(t−i )− z(t−i )

∣∣
+Lφ

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s

+Lφ
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

∣∣y(s)− z(s)
∣∣dq s

+Lφ
∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣y(s)− z(s)
∣∣dq s.

According to the formula (1.43) and for every t ∈ J, we find:

|(Ty)(t )− (Tz)(t )| ≤ nLIi ‖y − z‖PC+nL
I i

T‖y − z‖PC+
nLφT(β)

Γq (β+1)
‖y − z‖PC

+nLφT(β)

Γq (β)
‖y − z‖PC+

LφT(β)

Γq (β+1)
‖y − z‖PC.

So,

‖T(y)−T(z)‖PC ≤
(

nLIi +nL
I i

T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)

)
‖y − z‖PC.

Thus, from the condition (4.8), the operator T is a contraction, and according to Banach

contraction principle theorem, we conclude that the operator T has a unique fixed point,

which is the unique solution to the initial value problem (4.1).
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3.2 Existence Result

This part discusses the existence of solutions to the initial value problem (4.1), through

the use of Krasnoselskii’s fixed point theorem (Theorem 5.5).

Theorem 3.2 Assume that the hypotheses (P1), (P3) and (P4), (P5) are satisfied. If

n
(
LIi +L

I i
T
)
< 1. (4.9)

Then, the initial value problem (4.1) has at least one solution on J.

Proof. To illustrate this result, we will employ Krasnoselskii’s fixed point theorem. Firstly,

we consider the set:
Bξ = {z ∈PC(J,R) : ‖z‖PC ≤ ξ} ,

where

ξ≥ (n +1)
MφT(β)

Γq (β+1)
+ nMφT(β)

Γq (β)
+|z0|+ |z∗

0 |T+n
(
MIi +M

I i
T
)

.

Also, we define the following operators T1 and T2 on Bξ:

(T1z)(t ) =
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, z(s))dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s.

(T2z)(t ) = z0 + z∗
0 t +

n∑
i =1

Ii (z(t−i ))+
n∑

i =1
(t − ti )I i (z(t−i )).

Next, we will give the proof in steps.

Step 1: T1 y +T2z ∈Bξ for any y, z ∈Bξ.

Let y, z ∈Bξ and for each t ∈ J, then we have:

|(T1 y)(t )+ (T2z)(t )| =
∣∣∣ n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, y(s))dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

×φ(s, y(s))dq s +
∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, y(s))dq s + z0 + z∗

0 t

+
n∑

i =1
Ii (z(t−i ))+

n∑
i =1

(t − ti )I i (z(t−i ))
∣∣∣.
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This means that,

|(T1 y)(t )+ (T2z)(t )| ≤
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))
∣∣dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

× ∣∣φ(s, y(s))
∣∣dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))
∣∣dq s +|z0|+ |z∗

0 |t

+
n∑

i =1

∣∣Ii (z(t−i ))
∣∣+ n∑

i =1
(t − ti )

∣∣∣I i (z(t−i ))
∣∣∣ .

By hypotheses (P4)- (P5), we get:

|(T1 y)(t )+ (T2z)(t )| ≤ Mφ

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
dq s +Mφ

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
dq s

+Mφ

∫ t

ti

(t −qs)(β−1)

Γq (β)
dq s +|z0|+ |z∗

0 |t +
n∑

i =1
MIi +

n∑
i =1

M
I i

(t − ti ).

Using the formula (1.43) and for each t ∈ J, we find:

|(T1 y)(t )+ (T2z)(t )| ≤ nMφT(β)

Γq (β+1)
+ nMφT(β)

Γq (β)
+ MφT(β)

Γq (β+1)
+|z0|+ |z∗

0 |T+nMIi +nM
I i

T.

Thus,

‖T1 y +T2z‖PC ≤ (n +1)
MφT(β)

Γq (β+1)
+ nMφT(β)

Γq (β)
+|z0|+ |z∗

0 |T+n
(
MIi +M

I i
T
)

,

≤ ξ.

Hence, T1 y +T2z ∈Bξ for any y, z ∈Bξ.

Step 2: T1 is a continuous and compact operator.

Now, we shall show that the operator T1 is continuous.

Let {zm}m∈N be a sequence such that zm → z in Bξ. Then, for every t ∈ J, we have:

|(T1zm)(t )− (T1z)(t )| ≤
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, zm(s))−φ(s, z(s))
∣∣dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

∣∣φ(s, zm(s))−φ(s, z(s))
∣∣dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, zm(s))−φ(s, z(s))
∣∣dq s.

By formula (1.43) and for each t ∈ J, we obtain:

‖T1(zm)−T1(z)‖PC ≤
(
(n +1)

T(β)

Γq (β+1)
+ nT(β)

Γq (β)

)∥∥φ(., zm(.))−φ(., z(.))
∥∥
PC

.
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Since φ is a continuous function, i.e.:

‖φ(., zm(.))−φ(., z(.))‖PC→ 0 as m →∞.

Hence,
‖T1(zm)−T1(z)‖PC→ 0 as m →∞.

Thus, T1 is a continuous operator on Bξ.

Next, we will prove that the operator T1 is uniformly bounded on Bξ.

Let z ∈Bξ and for every t ∈ J, then we have:

|(T1z)(t )| =

∣∣∣∣∣ n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, z(s))dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣∣ ,

≤
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, z(s))
∣∣dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

∣∣φ(s, z(s))
∣∣dq s

+
∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, z(s))
∣∣dq s.

Applying the hypothesis (P4), we get:

|(T1z)(t )| ≤ Mφ

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
dq s +Mφ

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
dq s

+Mφ

∫ t

ti

(t −qs)(β−1)

Γq (β)
dq s.

From the formula (1.43) and for each t ∈ J, we find:

|(T1z)(t )| ≤ nMφT(β)

Γq (β+1)
+ nMφT(β)

Γq (β)
+ MφT(β)

Γq (β+1)
.

So,

‖T1(z)‖PC ≤ (n +1)
MφT(β)

Γq (β+1)
+ nMφT(β)

Γq (β)
.

Thus, T1 is an uniformly bounded operator on Bξ.
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Finally, we will show that the operator T1 is equi-continuous.

Let t1, t2 ∈ J such that t1 < t2 and for z ∈Bξ, then we have:

|(T1z)(t2)− (T1z)(t1)| =
∣∣∣ n∑

i =1
(t2 − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s +

∫ t2

ti

(t2 −qs)(β−1)

Γq (β)

×φ(s, z(s))dq s −
n∑

i =1
(t1 − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s

−
∫ t1

ti

(t1 −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣.
Therefore,

|(T1z)(t2)− (T1z)(t1)| ≤
n∑

i =1
(t2 − t1)

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

∣∣φ(s, z(s))
∣∣dq s

+
∫ t1

ti

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
Γq (β)

∣∣φ(s, z(s))
∣∣dq s

+
∫ t2

t1

(t2 −qs)(β−1)

Γq (β)

∣∣φ(s, z(s))
∣∣dq s.

By hypothesis (P4), we obtain:

|(T1z)(t2)− (T1z)(t1)| ≤ Mφ

n∑
i =1

(t2 − t1)
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
dq s

+Mφ

∫ t1

ti

(
(t2 −qs)(β−1) − (t1 −qs)(β−1)

)
Γq (β)

dq s

+Mφ

∫ t2

t1

(t2 −qs)(β−1)

Γq (β)
dq s.

After calculating the integrals, we find:

|(T1z)(t2)− (T1z)(t1)| ≤ Mφ

Γq (β)

n∑
i =1

(t2 − t1)(ti − ti−1)(β−1) + Mφ

Γq (β+1)

[
(t2 − ti )(β) − (t1 − ti )(β)

]
.

As t1 → t2, the right-hand side of the above inequality tends to zero, i.e.:

|(T1z)(t2)− (T1z)(t1)|→ 0 as t1 → t2.

Thus, T1 is an equi-continuous operator. So, T1 is a relatively compact operator on Bξ.

Consequently, thanks to Arzela-Ascoli’s theorem (Theorem 1.9), we conclude that the op-

erator T1 is completely continuous on Bξ.
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Step 3: T2 is a contraction operator on Bξ.

Let y, z ∈Bξ and for every t ∈ J, then we have:

|(T2 y)(t )− (T2z)(t )| =

∣∣∣∣∣ n∑
i =1

(
Ii (y(t−i ))− (Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)∣∣∣∣∣ .

This impulse that,

|(T2 y)(t )− (T2z)(t )| ≤
n∑

i =1

∣∣Ii (y(t−i ))− (Ii (z(t−i ))
∣∣+ n∑

i =1
(t − ti )

∣∣∣I i (y(t−i ))−I i (z(t−i ))
∣∣∣ .

Thanks to the hypothesis (P3), we obtain:

|(T2 y)(t )− (T2z)(t )| ≤ LIi

n∑
i =1

∣∣y(t−i )− z(t−i )
∣∣+L

I i

n∑
i =1

(t − ti )
∣∣y(t−i )− z(t−i )

∣∣ .

Then, for every t ∈ J, we get:

|(T2 y)(t )− (T2z)(t )| ≤ nLIi ‖y − z‖PC+nL
I i

T‖y − z‖PC.

Thus,

‖T2(y)−T2(z)‖PC ≤ n
(
LIi +L

I i
T
)
‖y − z‖PC.

Hence, from the condition (4.9), the operator T2 is contraction on Bξ.

Consequently, according to Krasnoselskii’s fixed point theorem, we deduce that the oper-

ator T has at least one fixed point which is the solution to the initial value problem (4.1).

3.3 Ulam Stability Results

In this part, we will define and investigate different types of Ulam stability for the initial

value problem (4.1), through the use of Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

Based on the references [1, 6, 23, 46, 56, 82, 83, 91], we provide the following defini-

tions:

Definition 3.3 The problem (4.1) is Ulam-Hyers stable if there exists a real number η > 0,

such that for every ε> 0 and for every solution y ∈PC(J,R) of the following inequality:

|(CD
β
q y)(t )−φ(t , y(t ))| ≤ ε, 1 < β≤ 2, t ∈ J, t 6= ti , i = 1, · · · ,n, (4.10)

there exists a solution z ∈PC(J,R) of the problem (4.1) with the norm

‖y − z‖PC ≤ ηε.
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Definition 3.4 The problem (4.1) is generalized Ulam-Hyers stable if there existsκ ∈ C(R+,R+)

with κ(0) = 0, such that for every ε> 0 and for every solution y ∈ PC(J,R) of the inequality

(4.10), there exists a solution z ∈PC(J,R) of the problem (4.1) with the norm

‖y − z‖PC ≤ κ(ε).

Definition 3.5 The problem (4.1) is Ulam-Hyers-Rassias stable with respect to σ if there

exists ησ > 0, such that for every ε > 0 and for every solution y ∈ PC(J,R) of the following

inequality:

|(CD
β
q y)(t )−φ(t , y(t ))| ≤ εσ(t ), 1 < β≤ 2, t ∈ J, t 6= ti , i = 1, · · · ,n, (4.11)

there exists a solution z ∈PC(J,R) of the problem (4.1) with the norm

‖y − z‖PC ≤ ησεσ(t ), t ∈ J.

Remark 3.6 Clearly : Definition 3.3 ⇒ Definition 3.4.

Following that, we introduce the main results of Ulam stabilities for the initial value

problem (4.1).

Theorem 3.7 Suppose that the hypotheses (P1)-(P2)-(P3) and condition (4.8) hold. Then,

the initial value problem (4.1) is Ulam-Hyers stable.

Proof. Let y ∈ PC(J,R) be a solution of the inequality (4.10) and let z ∈ PC(J,R) be the

unique solution of the initial value problem (4.1). Then, according to Lemma 2.2, we give:

z(t ) = z0 + z∗
0 t +

n∑
i =1

Ii (z(t−i ))+
n∑

i =1
(t − ti )I i (z(t−i ))+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s,

t ∈ Ji = (ti , ti+1], i = 0, · · · ,n.

Through integration of the inequality (4.10) and for every t ∈ J, we find:∣∣∣∣∣∣∣∣∣∣
y(t )− z0 − z∗

0 t −∑n
i =1 Ii (y(t−i ))−∑n

i =1(t − ti )I i (y(t−i ))

−∑n
i =1

∫ ti
ti−1

(ti−qs)(β−1)

Γq (β)
φ(s, y(s))dq s −∫ t

ti

(t−qs)(β−1)

Γq (β)
φ(s, y(s))dq s

−∑n
i =1(t − ti )

∫ ti
ti−1

(ti−qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s

∣∣∣∣∣∣∣∣∣∣
≤ I

β
qε,

≤ t (β)

Γq (β+1)
ε.
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Then, we can write:

|y(t )− z(t )| ≤
∣∣∣y(t )− z0 − z∗

0 t −
n∑

i =1
Ii (z(t−i ))−

n∑
i =1

(t − ti )I i (z(t−i ))−
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, z(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s

−
∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣,
≤

∣∣∣y(t )− z0 − z∗
0 t −

n∑
i =1

Ii (y(t−i ))−
n∑

i =1
(t − ti )I i (y(t−i ))−

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s −

∫ t

ti

(t −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s +
n∑

i =1

(
Ii (y(t−i ))− (Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)
+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

×(
φ(s, y(s))−φ(s, z(s))

)
dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣,
≤

∣∣∣y(t )− z0 − z∗
0 t −

n∑
i =1

Ii (y(t−i ))−
n∑

i =1
(t − ti )I i (y(t−i ))−

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s −

∫ t

ti

(t −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s
∣∣∣+ ∣∣∣ n∑

i =1

(
Ii (y(t−i ))− (Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)
+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

×(
φ(s, y(s))−φ(s, z(s))

)
dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣.
Therefore, for each t ∈ J, we get:

|y(t )− z(t )| ≤ t (β)

Γq (β+1)
ε+

n∑
i =1

∣∣Ii (y(t−i ))− (Ii (z(t−i ))
∣∣+ n∑

i =1
(t − ti )

∣∣∣I i (y(t−i ))−I i (z(t−i ))
∣∣∣

+
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

× ∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s.

Thank to hypotheses (P2)-(P3) and for every t ∈ J, we obtain:

‖y − z‖PC ≤ T(β)

Γq (β+1)
ε+

(
nLIi +nL

I i
T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)

)
‖y − z‖PC.
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From the condition (4.8), we find:

‖y − z‖PC ≤
T(β)

Γq (β+1)

1−
(
nLIi +nL

I i
T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)

)ε,

:= ηε.

Thus, the initial value problem (4.1) is Ulam-Hyers stable.

Corollary 3.8 If we take κ(ε) = ηε; κ(0) = 0, we conclude that the initial value problem (4.1)

is generalized Ulam-Hyers stable.

Theorem 3.9 Suppose that the hypotheses (P1)-(P2)-(P3) and condition (4.8) are satisfied

and the following hypothesis holds:

(P6) Let σ ∈ C(J,R+) be an increasing function. There exists λσ > 0, such that for every

t ∈ J, we have:

I
β
qσ(t ) ≤ λσσ(t ).

Then, the initial value problem (4.1) is Ulam-Hyers-Rassias stable.

Proof. Let y ∈ PC(J,R) be a solution of the inequality (4.11) and let z ∈ PC(J,R) be the

unique solution of the initial value problem (4.1). Then, from Lemma 2.2, we have:

z(t ) = z0 + z∗
0 t +

n∑
i =1

Ii (z(t−i ))+
n∑

i =1
(t − ti )I i (z(t−i ))+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

+
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s,

t ∈ Ji = (ti , ti+1], i = 0, · · · ,n.

By integration of the inequality (4.11) and for every t ∈ J, we get:∣∣∣∣∣∣∣∣∣∣
y(t )− z0 − z∗

0 t −∑n
i =1 Ii (y(t−i ))−∑n

i =1(t − ti )I i (y(t−i ))

−∑n
i =1

∫ ti
ti−1

(ti−qs)(β−1)

Γq (β)
φ(s, y(s))dq s −∫ t

ti

(t−qs)(β−1)

Γq (β)
φ(s, y(s))dq s

−∑n
i =1(t − ti )

∫ ti
ti−1

(ti−qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s

∣∣∣∣∣∣∣∣∣∣
≤ I

β
qεσ(t ),

≤ ελσσ(t ).

87



3. MAIN RESULTS

Therefore, we can write:

|y(t )− z(t )| ≤
∣∣∣y(t )− z0 − z∗

0 t −
n∑

i =1
Ii (z(t−i ))−

n∑
i =1

(t − ti )I i (z(t−i ))−
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, z(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, z(s))dq s

−
∫ t

ti

(t −qs)(β−1)

Γq (β)
φ(s, z(s))dq s

∣∣∣,
≤

∣∣∣y(t )− z0 − z∗
0 t −

n∑
i =1

Ii (y(t−i ))−
n∑

i =1
(t − ti )I i (y(t−i ))−

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s −

∫ t

ti

(t −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s +
n∑

i =1

(
Ii (y(t−i ))− (Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)
+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

×(
φ(s, y(s))−φ(s, z(s))

)
dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣,
≤

∣∣∣y(t )− z0 − z∗
0 t −

n∑
i =1

Ii (y(t−i ))−
n∑

i =1
(t − ti )I i (y(t−i ))−

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s −
n∑

i =1
(t − ti )

∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)
φ(s, y(s))dq s −

∫ t

ti

(t −qs)(β−1)

Γq (β)

×φ(s, y(s))dq s
∣∣∣+ ∣∣∣ n∑

i =1

(
Ii (y(t−i ))− (Ii (z(t−i ))

)+ n∑
i =1

(t − ti )
(
I i (y(t−i ))−I i (z(t−i ))

)
+

n∑
i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

×(
φ(s, y(s))−φ(s, z(s))

)
dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

(
φ(s, y(s))−φ(s, z(s))

)
dq s

∣∣∣.
Then, for every t ∈ J, we obtain:

|y(t )− z(t )| ≤ ελσσ(t )+
n∑

i =1

∣∣Ii (y(t−i ))− (Ii (z(t−i ))
∣∣+ n∑

i =1
(t − ti )

∣∣∣I i (y(t−i ))−I i (z(t−i ))
∣∣∣

+
n∑

i =1

∫ ti

ti−1

(ti −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s +

n∑
i =1

(t − ti )
∫ ti

ti−1

(ti −qs)(β−2)

Γq (β−1)

× ∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s +

∫ t

ti

(t −qs)(β−1)

Γq (β)

∣∣φ(s, y(s))−φ(s, z(s))
∣∣dq s.

Applying the hypotheses (P2)-(P3) and for each t ∈ J, we find:

‖y − z‖PC ≤ ελσσ(t )+
(

nLIi +nL
I i

T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)

)
‖y − z‖PC.
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By condition (4.8), we get:

‖y − z‖PC ≤ ελσσ(t )

1−
(
nLIi +nL

I i
T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)

) ,

:= ησεσ(t ).

Thus, the initial value problem (4.1) is Ulam-Hyers-Rassias stable.

4 An Example

Consider the following initial value problem for impulsive fractional q-difference equa-

tion: 

(
CD4/3

1/6z
)

(t ) = cos(z(t ))
6ln(3t+6) ; t ∈ J = [0,1], t 6= 1

3 ,

∆z |t= 1
3

=
cos(z( 1

3
−

))
9 ,

∆z ′ |t= 1
3

=
sin(z( 1

3
−

))
6 ,

z(0) = 0, z ′(0) = 0,

(4.12)

where q = 1
6 , β = 4

3 , z0 = z∗
0 = 0, n = 1, T = 1 and

φ(t , z) =
cos(z)

6ln(3t +6)
; (t , z) ∈ J×R,

and
Ii (z) =

cos(z)

9
, I i (z) =

sin(z)

6
; z ∈R.

Obviously, the functions φ and Ii ,I i are continuous.

Let y, z ∈R and t ∈ J = [0,1]. Then, we have:

|φ(t , y)−φ(t , z)| ≤ 1

6ln(3t +6)
|cos(y)−cos(z)|,

≤ 1

6ln(6)
|y − z|,

and
|Ii (y)−Ii (z)| ≤ 1

9
|y − z|,

|I i (y)−I i (z)| ≤ 1

6
|y − z|.

Therefore, the hypotheses (P2)-(P3) are satisfied with Lφ = 1
6ln(6) and LIi = 1

9 , L
I i

= 1
6 .
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Now, we will confirm that the condition (4.8) holds with n = 1,T = 1. In fact,

nLIi +nL
I i

T+ nLφT(β)

Γq (β)
+ (n +1)

LφT(β)

Γq (β+1)
=

1

9
+ 1

6
+ 1

6ln(6)Γ 1
6

(4
3

) + 2

6ln(6)Γ 1
6

(7
3

) ,

' 0.5524 < 1.

Hence, thanks to Theorem 3.1, the initial value problem (4.12) has a unique solution on

[0,1], and all the conditions of Theorem 3.7 hold, thus, the initial value problem (4.12) is

Ulam-Hyers stable.

Next, let σ(t ) = t 2 for every t ∈ J = [0,1], we have:

I4/3
1/6σ(t ) =

Γ1/6(3)

Γ1/6( 13
3 )

t 2+ 4
3 ≤ Γ1/6(3)

Γ1/6( 13
3 )

t 2 = λσσ(t ). (4.13)

So, the hypothesis (P6) holds with σ(t ) = t 2 and λσ = Γ1/6(3)
Γ1/6( 13

3 )
. Then, all the conditions

of Theorem 3.9 are satisfied, thus, the initial value problem (4.12) is Ulam-Hyers-Rassias

stable.

On the other hand, let z ∈R and for each t ∈ J = [0,1], then we have:

|φ(t , z)| ≤ 1

6ln(6)
,

and
|Ii (z)| ≤ 1

9
, |I i (z)| ≤ 1

6
.

Therefore, the hypotheses (P4)-(P5) are satisfied with Mφ = 1
6ln(6) and MIi = 1

9 , M
I i

= 1
6 .

Next, we will verify that the condition (4.9) holds with n = 1,T = 1. In effect,

n
(
LIi +L

I i
T
)

=
1

9
+ 1

6
=

15

54
< 1.

Thus, all the conditions of Theorem 3.2 hold. Consequently, the initial value problem

(4.12) has at least one solution on [0,1].

5 Conclusion

In this work, we have gave sufficient conditions for the existence of solutions to the ini-

tial value problem for impulsive fractional q-difference equations involving Caputo’s frac-

tional q-derivative of order β ∈ (1,2]. Thus, we were able to obtain the results of the ex-

istence and uniqueness of solutions to the initial value problem (4.1) by applying some

fixed point theorems (Banach contraction principle, Krasnoselskii). Additionally, we have

defined and examines the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the initial

value problem (4.1). To support our results, we have provide an illustrative example.
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Conclusion and Perspectives

In this project, our primary scientific contributions have focused on providing sufficient

conditions for the existence, uniqueness and stability of solutions to boundary value prob-

lems for fractional q-difference equations (order β ∈ (0,1] and β ∈ (1,2]) and initial value

problem for impulsive fractional q-difference equations involving Caputo’s fractional q-

derivative. Consequently, we obtained the existence results using various fixed point the-

orems (Banach, Schaefer, Krasnoselskii, Non-linear alternative of Leray-Schauder) and

Mönch’s fixed point theorem combined with the notion of Kuratowski’s measures of non-

compactness. In addition, we have discussed the stability results by applying Ulam-Hyers

and Ulam-Hyers-Rassias stabilities.

For the perspective and future research, it would be interesting to expand on the find-

ings of the thesis by considering fractional q-difference inclusions and systems of frac-

tional q-difference equations. Also, we will apply numerical methods to solve problems

of fractional q-difference equations and take into account their applications in various

fields of science and engineering.
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