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Abstract

In this thesis, we are interested in studying the growth of solutions of higher-order
linear differential equations, specifically focusing on conditions on coefficients
under which the solutions of these equations are of infinite order.

Firstly, we investigate the iterated order and iterated type of solutions of
these equations where their coefficients are entire and meromorphic functions.

Secondly, we study the hyper-order of analytic solutions of linear differential
equations whose coefficients are analytic near an isolated singular point. We also
consider the non-homogeneous case.

Finally, we use a new idea to estimate the growth of solutions of linear dif-
ferential equations. We consider the coefficients of these equations as solutions
of certain second-order linear differential equations.

Key words: Nevanlinna theory, Linear diffrential equation, Meromorphic func-

tion, entire function, order of growth, an isolated singuler point.



Résumé

Dans cette these, nous nous intéressons a l’étude de la croissance des solutions
des équations différentielles linéaires d’ordre supérieur, en nous concentrant
spécifiquement sur les conditions portant sur les coefficients pour lesquelles les
solutions de ces équations sont d’ordre infini.

Tout d’abord, nous étudions l'ordre itératif et le type itératif des solutions de
ces équations lorsque leurs coefficients sont des fonctions entieres et
méromorphes.

Ensuite, nous étudions I’hyper-ordre des solutions analytiques des équations
différentielles linéaires dont les coefficients sont analytiques au voisinage d’'un
point singulier isolé. Nous considérons également le cas non homogene.

Enfin, nous utilisons une nouvelle approche pour estimer la croissance des
solutions des équations différentielles linéaires. Nous considérons les coefficients
de ces équations comme des solutions de certaines équations différentielles
linéaires du second ordre.

Mots-clés : Théorie de Nevanlinna, Equation différentielle linéaire, Fonction

méromorphe, Fonction entiere, Ordre de croissance, Point singulier isolé.
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Introduction

Nevanlinna theory of value distribution is concerned with the density of points
where a meromorphic function takes on a certain value in the complex plane.
This theory plays a very important role in the study of the growth and oscillation

of solutions of linear differential equations with complex coefficient functions.

The studies of the following linear differential equation

"+ AR+ B(2)f =0, (1)

where A(z) and B(z) are entire functions, have been continuously pursued over
the years from various perspectives. Gundersen [21] shows that that if f Z£ 0 is
a finite order solution of (1), where the growth of A(z) dominates the growth of
B(z) in some angle, then f will satisfy certain growth conditions in the angle.
In [6], Hamani and Belaidi generalized the result of Gundersen to the higher
order linear differential equation and Belaidi in [4] extended the result to the
nonhomogeneous linear differential equation. In the same paper, Gundersen
treated the equation (1) with conditions that contrasted those of the first result,
where B(z) dominates A(z), and concluded that every nontrivial solution f is of
infinite order. Kwon in [30] addressed estimating the lower bound for the order

of infinite-order solutions of (1), while Chen and Yang [12] provided a precise
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estimate for the hyper-order of solutions of (1). Under similar conditions, Belaidi

treated the higher-order linear difterential equation
7 d the high der li diff ial i
SO+ A1 (2) Y e A (2) f + Ag(2) f =0, (2)

where & > 2 is an integer and Agy(2),...,Ar—1(2) are entire functions with
Ap(z) # 0. In [53], Zemirni and Belaidi extended the result by considering
the p-iterated order and p-iterated type. They also explored the case when the
coefficients A;(2)(j = 1,...,k — 1) are meromorphic functions. Later, different
approaches are used to study equation (1). One involves extremal functions. It is
assumed that either A(z) is extremal for Yang’s inequality (see [39, 35]) or B(z)
is extremal for Denjoy’s conjecture [38]. The second approach, as discussed in
[50], assumes that the coefficient A(z) itself is a solution of another second-order

linear differential equation of the form
w” + P(2)w =0, (3)

where P(z) = a,2" + ... + ag,a, # 0. This assumption yields stability in the
behavior of A(z) via Hill’s classical method of asymptotic integration. In this
case, A(z) is a special function, of which the Airy integral is one example. A
combination of these two approaches was also discussed in [51]. Very recent
papers have employed new ideas to solve the same problem, such as considering

two coefficients A(z) and B(z) as solutions of (3) as seen in [41].

The linear differential equation
f"+ A(z)e” ' + B(z)e" [ =0, (4)

where A(z) and B(z) are entire functions, a and b are complex numbers, has
been extensively studied by various authors [1, 10, 11, 31, 32]. Kwon [31] proved
that if @ and b are complex numbers satisfying ab # 0 and arga # argb or a = ¢b

8



with 0 < ¢ < 1, then every nontrivial solution f of equation (4) is of infinite
order. In [23], Hamouda proved results similar to those in [31] in the unit disc

concerning the differential equation
b

(20 — 2)#

1 a / _
f +A(z)exp{(zo_z)u}f —|—B(z)exp{ }f—O,
where 1 > 0 and 2z, a,b are complex numbers such that arga # argb or a =
cb (0 < ¢ < 1). Additionally, Fettouch and Hamouda [17] investigated the
counterpart of these results near an isolated singular point zy for equations of
the form:

f”+A<z>exp{(zofz)n}f’+B<z>exp{(zofz)n}f=o, )

where A(2), B(z) # 0 are analytic functions in C\ {z},n € N*. Under certain
conditions, they proved that every solution f # 0 of (5) that is analytic in
C \ {20}, is of infinite order and of hyper-order equal to n. In [14], Cherief
and Hamouda extended the above results to the higher-order linear differential
equation

(k) N B T xpl 20 Ly
Y+ Apa(z) e p{(zo—z)n}f Vg o+ A(2)e p{(zo—z)”}f 0, (6)

where k > 2 is an integer and A;(2) (j =0,...,k — 1) are analytic functions in
C\ {2} and a;(j =0, ...,k — 1) are complex numbers, n € N* . Under similar
conditions, the conclusion in this case is that every solution f # 0 of (6), that
is analytic in C \ {zp} is of infinite order.

This thesis aims to study the growth of solutions of homogeneous and nonho-
mogeneous higher-order linear differential equations with entire and meromor-
phic functions in two different domains: the entire complex plane and the closed

complex plane except for an isolated singular point.



The first chapter covers the fundamental concepts and key results related to
the Nevanlinna theory of meromorphic functions, both in the complex plane and
near an isolated singular point.

The second chapter generalizes the results given by Belaidi and Zemirni in
[53] by replacing the coefficient Ay(z) by an arbitrary coefficient A4(2), where
s=1,...,k—1, for higher-order linear differential equation of the form (2). This
generalization is examined for both cases of entire and meromorphic coefficients.

The third chapter improves upon the previous results presented by Cherief
and Hamouda [14] by estimating the hyper-order of solutions of equations of
the form (6). Additionally, exploration of nonhomogeneous linear differential
equations is conducted.

The fourth chapter investigates the growth of analytic solutions of the linear
differential equation (6). Under certain conditions, it is proven that these solu-
tions are of infinite order and hyper-order equal to n. Additionally, consideration
of nonhomogeneous linear differential equations is made.

In the last chapter, we study the growth of solutions of higher-order linear
differential equations in which certain coefficients are non-trivial solutions of

second-order linear differential equations of the form (3).

10



Chapter 1

Preliminaries

In this chapter, we present the basic definitions and properties of Nevanlinna
theory used in this thesis. For more detailed information, readers can refer to
[5, 25, 32].

1 Nevanlinna’s notions in the complex plane

1.1 Functions and Concepts

There are basic functions, which define the whole Nevanlinna theory. we will

define them successively :

Definition 1.1 [32] For any strictly positive real number x, we define log™ x by
log™ # = max{0,log x}.
The positive logarithmic function satisfies the following properties
o logz <log™x .

o logtz <loghy, forz <y .

11



+1
=

o logz =log" x — log

o |logz| = log+x+log+% :

o log" (ng;lxi) <y, log™t x; .

o log" (Z?zl x@) <y, log* x; + logn,n € N*,
where x >0,y >0 and z; > 0(i =1, ...,n).

Definition 1.2 /25, 32/ Let f be a meromorphic function. For any complex num-

ber a, we define the counting function by

N(r,a, f) = N(r, ! ):/Orn(t’a’f);n(o’a’f)dtJrn(O,a,f)logr

and

N(r.00. f) = Nr.f) = [ Moo D =m0 ])

where n(r, a, f),n(r, oo, f) respectively denotes the number of zeros of f —a and

dt + n(0, 00, f)logr,

the number of poles of f according to its multiplicities in the disc |z| < r.

We have the following properties :
° N(T7 i fz) < S5y N(r, fi)-

o N (r, | fi) < ¥, N(r, f;), where f; are meromorphic functions and
n € N*.

Definition 1.3 /25, 52/ Let f be a meromorphic function. For any complex num-

ber a, we define the proximity function by

1 1 ,on 1
m(r,a, f) = m(r, f—a> = 27T/0 log™ ‘f(rei‘ﬂ—a’d(ﬁ

and e
m(r,00, f) = m(r. f) = o [ log" | f(re")|do.

12



We have the following properties :
° m(r, i fz) <L ym(r, fi) + logn.
° m(r, I, fl) <>, m(r, f;), where f; are meromorphic functions and n €

N*.

Definition 1.4 [32] The characteristic function of a meromorphic function f is
given by :
T(r,f)=m(r, )+ N(r, ).

We have the following properties :
¢ T(r, i fz) <y, T(r, fi) + logn.

o T(T‘, I, fz) <y ,T(r, f;), where f; are meromorphic functions and n €
N*.

Example 1.1 For the function f(z) = e**,a € C*, we have N(r,f) = 0 and
m(r, f) = %r. Then T(r, f) = 4.

™

Definition 1.5 /8, 29] The order of growth of a meromorphic function f is defined

by
log T’
o (f) = lim sup &L )
=400 log r
If f is an entire function, then the order of f is defined by
log T’ log log M
o(f) = limsup 26 \n /) (r, /) = lim sup oglog M(r, /)
r—+00 log r r—+00 log r

where M (r, f) = max|f(z)].

|2|=r

Example 1.2 For the function f(z) = e*, we have T'(r, f) = = and M(r, f) = ¢".
Then o(f) = 1.

13



Definition 1.6 [/1] Let o < 8 be such that B — a < 2w, and let v > 0. Denote

S(a,p) ={z:a<argz < [}

Sla, B,r)={z:a<argz< B}N{z:|z| <r}
Let F denote the closure of F. Let A(z) be an entire function of order o(A) €
(0,00). For simplicity, set 0 = o(A) and S = S(«, 3). We say that A(z) blows
up exponentially in S if for any 6 € (o, B), the relation
log log |A(re)]
reo log r

=0

holds. We also say that A(z) decays to zero exponentially in S if for any 0 €

(e, B) the relation
. loglog |A(re®)| !
lim =0
700 log r

holds.

Definition 1.7 [9] The type of a meromorphic function f, where 0 < o(f) < oo
s defined by

: T(r, f)
=1 )
(/) = limsup =55

If f is an entire function, then the type of f is given by

, log M (r,
v (f) = limsup gro—(S‘) f)

r——+00

Example 1.3 For the function f(z) = e*, we have 7(f) = L and 7y (f) = 1.

Definition 1.8 [29] The exponent of convergence of a sequence of the zeros of a

meromorphic function f is defined by

log N(r, 1
A f) = limsupg(f).
r——+00 logr

14



Similarly, the exposant of convergence of a sequence of the poles of f is defined

by
1 log N
A () = lim sup log N(r, /) f),
f r—+00 logr

Example 1.4 For the function f(z) =e*+b, b € C*, we have \(f) = 1.

Definition 1.9 [/2, /5, 47, /8] Let g(z) be a meromorphic function and let
argz = 6 € R be a ray from the origin. We denote, for each € > 0, the ex-
ponent of convergence of the zero sequence of g(z) at the ray argz = 60 by Ag(g)
and by Ng(g) = im0+ Ngc(g), where

log™ ng_ 0
o(g) = lim lim sup —>— c01<(1,0,9)

e=0% rotoo log r ’

here na5(r, 0, f) is the number of zeros of f counting multiplicity in {z : a <
argz < B}n{|z| <r}.

Definition 1.10 [/1] We call the ray arg z = 6 which has the property \o(g) =

o(g) an accumulation ray of the zero sequence of a meromorphic function g.

Definition 1.11 [/1]/Let w(z) be a non-trivial solution of equation w" + P(z)w =
0, where P(z) = a,2" + ... + ag,a, # 0. We denote p(w) the number of rays
arg 0;, which are not accumulation rays of the zero sequence of w(z), where

(gj:m;aiJg(%)Jzo,l,...,n-l-l-

Definition 1.12 [52] For a € C = CU {oc}, the deficiency of a with respect to a

meromorphic function f is defined as follows :

da, f) = liminfﬂw =1- limsupw

S T(r f) e T(r, f) for acC
e (r. ) N(r, f)
5("0’”:1%%1?5?(:’ f) = 1 lmsup T(:’f)'

15



Let N = {0, 1,2,...} denotes the set of natural numbers. Let us define induc-
tively for r € R, expyr :=r, exp,; r := €', and exp,,,; r := exp(exp, ), n € N.
For all r € (0, 400) sufficiently large, we define log,r := r, log; r := logr, and
log, .17 := log(log, ), n € N. Moreover, we denote by exp_;r := logr and
log_;r :=expr.

Definition 1.13 /8, 29] For p € N — {0}, the iterated p-order o,(f) of a mero-
morphic function f is defined by
log, T
op(f) = limsup 8 P T) (r, f)
r——+00 logr

If f is an entire function, then the iterated p-order of f is defined by

log T 1 M
o,(f) = limsup 08 LA T) (r, /) = lim sup 08,1 M(r, f)
P r—+00 log r r——+00 log T

Example 1.5 For the function f(z) = e, we have o3(f) = 1.

Definition 1.14 [29] The finiteness degree of the order of a meromorphic function
f 1s defined by

0, for f polynomial,
min {j € N:0,(f) < +oo}, for f transcendental for which
some j € N with p; (f) < +oo exists,
+00, for f with o;(f) =400 for all j € N.

i(f) =

Definition 1.15 /9] For p € N — {0}, the iterated p-type of a meromorphic func-
tion f, where 0 < 0,(f) < 0o is defined by
. log, T(r, f)
7,(f) = limsup prip(f) :

r—-+00

If f is an entire function, then the iterated p-type of f is given by

. log, M(r, f)
TM,p(f) — hr%—‘,s—gop prap(f) .

16



Definition 1.16 [29] For p € N — {0}, the iterated p-exponent of convergence of

a sequence of the zeros of a meromorphic function f is defined by

log, N(r,
AN(f) = limsupgp(f)

=400 log r

Similarly, the iterated p-exponent of convergence of a sequence of the poles of f

15 defined by

1 . log, N(r, f)
M= =1 2P -7
p(f) lrlgigap logr

1.2 Measures

Definition 1.17 /25, 32] Let E C (0,00) be a set and xg the characteristic func-
tion of E. The linear measure of E s defined by

m(E) = [ xp(t)dt.

Definition 1.18 /25, 32] Let E C (1,00) be a set. The logarithmic measure of E
15 defined by

Im(E) = /foo XEt(t) dt.

1.3 Wiman Valiron Theorem

Definition 1.19 /26, 32/Let f(z) = 2, a,2" be an entire function. The mazi-
mum term of f is defined by

plr) = plr, £) = mac{la |}

Definition 1.20 /26, 52] Let f(z) = >2°, a,2™ be an entire function. The central
index of f 1s defined by

V(r) = V(r, f) = max{m : [an|r™ = u(r, )}

17



Theorem 1.1 /26, 32] Let f be a transcendental entire function. Then there
exists a set E C (1,400) that has finite logarithmic measure, such that for all

J € N, we have .
f9(2) _ o
ol

as 1 — +oo, v & E, where z. is a point on the circle |z| = r that satisfies

|[f(zr)| = M(r, ) = max,—, [ f(2)].

V(T))j

Zr

2 Nevanlinna’s notions near an isolated Singular Point

In this section, we give some definitions which are also important in studying
the growth and value distribution of meromorphic functions near an isolated
singular point zg € C.

2.1 Functions and Concepts

Definition 1.21 [17]Set C = C U {oo} and let f be a meromorphic function in
C\{20}. We define the counting function near zy by

r nzo tuf _nzo OO,f

NZO (T7 f) = _/ ( ) ( )

00 t

dt — n, (oo, f)logr,

where n, (t, f) denotes the number of poles of f in the region {z € C : t <
|20 — 2|} U {o0}, each pole according to its multiplicity.

Definition 1.22 [17/Let f be a meromorphic function in C\{zo}. We define the

proximity function near zy by

1 ror ,
my, (Ta f) = % /02 10g+ ‘f(ZO - rew)‘dgb.

Definition 1.23 [17] Let f be a meromorphic function in C\{zy}. We define the

characteristic function near zy by

TZO(T7 f) - mzo(r7 f) + NZO(T7 f)

18



Definition 1.24 [17] Let f be a meromorphic function in C\{zo}. The order of
f near zy is defined by

or(f, zp) = lim sup 08 Tay(r. f)
r—0 —logr

For an analytic function f in C\{z}, we have also the definition

log™ log™t M,
on(f, z0) = limsup og 108 O(T,f)

0 —logr ’

where M. (r, f) = max. .- | f(2)].

Definition 1.25 [17]Let f be a meromorphic function in C\{z}. The hyper-
order of f mear zy is defined by

log™ log™ T.
02,T(f7 ZO) = lim sup 08 108 0(7“7 f)

For an analytic function f in C\{z}, we have also the definition

logt log™ log™ M,
o211 (f, 20) = limsup o8 08 08 ol f)~
’ r—0 —logr

Remark 1.1 [t is shown in [17] that if f(z) is a non-constant meromorphic func-
tion in C\{z0} and g(w) = f(z0 — 1), then g(w) is meromorphic in C and we

have
1

E?f)?

where R > 0 and so or(f, z) = o(g). Also, if f(2) is analytic in C\{2}, then
g(w) is entire and thus, or(f, 20) = om(f, 20) and oo (f, 20) = o2.m(f, 20). Then

T(R7 g) - TZO(

we can use the notations o(f, zy) and oo(f, z9) without any ambiguity.

Example 1.6 For f(z) = exp{(z()az)k}, where a € C*, zp € C and k € N*, we
have o(f, zy) = k.

19



2.2 Wiman Valiron Theorem

Definition 1.26 [2/] Let f be an analytic function C\{zy} such that f(z) =
PO (Z_“;O)n. Then for all given |zg — z| = r > 0, the mazimum term of f is
defined by

(1) = i, ) = mae {121},

m>0 rm

Definition 1.27 [2// Let f be an analytic function in C\{zo}. The central index
of f 1s defined by
m
Valr) = Valr £) = max fm = 20— o ),
Theorem 1.2 [2/] Let [ be a non-constant analytic function in C\{z}. Then
there exists a set E C (0,1) that has finite logarithmic measure, that is [; XE Lt <
+00, such that for all j € N, we have

F9G) _ o (V)Y
f(z) =+ (1))<ZO - Zr>

as T — 0, r &€ E, where z. is a point on the circle |z — z| = r that satisfies

[f(zr)| = Mz (7, f) = maxpz, = [f(2)]

3 Key Theorems

In this section, we present the central theorems utilized throughout this thesis.

3.1 The First Fundamental Theorem

Theorem 1.3 [25] Let f be a non constant meromorphic function and a € C.
Then

) =T(R, f)+ O(1)
as R — +o0.

20



3.2 Phragmén-Lindel6f Theorem

Letoz>%. We set
Sa:{ZG(C:—;;<argz<27;}

%:{r:z:rew,zeSa} and M (r,v,, f) = max|f(2)].

=

Theorem 1.4 [}3] Let f be an analytic function in S, and continious in 0S,
such that
1f(2)| < M, Vz € 0S,,

where M (> 0) is a constant.

If

. log log M (r, 7, f)
lim sup

< a,
r——400 log T

then
If(2)| < M, Vz e S,.

3.3 Liouville’s Theorem

In complex analysis, Liouville’s theorem is one of the immediate consequences

of Cauchy’s integral formula. This theorem is given as follows :

Theorem 1.5 If f is a bounded entire function, then f is constant.
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Chapter 2

Solutions of Complex Linear

Differential Equations With

Fast-Growing Coefficients

1 Introduction and Main Results

In this chapter, we investigate the fast growth of solutions of the linear differential
equation

FO 4+ A () fF ) 4+ A(2) f + Ag(2) f =0, (2.1)
where (k > 2) is an integer, the coefficients A; are entire or meromorphic func-
tions in the complex plane. In [53], Zemirni and Belaidi have estimated the
iterated p-order and iterated p-type of solutions of (2.1) and obtained the fol-

lowing results :

Theorem 2.1 [55] Let {A;(z) }o<j<k—1 be entire functions satisfying max{o,(A;) :
j=1..,k—1} <o0,(Ay) =0 (0 <o < +00) and max{7,(A4;) : j =1,...,k —
1} <71(Ay) =7 (0 <7 < +00) for pe N—{0,1}. Suppose that there exist two
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positive real numbers a and 3 with 0 < 8 < «, such that

Tr? )

|Ay(2)] = exp, (e

and

|4,(2)] < expp_l(ﬂe”a), j=1,...,.k—1
as |z| = r — +oo forr € E (E is of infinite logarithmic measure). Then every
solution f # 0 of equation (2.1) satisfies opi1(f) = 0 and 11 (f) = 7.

Theorem 2.2 [55] Let {A;(2) }o<j<k—1 be entire functions satisfying max{o,(A;) :
j=1..,k—1} <0,(Ay) =0 (0 <0 <+00) and max{7,(4;) : j =1,.. .k —
1} <71(Ag) =7 (0 <7 < +00) for pe N—{0,1}. Suppose that there exist two
positive real numbers o and B with 0 < 3 < «, such that

m(r, Ag) > expp_2(ae”ﬁ)

and
m(r, A;) < expp_z(ﬁe”"g), j=1,.., k-1

as |z| =r — +oo forr € E (E is of infinite logarithmic measure). Then every
solution f # 0 of equation (2.1) satisfies opi1(f) = 0 and 141 (f) = 7.

Theorem 2.3 [55] Let {A;(z) }o<j<k—1 be meromorphic functions satisfying 6(co, Ag) =
§ > 0, max{o,(4;) : j = 1,..k =1} < 0,(A) = 0 (0<0 < +00) and
max{7,(A4;) :j=1,..,k—1} <7,(4) =7 (0<7 < +00) forpe N—{0,1}.
Suppose that there exist two positive real numbers o and  with 0 < < «, such

that

T(r, Ag) > exp,_o(ce™)
and
T(r,A;) <exp, o(Be™), j=1,.,k—1

as |z| =r — +oo forr € E (E is of infinite logarithmic measure ). Then every
meromorphic solution f % 0 whose poles are of uniformly bounded multiplicities

of equation (2.1) satisfies op1(f) = o and 7,41 (f) = T.
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Theorem 2.4 [55] Let {A;(z) }o<j<k—1 be meromorphic functions satisfying A, (j()) <
op(Ap) = 0, max{oy(4;) 1 j=1,..,k =1} < 0,(Ay) =0 (0< 0 < +00) and
max{7,(4;) :j=1,..k—1} < 7,(4Ay) =7 (0 <7 < 400) for p e N—{0,1}.
Suppose that there exist two positive real numbers o and 8 with 0 < 8 < a, such
that

T(r, Ag) > exp,_y(ce™)

and
T(h AJ) < eprfQ(ﬁeTrU)a J - 17 X k—1

as |z| =r — +oo forr € E (E is of infinite logarithmic measure ). Then every
meromorphic solution f % 0 whose poles are of uniformly bounded multiplicities

of equation (2.1) satisfies opi1(f) = o and 7,41 (f) = T.

We continue to consider the above results by considering an arbitrary co-
efficient As(z) (1 < s < k — 1) instead of Ay(z). We will prove the following

results:

Theorem 2.5 Let {A;(z)}o<j<k—1 be entire functions such that there exists s €
{1,...,k — 1} satisfying 0 < max{o,(4;) : j # s} < 0p(As) = 0 < 400 and
max{7,(4;) : j # s} < 1,(As;) =7 (0 <7 < 400) for p € N—{0,1}. Suppose

that there exist two positive real numbers o and B with 0 < 8 < a, such that
[As(2)] > exp,_q(ae™) (2.2)

and
[Aj(2)] < exp, 1 (Be™), j#s (2.3)
as |z| =r — +oo forr € E (E is of infinite logarithmic measure). Then every

transcendental solution f of equation (2.1) satisfies opi1(f) = 0 and 1,11 (f) = 7.

Theorem 2.6 Let {A;(z)}o<j<k—1 be entire functions such that there exists s €
{1,...,k — 1} satisfying 0 < max{o,(4;) : j # s} < 0,(As) = 0 < 400 and
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max{7,(A4;) : j # s} < 1,(A5) =7 (0 <7 < +00) for p € N—{0,1}. Suppose
that there exist two positive real numbers v and § with 0 < 8 < «, such that

m(r, As) > exp, y(ce™) (2.4)

and

m(r, A;) < exp, o(Be™"), j#s (2:5)
as |z| = r — +oo forr € E (E is of infinite logarithmic measure). Then every
transcendental solution f of equation (2.1), in which ) (z) just has finite many

zeros for alln < s(n=0,...,s — 1), satisfies op11(f) = 0 and 141 (f) = 7.

When the coeflicients {A;(2)};=01.. x—1 are meromorphic functions, we obtain

the following two results :

Theorem 2.7 Let {A;(2)}o<j<k—1 be meromorphic functions such that there ex-
ists s € {1,...,k — 1} satisfying d(c0, As) = 0 > 0, 0 < max{o,(A4;) : j # s} <
op(As) = 0 < +oo and max{7,(A;) : j # s} < 1(A;) =7 (0 <7 < +00) for
p € N —{0,1}. Suppose that there exist two positive real numbers o and 3 with
0 < B < a, such that

T(r,As) > exp,_o(ce™) (2.6)

and
T(r,Aj) < exp, o(Be””), j#s (2.7)

as |z| =r — +oo forr € E (E is of infinite logarithmic measure). Then every
transcendental meromorphic solution f whose poles are of uniformly bounded
multiplicities of equation (2.1), in which " (2) just has finite many zeros for

alln <s(n=0,..,s — 1), satisfies op1(f) = 0 and 7,11 (f) = T.

Theorem 2.8 Let {A;(2)}o<j<k—1 be meromorphic functions such that there ex-
ists s € {1,....k — 1} satisfying )xp(Ais) < 0p(As) = 0, 0 < max{o,(4;) : j #
s} < op(As) = 0 < 400 and max{7,(A;) : j # s} < 1,(As) =7 (0 < 7 < 4+00)
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for p € N—{0,1}. Suppose that there exist two positive real numbers o and (3
with 0 < B8 < «, such that

T(r,As) > expp_Q(cye”’U) (2.8)

and
T(Ta AJ) < eprfQ(ﬁeTro)a J 7£ S (29)

as |z| =r — +oo forr € E (E is of infinite logarithmic measure). Then every
transcendental meromorphic solution f whose poles are of uniformly bounded
multiplicities of equation (2.1), in which ™ (2) just has finite many zeros for

alln <s(n=0,..,s—1), satisfies op41(f) = 0 and 7,11 (f) = T.

Remark 2.1 The proofs of Theorems 2.6, 2.7 and 2.8 are quite different from
the proofs of Theorems 2.2, 2.3 and 2.4 wn which we have added an essential

condition for every transcendental (entire) meromorphic solution f of equation
(2.1).

2 Auxiliary Results

To avoid some problems of the exceptional sets, we need the following lemma.

Lemma 2.1 /2, 21] Let ¢ : [0,400) — R and ¢ : [0,400) —> R be monotone
non-decreasing functions such that @(r) < ¥(r) for all v ¢ Fy U [0,1], where
Fy C (1,400) is a set of finite logarithmic measure. Let v > 1 be a given
constant. Then there exists R = R(7y) > 0 such that (r) < ¥(yr) for all v > R.

Lemma 2.2 [53] Let f be a transcendental meromorphic function with o,(f) =
o < +oo for some p € N — {0}, and let € > 0 be a given constant. Then
there exists a set Fy C (1,400) of finite logarithmic measure such that for all z
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satisfying |z| = r ¢ F» U [0, 1] and for all integer j > 1, we have
1. If p =1, then

|f](j()(;5) Sri(a—l-ﬁ-e).
z
2. If p > 2, then .
j
7| < oo

Lemma 2.3 [20] Let f be a transcendental meromorphic function, and let p > 1
be a given constant. Then there exists a set Fy C (1,400) of finite logarithmic
measure and a constant B > 0 that depends only on p and i, j(j > i > 0), such
that for all z satisfiying |z| = r ¢ F5U |0, 1], we have

U (2) T(ur,f), j—i
‘ F0(2) <B [M(log rYlog T(ur, f)|

r
Lemma 2.4 [25] Let f be a meromorphic function and let k € N. Then

f

possibly outside of an exceptional set Hy C (0,4+00) of finite linear measure.

f(k)
m(?") = O (logT(r, f) +logr),

Lemma 2.5 [29] Let f be a meromorphic function for which i(f) = p > 1 and
op(f) =0, and let k > 1 be an integer. Then for any ¢ > 0, there holds

(k)
m (7“, ff> =0 (expp,2(r0+5))

outside of a possible set Hy of finite linear measure.

Lemma 2.6 [11] Let f be a transcendental entire function. Then, there exists

a set Fy C (1,400) of finite logarithmic measure such that for all z satisfying
|z| =7 ¢ F,U[0,1] and |f(2)| = M(r, f), we have

f(z)

f¥(z)
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where s > 1 is an integer.

Lemma 2.7 [§] Let {A;(2)}o<j<k—1 be entire functions such that 0 < p < 400
and max{o,(A4;):j=0,1,...k =1} <o < 4o00. Then every solution f # 0 of
equation (2.1) satisfies op11(f) < o.

Lemma 2.8 [9] Let {A;(2) }o<j<k—1 be meromorphic functions such that 0 < p <
+oo and max{o,(A4;):j=0,1,....k—1} <o < 4o00. Then every meromorphic
solution f % 0 whose poles are of uniformly bounded multiplicities of equation
(2.1) satisfies op1(f) < 0.

By using similar arguments as in the proof of Lemma 2.5 and Lemma 2.7 in

[53], we can obtain the following two lemmas :

Lemma 2.9 Let {A;(z)}o<j<k—1 be entire functions such that 1 < p < 4o0.
Suppose that there exists s € {1,....k — 1} such that 0 < max{o,(4;) : j #
s} <o0,(As) =0 < 400 and max{7,(A;) : j# s} < 7(As) =7 (0 < T < 400) .
Then every transcendental solution f of equation (2.1) with op11(f) = o satisfies
Tp+1<f) < T

Lemma 2.10 Let {A;(2)}o<j<k—1 be meromorphic functions such that 1 < p <
+00. Suppose that there exists s € {1,...,k — 1} such that 0 < max{o,(A4;) : j #
s} <o0,(As) =0 < 400 and max{71,(A;) : j # s} < 7p(As) =7 (0 < T < 400) .
Then every transcendental meromorphic solution f whose poles are of uniformly

bounded multiplicities of equation (2.1) with o,+1(f) = o satisfies 7p+1(f) < .

3 Proof of Main Results

Proof of Theorem 2.5. Let f be a transcendental entire solution of equation
(2.1). By (2.1), it follows that

5 (e

e P 1t o[
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(s—1) P "
ff(Z;) ];((z))‘ + \Ao(z)\) S (2.10)

By Lemma 2.7, we know that o,.1(f) < 0. Suppose that o,.1(f) = 01 < 0.

+ A1 (2)] +-- 4 [Au(2)]

Then by Lemma 2.2, for any given € with 0 < ¢ < ¢ — 01, we have for p > 1

f(j)(z) + :
<exp,(r’'7), j=1,..k, 2.11
L) <oy o) 2.11)
where |z| =1 ¢ F, U [0, 1] and by Lemma 2.6, we have
f(z)
<2r° 2.12
|f<8>(2) . 21

for all |z| = r ¢ F, U [0, 1]. By substituting (2.2), (2.3), (2.11) and (2.12) into
(2.10), we obtain

exp, 1(ae”™”) < 2kr®exp, 1 (Be””) exp,(r7 )

for any given € with 0 <e <o —oy and all r € £ — (F, U F, U0, 1]). Hence, we
get
(a—B)e™ <™+ log, 17"+ C

which is a contradiction, since @ > 3 and ¢ > 01 + ¢, where C' is some positive
constant. Thus o,+1(f) = 0.
Now, by Lemma 2.3 we have for j =1, ..., k,

F9(2)
5e
for all |z| = r ¢ F3 U [0, 1]. By substituting (2.2), (2.3), (2.12) and (2.13) into
(2.10), we obtain

< B[T(2r, /)P < BIT(2r, ) (2.13)

expp_l(oze”o) < 2kBr? epr_l(ﬁeTTJ)[T(Qr, f)]kJr1
for all r € £ — (F5U Fy U [0, 1]). Hence
log(ar — B) + 177 <log, T'(2r, f) +log,r* + C}
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for some constant C; > 0 and for all r € E'— (F3U F;y U0, 1]). Then by Lemma
3.14, and because 0 < o0,11(f) = 0 < 400 we deduce that 7,.1(f) > 7. By
Lemma 2.9 we know that 7,.;(f) < 7, and thus 7,41 (f) = 7.

Proof of Theorem 2.6. Let f be a transcendental entire solution of the equa-
tion (2.1). If s+ 1 < j < k, we use the properties of the proximity function of

Nevanlinna, we have

) ) f
m (r,f(s)) Sm(r,f) —|—m<7°,f(8)>.

According to the definition of the counting function such that f has just finite

N (7“, f](j)) = O (logr),

so from the first fundamental theorem of Nevanlinna, we have

m(r, f](:)> < T(r, fJ(:)> =T (7“, fj(:)) + O (1)

Ry R S R

m (r, f(J)) <m (r, f(j)) +m (r, f(S)) + O (logr) . (2.14)

many zeros, we obtain

then

fe f f

If 0 <j < s—1, we use the first fundamental theorem of Nevanlinna, we obtain

T (r, ;(S)) =T (T, ;(j)) +0(1)=m (r, j”t(j)) + N (r, ;(j)> +0(1).

According to the definition of the counting function such that fU) has just finite

many zeros, we have

1)
N (r, f(J)) = O(log)
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SO

() () (s
m (r, ﬁ(;) <T (r, ;(2)) =m (r, ;O;) + O(log ). (2.15)

It follows from (2.1) that

*) (5 (k-1)(,
Ay(2) = — (;UEZ% F A B A )

which implies
) )
m(r,As) <> m(r,A)+ > m (7’, ()) + > m (r, ()) +0(1). (2.16)
its s+1<j<k J 0<j<s—1 Sl

By Lemma 2.7, we know that o,41(f) < 0. Suppose that o,41(f) = 01 < 0.
Then by Lemma 2.5, for any given ¢ with 0 < € < o — g1, and for all sufficiently
large |z| = r ¢ H,, we have

(J)
m (7“7 ff) =0 (expp_l{ralJ“E}) < Cyexp, {r""°}, j=1,.,k—1, (217

where C is some positive constant. Now let p > 2, by substituting (2.4), (2.5),
(2.14), (2.15) and (2.17) into (2.16), it follows that

exp,_o(ae™) < (k—1)exp, o(Be™) + Coexp,_(r™) + O(logr)  (2.18)

holds for any given ¢ with 0 < € < 0 — 07 and all z satisfying |z| =r € E — Hy
as r — +o00. Hence from (2.18) we get

o1+e

(a—p)e” <e™ +log, 7+ Cs

which is a contradiction as [z| = r — 400, r € E — Hs, since a > [ and

o > 01 + ¢, where (3 is some positive constant. Thus o,:1(f) = 0.
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Now, by using Lemma 2.4 and substituting (2.4), (2.5), (2.14), (2.15) into (2.16),
it follows that

expp_g(ae”’g) <(k—1) expp_Q(ﬁeTTJ) +O(logT(r, f)+logr)+ O(logr) (2.19)
for all z satisfying large |z| = r € E — H;. It follows from (2.19) that
exp, 5(ae™) < (k= 1) exp, »(3e™) + Olog T(r, f) + log 1)
for all sufficiently large |z| = r € F — Hy. Then we obtain
log(av — B) + 177 <log, T(r, f) +log,r + Cy4 (2.20)

for all sufficiently large |z| = r € E — Hy, where C} is some positive constant.
Hence by (2.20) and Lemma 3.14, we get 7 < 7,11(f). On the other hand, by
Lemma 2.9, we have 7,.1(f) < 7. Hence 7,11(f) = 7.

Proof of Theorem 2.7. Let f be a transcendental meromorphic solution whose
poles are of uniformly bounded multiplicities of equation (2.1), in which f™ (2)
just has finite many zeros for all n < s(n=0,...,s —1). By Lemma 2.8, we
know that o,+1(f) < 0. Suppose that o,.1(f) = 01 < 0. Set

Cem(r Ag)
d(00, As) = lim inf T(r A ~ 5 > 0. (2.21)

Thus from (2.21), we have for sufficiently large r
1
m(r, Ag) > §5T(7’, Ay). (2.22)

By substituting (2.14), (2.15), (2.17) and (2.22) into (2.16), we obtain

| £0) £6)
§5T(r, Ag) <m(r, Ag) < S m(r, A+ Y. m (r )+ >oom (r, ) +0(1)

its s+1<j<k AR R fe)

32



f(j) f(j)
its s+1<j<k IS 0<j<s—1 S
< > T(r, Ai) + Crexp, 1(r”* ) + O(log ) (2.23)

1#£s
for any given € with 0 < € < 0 — 07 and all z satisfying |z| = r € EF — Hs as
r — 400. Now let p > 2. It follows by (2.6), (2.7) and (2.23) that

1 iad Tr? o1+e

55 exp, »(ae™ ) < (k—1)exp, »(Be” )+ Cyexp, 1(r7**°) + O(logr) (2.24)
for any given € with 0 < € < ¢ — 0y and all z satisfying |z| = r € E — H, as
r — +oo. Hence from (2.24), we get

o1+e

(= B)e™ < e +log, 7+ Cs

which is a contradiction as |[z| = r — 400, r € E — Hs, since a > [ and
o > 01 + ¢, where (5 is some positive constant. Thus o,+1(f) = 0.

Now by using Lemma 2.4 and substituting (2.6), (2.7), (2.14), (2.15), (2.22) into
(2.16), it follows that

1 e 1
55 exp, o(ae™ ) < §5T(r, Ag) <m(r, As)

£0) £0)
<>m(r,A)+ > m (r, (s)) + Y m (r, ) +O(1)

its sH1<j<k f 0<j<s—1 [
£0) £0)
1#£s s+1<5<k f 0<j<s—1 f
< (k= 1) exp,_o(Be™") + O(log T(r, f) + logr) (2.25)
for all sufficiently large |z| =r € E — Hy. Then
log(av — B) + 177 <log, T(r, f) +log,r + C (2.26)

for all sufficiently large |z| = r € E — Hy, where Cj is some positive constant.
Hence by (2.26) and Lemma 3.14, we get 7 < 7,41(f). On the other hand, by
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Lemma 2.10, we have 7,.1(f) < 7. Hence 7,11(f) = 7.

Proof of Theorem 2.8. Let f be a transcendental meromorphic solution whose
poles are of uniformly bounded multiplicities of equation (2.1), in which f™ (2)
just has finite many zeros for all n < s(n=20,...,s —1). By Lemma 2.8, we
know that o,41(f) < o. Suppose that 0,+1(f) = 01 < 0. Then by Lemma 2.5,
for any given € with 0 < ¢ < 0 — 07 and for sufficiently large |z| = r ¢ Hs, we
have (2.17).
Now let p > 2, by substituting (2.14), (2.15), (2.17) into (2.16), we have

£0) £0)
m(r, Ag) <Y m(r,A)+ Y. m (7", )) + Y m (r, ) +0(1)

its s+1<j<k fls 0<j<s—1 [

U U
<ST(rA)+ Y m (r, ) + > m (r, ) +0(1)

its s+1<j<k fe) 0<j<s—1 fe)

< > T(r, A;) + Crexp, 1(r”* ) + O(log ) (2.27)
1#£s
holds for any given € with 0 < ¢ < 0 — 0y and all z satisfying |z| =r € F — Ho
as r — +00. Since A, (2) < 0p(As) = o, we have for any given ¢ with 0 < ¢ <
1

o — Ay() and sufficiently large r

N(r, Ay) < exp,_; (r(3)7). (2.28)

By (2.8), (2.9), (2.27) and (2.28), for any given ¢ with 0 < £ < min {O‘ —Xp(A), 0 — 01}
and all z satisfying |z| =r € E — Hy as r — +00, we obtain

expp_g(oze”ﬁ) <T(r,As) = m(r, Ag) + N(r, As)

< (k—1)exp, o(Be™ )+ Crexp, (r™ %) +exp,  (r*3)7) + O(logr). (2.29)
Hence from (2.29), we get

1
o ro1te p(ag)te

(a—pe™ <e +e +log, 7+ Cy,
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which is a contradiction as |z| = r — 400, r € E — Hs, since o > [ and
0 < € < min {0 — )\p(Ai),a — 01}, where C7 is some positive constant. Thus

op1(f) =0

Now it follows by (2.8), (2.9), (2.16), (2.28) and Lemma 2.4 that

expp_g(oze”g) <T(r,As) =m(r, As) + N(r, As)

f(j) f(j)
<Y m(r,A)+ > m (r, ) + > m (7“, ) + N(r, As) + O(1)

its st1<j<k fe) 0<j<s—1 fe)
£0) £0)

<2 T(rA)+ > m (7“7 ()) + > m (7"7 ()) + N(r, A;) + O(1)
its sH1<j<k J 0<j<s—1 S

< (k= 1) exp, (8e™") + exp, 4 (P 4)%) + O(log T(r, f) + logr)  (2.30)

for any given € with 0 < ¢ < 0—\, () and all sufficiently large |z| = r € E—H;.
Then by (2.30), we obtain

log(aw — B) + 7117 < pro(ap)te 4 log, T'(r, f) + log, r + Cg (2.31)

for any given ¢ with 0 < &£ < 0—\,(-) and all sufficiently large |z| = r € E—Hj,

where Cy is some positive constant. Hence by (2.31) and Lemma 3.14, we get
7 < 7Tp+1(f). On the other hand, by Lemma 2.10, we have 7,.1(f) < 7. Hence

Tp+1<f) =T.
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Chapter 3

On the Hyper-order of Analytic
Solutions of Linear Differential

Equations near an isolated
Singular Point

1 Introduction and Main Results

The aim of this chapter is to investigate the hyper-order of analytic solutions of

the following linear differential equations :

Qg

(20— 2)"

1+ ai@ e { L s e | -0 @)

(20 — 2)"

F8 4 A4 (2) exp { -1 } FED 4 Ag(2) exp { il } f=F (3.2

(20 — 2)" (20 — 2)"
where k£ > 2 is an integer, n € N\{0} and zp,a;(j = 0,...,k — 1) are complex
numbers, Ag(z) # 0,..., Aj—1(z) and F # 0 are analytic functions near an
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isolated singular point zy . In [17], Fettouch and Hamouda proved the following

result :

Theorem 3.1 [17] Let zy a, b be complex constants, such that arga # argb or
a=cbwith (0 <c<1)andn € N\{0}. Let A(z), B(z) # 0 be analytic functions
in C\{z0} with max{c(A,z),0(B,z2)} < n. Then every solution f £ 0 of the

differential equation
b
f// + A(Z) exp {(Zoiz)"}f/ + B(Z) exp {}f =0

satisfies o(f, zp) = +oo and os(f, z9) = n.

Cherief and Hamouda have extended Theorem 3.1 to higher order linear differ-

ential equations and proved the following two results :

Theorem 3.2 [1/] Let n € N\{0}, k > 2 be an integer and A;(2)(j =0,....,k—1)
be analytic functions in C\{zo}, such that o(A;,z0) < n and Ag(z) £ 0. If
aj(j = 0,....,k — 1) are distinct complex numbers, then every solution f # 0 of
the differential equation (3.1) that is analytic in C\{z0}, satisfies o(f, z9) = +o0.

Theorem 3.3 [1/] Let n € N\{0}, k > 2 be an integer and A;(2)(j =0, ...,k —
1) be analytic functions in C\{zo}, such that o(A;,z) < n and Ag(z) # 0.
Let a;j(j = 0,...,k — 1) be complex constants. Suppose that there exist nonzero
numbers ag and a,, such that 0 < s < k —1, ag = |ag|e,a, = |as|e?,00, 0, €
0,27), Oy # 05, AoAs # 0 and for j # 0,s, a; satisfies either a; = djay (0 <
di <1) ora; =dja, (0<d; <1). Then every solution f # 0 of equation (3.1)
that is analytic in C\{zo}, satisfies o(f, zy) = +o0.

We continue to consider these above theorems and investigate the hyper-order

of analytic solutions of equation (3.1). We will prove the following results :
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Theorem 3.4 Let n € N\{0},k > 2 be an integer and Aj(z),a;(j = 0,....k —
1) satisfy the additional hypotheses of Theorem 3.2. Then every non-constant
solution [ of equation (3.1) that is analytic in C\{zo} satisfies oo(f, 20) = n,

where zy is an essential singular point for f.

Example 3.1 Consider the differential equation

"+ 2(2 + i)f” - ;exp {i}f’ - 224(3 + Z’ + 212) exp {i}f —0.  (3.3)
Obiouvisly, the conditions of Theorem 3.4 are satisfied. Hence every non-constant
solution f of equation (3.3) that is analytic C\{0} satisfies oo(f,0) = 1, where
0 is an essential singular point for f.

Remark that the function f(z) = exp{exp(2)} is a solution of equation (3.3) that
is analytic in C\{0} with oo(f,0) = 1.

Theorem 3.5 Let n € N\{0},k > 2 be an integer and A;(2),a;(j = 0,....k —
1) satisfy the additional hypotheses of Theorem 3.3. Then every non-constant
solution f of equation (3.1) that is analytic in C\{z} satisfies oo(f,2z0) = n,

where zy 1s an essential singular point for f.

Theorem 3.6 Let n € N\{0},k > 2 be an integer and A;(2),a;(j =0,....k — 1)
satisfy hypotheses of Theorem 3.4 or those of Theorem 3.5 . Let ' # 0 be an
analytic function in C\{20} of order o = o(F,zy) < n. Then every solution f of
equation (3.2) that is analytic in C\{20} satisfies o(f,z0) = +o00 and oo( [, 29) =
n, with at most one exceptional analytic solution fy of finite order in C\{z},

where zy is an essential singular point for f.

2 Auxiliary Results

Lemma 3.1 [17] Let f be a non-constant meromorphic function in C\{zo}. Let
a > 0 be a given real constant and j € N. Then there exists a set Ey C (0,1) of
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finite logarithmic measure, that is 3 x5, (t)% < 400 and a constant A > 0 that
depends on o and j, such that for all r = |z — zy| satisfying r ¢ Ey, we have

f 7., (ar, f)log T (ar, f)|

where x g, 1s the characteristic function of the set Ej.

Lemma 3.2 [32]Let g be a transcendental entire function, let 0 < ny < % and wg
be a point such that lwg| = R and |g(wg)| > M(R,¢)V(R)"i*™ holds. Then
there exists a set Fy C (1,4+00) of finite logarithmic measure, such that
' j
2l (M0 oy gem
holds as R — +o0o and R ¢ Fi, where V(R) is the central index of g and
M(R, g) = maxy,—g |g(w)|.

Remark 3.1 [2/] If f is a non-constant analytic function in C\{z}. Then the
function g(w) = f(z0 — 1) is entire in C and V. (r) = V(R), where R = 1,
R > 0, V(R) is the central index of g in C and V. (1) is the central index of f
near the singular point zy.

By using Lemma 3.2, remark 3.1 and similar arguments as in the proof of theorem

8 in [24], we can obtain the following Lemma :

Lemma 3.3 Let f be a non-constant analytic function in C\{z}. Let0 < < ;
and z, be a point such that |zo— z| = r and |f(z,)] > M., (r, f)Vi (r) 5™ holds.
Then there exists a set Ey C (0,1) of finite logarithmic measure, such that

f(])(Zr) — ( VZ()(T)
f(zr) 20 — Rr

holds as r — 0, r & Es, where V, (r) is the central index of f near zy, 2z is an

)Ql+dﬂ>@eN>

essential singular point for f and M. (r, f) = max|, .- | f(2)].
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Lemma 3.4 Let f be a non-constant analytic function in C\{z}. For |z —
z| = r sufficiently small, let 2z, = 2y — e’ be a point satisfying |f(z,)] =
max|,,—.—r|f(2)|. Then there exist a constant 6, > 0 and a set B3 C (0,1) of
finite logarithmic measure, such that for all z satisfying |zo—z| =r ¢ E3, r — 0
and arg(zy — z) =0 € [0, — 0,,0, + 0,], we have

f9) _ (VZO(T)
f(2) 20 — 2
where V., (z) is the central index of f near zy, zy is an essential singular point

for f.

Proof If z, = zy — re

)(1+dD)UeNL

- is a point satisfying |f(2,)| = M,,(r, f), since |f(z)] is
continuous in |2y — z| = r, then there exists a constant J,(> 0), such that for all

z satisfying |z — z| =7, r — 0 and arg(zg — 2) = 0 € [0, — 0,, 0, + §,], we have

1F) = 1f) <€

that is |
M (r f) > Moy (r, f)Vi ()71,

1
1) > S1f )] =

By Lemma 3.3,

f9G) _ (Var)Y .

ot = () o) Gen

holds for all z satisfying |29 — 2| = r ¢ FEs, r — 0 and arg(zg — 2) = 0 €
10, — 6,0, +9,].

Lemma 3.5 Let [ be a non-constant analytic function in C\{z}. For |zg— z| =
r, let z, = zg— e be a point satisfying | f(2,)] = max |, .= | f(z)]. Then there
exist a constant 0, > 0 and a set £y C (0,1) of finite logarithmic measure,
such that for all z satisfying | zo — z |=r & Ey, v — 0 and arg(zg — 2) = 0 €
0, — 6y, 0, + 6,], we have

f(2)
| FO)(2)

<2 (jeN),
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where zy is an essential singular point for f.

Proof Let z, = z) — re’” be a point satisfying |f(z,)| = maz|,,—.—|f(z)|. Then
by Lemma 3.4 there exist a constant d, (> 0) and a set E5 C (0,1) of finite
logarithmic measure, such that for all z satisfying |zg — z| = r ¢ F3, r — 0 and
arg(zo — z) =0 € [0, — 0,,0, + 0,], we have

fP2) _ (V%(r)

20 — R

) (1+0(1)) (j €N). (3.4)

Since g(w) = f(z — %) is a transcendental entire function, it follows that

V(R) — 400 as R — +00. On the other hand, V(R) = V. (r)(R = 7). Hence
V., (r) — +o00 as r — 0. Then by (3.4), for all z satisfying |zo — 2| = r ¢ Ej,
r — 0 and arg(zg — 2) =6 € [0, — §,, 0, + J,], we have

f9(z) L
| () z 5
that is
| f](FJ()Z)‘ <2 (FEN),

Lemma 3.6 [17]/Let A(z) be an analytic function in C\{zo} with (A, z) <
n (n € N\{0}). Set g(z) = A(z)exp{(z()fz)n}, where a = a+ i # 0 is a
complex number, zy — z = re'?, §,(¢) = acos(ng) + fsin(ng), and H = {¢ €
[0,27) : 6a(¢) = 0}. (obviously , H is a finite set). Then for any given € > 0
and for any ¢ € [0,2m)\H, there exists ro > 0, such that for 0 < r < ry, we have

(1) if da(@) >0, then
exp {(1— s)aa(cb):n} <lg(2) < exp{(1+ s)aaw):n}, (3.5)
(i) if 6.(¢) <O, then

exp {(1+)5(6) -

r

YA\
S
N
VAN
@D
"
T
—
—
|
2
=%
B
=
——

(3.6)



Lemma 3.7 [14]Let k > 2 be an integer and Aj(z)(j = 0,...,k — 1) be analytic
functions in C\{20}, such that o(A;,z)) < a < oo. If f is a solution of equation

FO 4 A () D 4+ A(2)f + Ag(2) f =0 (3.7)
that is analytic in C\{zo}, then oao(f, 20) < «

Lemma 3.8 [2/] Let f be a mon-constant analytic function in C\{zo}. Then
there exists a set E5 C (0,1) of finite logarithmic measure, such that

f9(z) 5(7) o
= (1 1 0 N
ol = o) (22 ) e
holds as r — 0, r ¢ E5, where z, is a a point on the circle |zy — z| = r that

satisfies | f(z)] = My (r. f) = maxp, i, | ()]

Lemma 3.9 [15] Let [ be a non-constant analytic function in C\{z20} of infinite
order with the hyper-order os(f,z0) = o and V. (r) be the central index of f.

Then
, log* log™ V. ()
lim sup = 0.
r—0 —logr

Lemma 3.10 Let k > 2 be an integer, A;(2)(j = Lk —1) and F(# 0) be
analytic functions in C\{z0}, such that max {c(4;, zo) o(F,z20)} <a<oo. If f

1s an infinite order solution of equation
FE 4 A () L A Ao(2)f = F (3.8)
that is analytic in C\{zo}, then oa(f,20) < «

Proof Assume that f is an infinite analytic solution in C\{z} of equation (3.8).
By (3.8), we have

f(k) fk 1
) < o

f'(z F(z
]+ AE Hf((z))\ﬂf((z))MAO(z)\. (3.9)
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By Lemma 3.8, there exists a set E5 C (0, 1) of finite logarithmic measure, such
that for all j = 0,1, ..., k, we have

fO(z) ( V() )j
=(1+o0(1)) | — 3.10
ok = (o (2 (3.10)
as r — 0, r ¢ FEs5, where z, is a point on the circle |zy — z| = r that satisfies

‘f(zr)| - Mzo(r7 f) — MaxX|,,—z|=r |f(2)’

For any given ¢ > 0, there exists ry > 0, such that for all 0 < r = |2y — 2| < rg

we have
’Aj(z)‘ < exp{ra+5}(j =0,1,...,k—1) (3.11)
and |
F(z)| < exp{ -} (3.12)
Since M., (r, f) > 1 as r — 0, it follows from (3.12) that
|F'(2)] 1
m S exp{W} as r — 0. (313)

By substituting (3.10), (3.11) and (3.13) into (3.9), we obtain

(W)ku +o(1)| < (k+ 1)(W)k_lll +o(1)] exp {

r

el B G ATY

for all |z0 — 2| =7 ¢ E5, r — 0 and |f(z,)]| = M., (r, ).
By (3.14) and Lemma 3.10, we get

oo(f, z0) < a.

3 Proof of Main Results

Proof of Theorem 3.4 Assume that f is a non constant an analytic solution of

(3.1) in C\{zp}, where z; is an essential singular point for f.
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By Lemma 3.1, there exist a set Fy C (0, 1) of finite logarithmic measure and a
constant A > 0, such that for all r = |2y — z| satisfying r ¢ F;, we have

f(j)(z)
f

<\

T (o f)r)j (G =1,..k). (3.15)

For each sufficiently small |2y — z| = r, let z, = 2y — re'® be a point satisfying

[f (2r)| = maxz, - [ f(2)].

By Lemma 3.5, there exist a constant §, > 0 and a set £y C (0,1) of finite
logarithmic measure such that for all z satisfying |z — z| = r ¢ Ey, r — 0, and
arg(zg —z) =0 ¢€ [0, — 5T,H +9 ] we have

(j=1,...,k) (3.16)

Set a; = a; + 10, 5aj(t9) = q cos(n@) + Bjsin(nd), zp—z = re'?,
H, = U?;é{ﬁ € [0,27) : 6,,(0) = 0},

Hy = U0§i<j§k—1{9 € [0, 27T) : 5%_%(9) = 0}
Since a; are distinct complex numbers, then there exists only one s € {0, ...,k —
1}, such that for any given 6 € [0, — 6,,0, + J,| \ (H1 U Hs), we have

01 = 0q,(0) = max{d,,(0) : j =0,....,k — 1}.
We have : 9; >0 or d; <O.

Case 1. 6; > 0. Set dy = max{d,,(¢) : j # s}. Then ds < 0;.

Subcase 1. 1 (52 > (0 then 0 < 03 < d;. Thus by Lemma 3.6, for any given

g( 5 5 %) for all z satisfying |29 — 2| =7, 7 — 0 and arg(zy — 2) = 0 €
0, — 9,,0, 4+ 9, \ (H U Hs), we have
as o1
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and

4;(z)exp {(Zoa_jz)n} <exp{(1+ g)ffl} (j # 3). (3.18)
By (3.1), it follows that
as fW(z) | kL aj Y2
_AS(Z) exp{(Z() _ Z)n} - f(S)(z) jZXS;i-l A](Z) eXP { (Z() — Z)n}f(s)(Z)
e aj  fU() f(2)
+J§0 Aj(2) p{(z0 - z)”} ENCIE! (3.19)

Substituting (3.15), (3.16), (3.17), (3.18) into (3.19), for all z satisfying |zo—z| =
ré¢ FyUE,;, r— 0and arg(zg—z) =0 € [0, —9,,0,+6,] \ (H1 U Hy), we obtain
§ 0oy [Toy(ur, )12

exp{(1 —¢) 1} < Myr*exp {(1+ 5)2}[(@} :

e 3.20
" " (3.20)
where M;(> 0) is a constant. Hence by (3.20), we obtain o5(f, 29) > n. On the

other hand, by Lemma 3.7, we have os(f, z9) = n.

Subcase 1.2. §, < 0. By Lemma 3.6, for any given £(0 < 2¢ < 1), for all z satis-
fying |zg—z| =r ¢ EY\UEy, r — 0 and arg(z0—z) = 6 € [0,—0,, 0,+6,]\ (H1UH3),
we have (3.17) and

a;

‘Aj(z) exp{ )n}’ < exp{(l — s)ii} <1 (j#s). (3.21)

(z0 — 2

Substituting (3.15), (3.16), (3.17), (3.21) into (3.19), for all z satisfying |zo—z| =
ré¢ FyUE,;, r— 0and arg(zo—2) =0 € [0, —9,,0,+ 6, \ (H1 U Hy), we obtain

01 T, (ar, f)2k
e

rn r

b < Mor®

exp{(1—¢) (3.22)

where Msy(> 0) is a constant. Hence by (3.22), we obtain o3(f, 29) > n. On the
other hand, by Lemma 3.7, we have os(f, z9) = n.
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Case 2. 0; < 0. By Lemma 3.6, for any given (0 < 2¢ < 1), for all z satisfying
20— z| =7 ¢ EyUEy, r— 0and arg(zo —2) =6 € [0, —9,,0, +9,] \ (H1 U Hy),

we have

’Aj(z) exp {(zoa—jz)”}

By (3.1), we get

Sexp{(l—s)fi} <1 (j=0,...k—1). (3.23)

B _kfl ) ex a; f(j)(,z) f(2) ) exc ao f(2)
1—]214]( ) p{(ZO—Z)n} f(Z) f(k)(z) ‘|‘AO( ) p{(ZO—Z)n}f(k)((z)' )
3.24

Substituting (3.15), (3.16), (3.17), (3.23) into (3.24), for all z satisfying |zo—z| =
r¢ EyUEy, r— 0and arg(zg—z) =0 € [0, — 0,,0,+9,] \ (H1 U Hs), we obtain

(ar, f) rk

1< Msr® eXp (3.25)

where M3(> 0) is a constant. Hence by (3.25 ) we obtain o3(f, z9) > n. On the
other hand, by Lemma 3.7, we have o3(f, z9) =

Proof of Theorem 3.5 Assume that f is a non constant analytic solution of
(3.1) in C\{zp}, where z; is an essential singular point for f.
By Lemma 3.1, there exist a set E; C (0, 1) of finite logarithmic measure and a
constant A > 0, such that for all » = |2y — z| satisfying r ¢ Fi, we have (3.15).
For each sufficiently small |zg — z| = r, let z, = 2y — re'® be a point satisfying
£(2)] = maxpy—sjr |F(2)]
By Lemma 3.5, there exist a constant 6, > 0 and a set £y C (0,1) of fi-
nite logarithmic measure such that for all z satisfying |zg — z| = r ¢ E; and
arg(zo — z) =0 € [0, — 6,, 0, + 0,], we have (3.16).
Set

= {0.€10,27) : 6,,(6) = 0 0r 5, (6) = 0}
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and
Hy = {0 €10,27) : 6,,(0) = 0.,(0) }

For any given 6 € [0, — 0,,0, + §,] \ (Hs U Hy), we have
0a,(0) # 0, 64,(0) # 0 and 0,4, (0) > 64,(0) or 0, (0) < 64,(0).
Set ¢1 = d,,(6) and co = d,,(6).

Case 1. ¢; > ¢y. Here we also divide our proof in three subcases.

Subcase 1.1 ¢; > ¢ > 0. Set c¢3 = max{d,,(0) : j # s} Then 0 < c3 < ci.

Thus by Lemma 3.6, for any given (0 < 2e < £73), for all z satisfying

20—z =7 ¢ EyUEy, r— 0and arg(zo—2) =60 € [0, —9,,0, +9,] \ (Hs U Hy),

we have
As

(20— 2)"

Aq(2) eXp{ H > exp {(1 — 8);} (3.26)

and

'Aj(z) exp{(zoa_jz)nH < exp {(1 + 5)2} (7 # s). (3.27)

Substituting (3.15), (3.16), (3.26), (3.27) into (3.19), for all z satisfying |zp—z| =
r¢ EyUEy, r— 0and arg(zg—z) =0 € [0, — 0,,0,+9,] \ (H1 U Hs), we obtain

T, (ar, f)12k
[H} |

r

exp {(1 - 5);} < Myr*exp{(1 +¢) 03} (3.28)

rn
where My(> 0) is a constant. Hence by (3.28), we obtain o3(f, 29) > n. On the
other hand, by Lemma 3.7, we have o5(f, z09) = n.

Subcase 1.2. ¢; > 0 > co. Set 73 = max{d; : j # s,l}. Thus, by Lemma
3.6, for any given £(0 < 2 < %), for all z satisfying |z — 2| = r ¢ Ey U Ey,
r — 0 and arg(zg — 2) =6 € [0, — 6,0, + 6,] \ (H3 U Hy), we have (3.26)

‘Aj(z) exp {“JH <exp{(1+ 5)7101} (j # 5). (3.29)

(z0 — 2)" rn
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Substituting (3.15), (3.16), (3.26), (3.29) into (3.19), for all z satisfying |zo—z| =
r¢ EyUEy, r— 0and arg(zg—2) =6 € [0, — 0,,0, + 6] \ (H1 U Hy), we obtain

Cl} < Msr*exp{(1+e

(3.30)

exp{(1—¢) e Tufar

r r’ r
where M;(> 0) is a constant. Hence by (3.30), we obtain o5(f, 29) > n. On the
other hand, by Lemma 3.7, we have os(f, z9) = n.

Subcase 1.3. 0 > ¢; > ¢3. Set 7o = min{d; : j # s,l}. By Lemma 3.6, for
any given £(0 < 2¢ < 1), for all z satisfying |20 — 2| = r ¢ E1 U Ey, 7 — 0 and
arg(zg —z) =0 € [0, — 9,,0, +6,] \ (H3 U Hy), we have

Ag(2) exp {(zoa—sz)”} < exp {(1 — 5):711} (3.31)
and |
'Aj(z) exp {(zoa—]z)”} < exp {(1 + s)visl} (7 # 9). (3.32)

Substituting (3.15), (3.16), (3.31), (3.32) into (3.24), for all z satisfying |zo—z| =
r¢ EyUEy, r— 0and arg(zg—z) =0 € [0, — 0,,0,+9,] \ (H1 U Hs), we obtain

o) } [TZO(M’, f)rk’

1< Mﬁrkexp{(l—i— -
r r

(3.33)

where Mg(> 0) is a constant. Hence by (3.33), we obtain o5(f, 29) > n. On the
other hand, by Lemma 3.7, we have o5(f, z0) = n.

Case 2. c; < co. Using the same reasoning as in case 1, we can also obtain

JO(f, ZO) = n.

Poof of Theorem 3.6 First we show that (3.2) can possess at most one ex-
ceptional analytic solutionfy in C\{zo} of finite order.

In fact, if f* is another analytic solution of finite order of equation (3.2), then
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fo— [*(£ 0) is an analytic solution in C\{zy} of finite order of the corresponding
homogeneous equation of (3.2). This contradicts Theorem 3.4 and Theorem 3.5.
We assume that f is an infinite order analytic solution in C\{z} of equation
(3.2). By Lemma 3.10, it follows that oo(f, z0) < n.

Now we prove that oo(f,29) > n. By Lemma 3.1, there exist a set E; C (0,1)
of finite logarithmic measure and a constant A > 0, such that for all z satisfying
|20 — z| = r ¢ FEy, we have (3.15).

For each sufficiently small |2y — z| = r, let z, = 2y — re'® be a point satisfying
1£(2)] = maxpy i |F(2)]

By Lemma 3.5, there exist a constant J, > 0 and a set Fy C (0,1) of fi-
nite logarithmic measure such that for all z satisfying |zg — z| = r ¢ E; and
arg(zo — z) =0 € [0, — 0,,0, + 0,], we have (3.16).

Since |f(z)| is continous in |zg — z| = 7, then there exists a constant A, > 0 such
that for all z satisfying |29 — z| = r sufficiently small and arg(zy — z) = 6 €
[0, — N\, 0, + N\, we have

1 3
S < £ < S1f Gl (334)

On the other hand, for any given (0 < 2¢ < n — o), there exists ry > 0, such
that for all 0 < r = |2y — 2| < 19, we have

1
()] < esp{ ) (3.35)
Since M, (r, f) > 1 as r — 0, it follows from (3.34) and (3.35) that
F(2) 1
‘f(z)‘ <2exp{ -} as 0. (3.36)

Set v = min{d,, A\, }.

(i) Suppose that a;(j =0, .., k — 1) satisfy hypotheses of Theorem 3.4.
Since a; are distinct complex numbers, then there exists only s € {0,...,k — 1}
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such that for any given 6 € [0, — ~,0, + | \ (H1 U Hy), where H; and H, are

defined above, we have
01 = 0q,(0) = max{d,,(0) : j =0,....,k — 1}.

We have : 91 >0 or 67 <0
Case 1. 6; > 0. Set 9y = max{d,,(¢) : j # s}. Then d5 < d1.

Subcase 1.1. J, > 0. From (3.15), (3.16), (3.17), (3.18), (3.36) and (3.2),
for all z satisfying |z9 — 2| = r ¢ Ey U Ey, r — 0 and arg(zp — z) = 0 €
10, —~,0,+~]\ (Hy U Hy), we obtain

exp{(1 —¢) 51} < Byr? exp{ral%} exp{(1+e¢) 0 } [TZO(O&M} Qk, (3.37)

= 2
where Bi(> 0) is a constant. From (3.37), we get o9(f, 20) > n. This and the
fact that oo(f, z0) < n yield o9(f, z0) = n.

Subcase 1.2. §; < 0. From (3.15), (3.16), (3.17), (3.21), (3.36) and (3.2),
for all z satisfying |20 — z| = 7 ¢ E1 U Ey, v — 0 and arg(zg — 2) = 6 €
0, —~,0,+~]\ (Hy U Hs), we obtain

T, (ar, f)12k
[ ( )}7

) 1
exp{(l — 5)7’111} < Bor? eXp{THE} .

(3.38)

where By(> 0) is a constant. From (3.38), we get oo(f, 29) > n. This and the
fact that oo(f, 29) < n yield o9(f, z0) = n.

Case 2. §; < 0. From (3.15), (3.16), (3.23), (3.36) and (3.2), for all z satisfying
20— 2| =r ¢ EyUEy, r — 0and arg(zo — 2) =0 € [0, — 7,0, + 7]\ (H1 U Hy),

we have
1 01

r0+6} eXp {(1 - 5)}[

1 < Byr¥exp{ -

T, (ar, f)rk, (3.39)

r
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where B3(> 0) is a constant. From (3.39), we get oo(f,29) > n. This and the
fact that oa(f, 20) < n yield o9(f, z0) = n.

(ii) Suppose that a;(j =0, ..,k — 1) satisfy hypotheses of Theorem 3.5.

For any given 0 € [0, —~, 0, +7]\ (HsUH,), where Hs and H, are defined above,
we have

0a,(0) # 0, 4,(0) # 0 and 6,,(0) > 6,4,(0) or 6,,(0) < 64,(6).

Set ¢1 = d,,(6) and co = d,,(6).

Case 1. ¢; > ¢y. Here we also divide our proof in three subcases.

Subcase 1.1 ¢; > ¢ > 0. From (3.15), (3.16), (3.26), (3.27), (3.36) and (3.2),
for all z satisfying |20 — z| = v ¢ F1 U Ey, v — 0 and arg(zg — 2) = 6 €
0, —~,0,+~]\ (Hs U Hy), we obtain

exp {(1 — 8)7“ } < Byr® exp{—}exp {(1 + 5)3}{er, (3.40)

where By(> 0) is a constant. Hence by (3.40), we get o2(f, z9) > n. This and
the fact that oo(f, z9) < n yield o9(f, z0) = n.

Subcase 1.2. ¢; > 0 > ¢o. From (3.15), (3.16), (3.26), (3.29), (3.36) and
(3.2), for all z satisfying |zg — z| =r ¢ E1 U Ey, r — 0 and arg(zg — 2) = 6 €
0, —~,0,+~]\ (Hs U Hy), we obtain

exp {(1 — s)r } < Byr® exp{—} exp {(1+ 5)%03}{@0(&?“’ f)]%, (3.41)

rh r
where Bs(> 0) is a constant. From (3.41), we get o2(f, 29) > n. This and the
fact that oo(f, z9) < n yield o9(f, z0) = n.
Subcase 1.3. 0 > ¢; > ¢. From (3.15), (3.16), (3.31), (3.32), (3.36) and
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(3.2), for all z satisfying |zg — z| =r ¢ E1 U Ey, r — 0 and arg(zg — 2) = 0 €
[0, — 7,0, +~]\ (Hs U Hy), we obtain

22013 [TZO(Oﬂ”a f )r’“ | (3.42)

rn T

1
1 < Bgr* exp{m} exp{(l1+e

where Bg(> 0) is a constant. From (3.42), we get o5(f, 29) > n. This and the
fact that oo(f, 29) < n yield o9(f, z0) = n.
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Chapter I

Growth of Analytic Solutions of

Linear Differential Equations with
Analytic Coeflicients near an
1solated Singular Point

1 Introduction and Main Results

In [14], Cherief and Hamouda have considered equation (3.1) and proved the

following result :

Theorem 4.1 [1/] Let n € N\{0}, k > 2 be an integer and A;(2)(j =0, ...,k—1)
be analytic functions in C\{zy}, such that o(A;, zp) < n, and let a;(j =0, ...,k —
1) be complex constants. Suppose that there exist nonzero numbers ay and as,
such that 0 < s < k — 1, ag = |agle’®s, a, = |asle?, 6,0, € [0,27), Oy # b,
ApAs # 0 and for j # 0,s, a; satisfies either a; = djay (dj < 1) orarga; =
argas. Then every solution f # 0 of equation (3.1) that is analytic in C\{z},
satisfies o (f, z9) = 400 and o9(f,20) =n .
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In this chapter, we continue to consider the two equations (3.1) and (3.2) from
the preceding chapter by giving new conditions on the analytic functions A;(j =
0,....k — 1) to estimate the order and the hyper-order of analytic solutions of

these equations. We will prove the folllowing results :

Theorem 4.2 Let n € N\{0}, k > 2 be an integer and A;j(z)(j = 0,....,k — 1)
be analytic functions in C\{zp}, such that o(A;, z0) < n. Suppose that there
exist 5,1 € {1,....,k — 1} such that A,A; # 0, ay = dye'®, ap = —die?, ¢ €
0,27), ds > 0, d; > 0 and for j # s,l, aj = d;je” or a; = —d;e’*(d; > 0)
and max{d; : j # s,1} = d < min{ds,d;}. Then every non-constant solution
[ of equation (3.1) that is analytic in C\{20} is of infinite order and satisfies
oo(f, 20) = n, where zy is an essential singular point for f.

Theorem 4.3 Let n € N\{0}, k > 2 be an integer and A;(z)(j = 0,....,k — 1)
be analytic functions in C\{z0}, such that o(A;, z9) < n. Suppose that there
exists {aiy, @iy ...y i, b C {an, ...,ap—1} such that arga; (j = 1,..,m) are distinct
and for every nonzero a; € {ay,...,ax_1} \ {a;,,...,a; }, there exists some a; €
{ai,,...,a; } such that a; = cl(is)ais(() < cl(is) < 1). Then every non-constant
solution f of equation (3.1) that is analytic in C\{z0} is of infinite order and

satisfies o9(f, z0) = n, where zy is an essential singular point for f.

Theorem 4.4 Let n € N\{0}, k > 2 be an integer, Aj(z) and a;j(j =0,....,k—1)
satisfy hypotheses of Theorem 4.2 or those of Theorem 4.3 Let F' % 0 be an
analytic function in C\{z} of order o = o(F,z) < n. Then every solution
[ of equation (3.2) that is analytic in C\{20} is of infinite order and satisfies
oo(f, z0) = n, with at most one exceptional analytic solution fy of finite order in

C\{20} , where zy is an essential singular point for f.
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2 Proof of Main Results

Proof of Theorem 4.2 Assume that f is a non constant analytic solution in
C\{z0} of equation (3.1), where z; is an essential singular point for f.
By Lemma 3.1, there exist a set Ey C (0, 1) of finite logarithmic measure and a
constant A\ > 0, such that for all r = |zy — z| satisfying r ¢ F1, we have

£9(2)
’ f(2)

For each sufficiently small |zg — z| = 7, let 2, = 25 — re’" be a point satisfying

‘f(zr)| = MaxX|,,—z|=r |f(Z)’

By Lemma 3.5, there exist a constant 6, > 0 and a set £y C (0,1) of finite

Mer 0] G = 1) (4.1

<

logarithmic measure, such that for all z satisfying |29 — 2| =7 ¢ Ey, r — 0 and
arg(zo — z) =0 € [0, — 9,,0, + 0], we have

‘f{JgZ)’ <ol (j=1,..k). (4.2)

Set
H=1{6 €10,2r) :cos(¢p+nd) =0 }.

For any given 6 € [0, — 0,,0, + §,] \ H, we have

cos(¢p+nb) >0 or cos(¢p+nd) <O0.

Case 1. cos(¢ + nf) > 0. Thus by Lemma 3.6, for any given (0 < 2e < 2812),

for all z satistying |20 — 2| =7, 7 — 0 and arg(zp —2) =60 € [0, — 6,,0,+ 0, \ H,

we have

As(2) exp{(zoa_sz)n} > exp{(l — 5)ds cos(;i—kn@)} (4.3)
and
a@en {2 Y <ewfarag =0 G2 ay
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By (3.1), it follows that

g ¥ (2) k-1 a; fUl(2)
—Ag(z) exp { (0 — Z)”} = f(s)(z) + j:%rl Aj(Z) exp { (20 — Z)"} f(g)(z)
S e 9E) )
+]§) A=) exp { (20 — Z)n} f(z) fO(2) (+5)

Substituting (4.1), (4.2), (4.3), (4.4) into (4.5), for all z satisfying |20 — z| =7 ¢
FiUE;, r—0andargz=0¢€ [0, — 9,0, + 6]\ H, we obtain

ds cos(¢ + ne)} d cos(¢p + nb) \ {TZO(ar, f)]%

T T

exp {(1—¢) < Mir*exp{(1+e¢)

(4.6)
where M;(> 0) is a constant. Hence by (4.6), we obtain o(f, 2y) = 400 and

oo(f, z0) > n. On the other hand, by Lemma 3.7, we have o5(f, z9) < n. Hence

oo(f,20) = n.

Case 2. cos(¢ + nf) < 0. We use the same reasoning as in the case 1 by
replacing Ag(z) exp {(206172)”} by A;(z) exp {%a_ilz)n} to prove that o(f, zy) = +00

and oy(f, z0) > n. From this and Lemma 3.7, we have oy(f, z0) = n.

Proof of Theorem 4.3 Assume that f is a non constant analytic solution in
C\{z} of equation (3.1), where 2 is an essential singular point for f.
By Lemma 3.1, there exist a set £y C (0, 1) of finite logarithmic measure and a
constant A > 0, such that for all r = |2y — z| satisfying r ¢ E;, we have (4.1).
For each sufficiently small |2y — z| = r, let z, = 2y — re'® be a point satisfying
£ ()] = maxiey e 1£(2)]
By Lemma 3.5, there exist a constant 6, > 0 and a set £y C (0,1) of finite
logarithmic measure, such that for all z satisfying |29 — z| =7 ¢ Ey, r — 0 and
arg(zo — z) =0 € [0, — 0,,0, + 0,], we have (4.2).
Set

Hy = U'Z{{0 € [0,27) : 6,,(0) = 0}
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and
Hy = U1§s<d§m{0 - [O, 27T) : 5as(9) = 5ad(9)}.

For any given 6 € [0, — 0,,0, + §,] \ (H1 U Hs), we have

04,(0) 0 (7 =0,....,k = 1), 0q,(0) # d0,(0) (1<s<d<m).

Since a;, (j = 1,...,m) are distinct complex numbers, then there exists only one
t € {1,...,m}, such that

0 = 0q,,(0) = max{éaij 0):5=1,...,m}.

For any given 0 € [0,—0,,0,+0,]\ (H1UH>), we have d,, (#) >0 or 4, () <O0.

Case 1. 6 > 0. For [ € {0,....k — 1} \ {i1,...,in}, we have q = cgit)ait
or a; = CZ(ZS)C%S s # t.
Hence for [ € {0,....;k — 1} \ {i1,...,im}, we have §;(6) < ;.

Set § = max{d4,(0) : j # is}, thus § < d;.

Subcase 1.1. § > 0. Thus, by Lemma 3.6, for any given (0 < 2e < gz;g), for all

z satisfying |20 — 2| =7, 7 — 0 and arg(zy—2) =0 € [0, —6,,0,+6,] \ (H1 U H2),

we have

Ay (2) exp {(ZO“_Z)}] > exp {(1 - g)ii} (4.7)
" Ao { ol <ew {0+ AN (48)
We can rewrite (3.1) as
e ) = a2, el i
+j§:j: A e { sz)n}f ;ES) f{;()z()z) (4.9)



Substituting (4.1), (4.2), (4.7), (4.8) into (4.9), for all z satisfying |2y — z| = 7,
r — 0 and arg(zg — z) =0 € [0, — 9,,0, + 6,] \ H1 U Hy, we obtain

O 11, (ar, f)12k

rn r

exp {(1 — 5);5;} < Mor'texp {(1 +¢) (4.10)

where Ms(> 0) is a constant. Hence by (4.10), we obtain o(f,2y) = +oo and
oo(f,29) > n. On the other hand, by Lemma 3.7, we have o5(f, 29) < n. Hence

O'Q(f, Zo) =nNn.

Subcase 1.2. 6 < 0. By Lemma 3.6, for any given £(0 < 2¢ < 1), for all z
satisfying |20 — z| = r,r — 0 and arg(zp — 2) =0 € [0, — 0,,0, + 6, \ (H1 U Hy),
we have (4.7) and

a;

(=) exp { S <ep{- 5)&“;9} <1 (j#i) (4.11)

(20 — 2)
Substituting (4.1), (4.2), (4.7), (4.11) into (4.9), for all z satisfying |zy — z| =
r,r — 0 and arg(zo — 2) =60 € [0, — 6,,0, + 6,]\ ¢ Hy U Ho, we obtain

T, (ar, f)i2k
=)

exp {(1 — 5);5;} < Myr' : (4.12)

where Mj(> 0) is a constant. Hence by (4.12), we obtain o(f,2y) = +oo and
o2(f,29) > n. On the other hand, by Lemma 3.7, we have o5(f, 29) < n. Hence

O'Q(f, Zo) =nNn.

Case 2. §; < 0. Setc = min{cl(ij) 1€ {0,....k—=1}\{i1,...,in} and j=1,..m}.
By Lemma 3.6, for any given (0 < 2¢ < 1), for all z satisfying |zg—z| = r,7 — 0
and arg(zg —z) =0 € [0, — 9,,0, + 6, \ (H1 U Hy), we have

05t

\Aj(z) exp {“J)H <exp{(1- g)w} (j=0,.k—1). (4.13)

(20—2
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By (3.1), we get

1 _ ) ex ag_1 f(k—l)(z) f(Z) 2 ex ap f(Z)
1= Ap1(2) p{(zo _ Z)n} F(2) f(k)(z)+...+A0( ) p{(zo _ z)n}félz(ﬁ))

Substituting (4.1), (4.2), (4.13) into (4.14), for all z satisfying |20 — 2| = 7,7 — 0
and arg(zp — z) =0 € [0, — 9,,0, + 9,] \ (H1 U Hy), we obtain

copy 1 (ar, f)12k

rn T

1 < MyrFexp{(1+e) (4.15)

where My(> 0) is a constant. Hence by (4.15), we obtain o(f, zp) = +00 and
o9(f,20) > n. On the other hand, by Lemma 3.7, we have o5(f, 29) = n.

Proof of Theorem 4.4 First we show that (3.2) can possess at most one ex-
ceptional analytic solution fy of finite order in C\{z}.

In fact, if f* is another analytic solution in C\{zo} of finite order of equation
(3.2), then fy — f*(# 0) is an analytic solution in C\{zy} of finite order of the
corresponding homogeneous equation of (3.2). This contradicts Theorem 4.2 and
Theorem 4.3.

We assume that f is an infinite order analytic solution in C\{z} of equation
(3.2). By Lemma 3.10 , o9(f, 29) < n.

By Lemma 3.1, there exist a set £y C (0, 1) of finite logarithmic measure and a
constant A > 0, such that for all z satisfying |29 — z| = r ¢ Ej, we have (4.1).
For each sufficiently small |2y — z| = r, let z, = 2y — re'® be a point satisfying
£ ()] = maxpy—sjr |F2)]

By Lemma 3.5, there exist a constant 6, > 0 and a set E; C (0,1) of fi-
nite logarithmic measure such that for all z satisfying |zg — z| = r ¢ E; and
arg(zo — z) =0 € [0, — 0,,0, + 0,], we have (4.2).

Since | f(z)| is continous in |zg — z| = r, then there exists a constant A\, > 0 such
that for all z satisfying |29 — 2| = r sufficiently small and arg(zy — 2) = 0 €
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[0, — A\, 0, + N\, we have

1 3
S < £ < S1F Gl (4.16)

On the other hand, for any given (0 < 2¢ < n — o), there exists ry > 0, such
that for all 0 < r = |29 — z| < 19, we have

1
|F(z)] < exp{ra%}. (4.17)
Since M, (r, f) > 1 as r — 0, it follows from (4.16) and (4.17) that
F(z)
‘f(z)’§2eXp{r”+€} as r— 0. (4.18)

Set v = min{J,, A\, }.
(i) Suppose that a;(j =0, .., k — 1) satistfy hypotheses of Theorem 4.2.

Case 1. cos(¢ + nf) > 0. From (4.1), (4.2), (4.7), (4.8), (4.18) and (3.2),
for all z satisfying |20 — 2| = r ¢ E1 U Ey, v — 0 and arg(zg — 2) = 6 €
0, —,0, +~]\ H(H is defined above), we obtain

ds cos(¢ + nb) } <

Tn

exp {(1 —¢€)

deos6 + O\ Tufor [Y -y

1
Byr® exp{w}exp{(l +¢) . .

where By(> 0) is a constant. From (4.19), we get 02(f, 29) > n. This and the
fact that oo(f, 20) < n yield o9(f, z9) = n.

Case 2. cos(¢ + nf) < 0. We use the same reasoning as in the case 1 by
replacing Ag(z) exp{(zﬁiﬁz)n} by A;(2) exp{ﬁ} to prove that os(f, 29) > n.

This and the fact that oo(f, 20) < n yield oa(f, z9) = n.
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(ii) Suppose that a;(j =0, .., k — 1) satisfy hypotheses of Theorem 4.3.
Since a;, (j = 1,...,m) are distinct complex numbers, then there exists only one
t € {1,...,m} such that

0t = 0q,,(0) = max{d,, (0) : j = 1,...,m}.

For any given 0 € [0, —~,0,+~]\ (H1UH,), where H; and H, are defined above,
we have

04, (0) >0 or 4, (0) <O0.

Case 1. 6 > 0. Forl € {0,...,k — 1} \ {i1,....,%m}, we have a; = cl(it)ait
or a; = cl(zs)ais s # t.
Hence for [ € {0,....,k — 1} \ {i1,...,%m }, we have &; < ;.

Set § = max{d,,(0) : j # i} thus d <.

Subcase 1.1. § > 0. From (4.1), (4.2), (4.7), (4.8), (4.18) and (3.2) for all 2
satisfying |zg — z| = r, r — 0 and arg(zp — 2) = 0 € [0, — 7,0, +~] \ Hy U Hy, we
obtain
2%
exp {(1 — 5);5;} < Boyr'texp {7"714“9} exp {(1 + 5)3} {TZO(O;T’f)] : (4.20)
where By(> 0) is a constant. Hence by (4.20), we obtain that oo(f, z9) > n.
This and the fact that oo(f, 20) < n yield oa(f, z9) = n.

Subcase 1.2. ¢ < 0. From (4.1), (4.2), (4.7), (4.13), (4.18) and (3.2) for all
z satisfying |z — z| =7, r = 0 and arg(zg — 2) =0 € [0, — 7,0, + 7] \ H1 U Ho,
we obtain

515 it 1 TZo (CW’, f) 2k
exp {(1—¢) 7} < Byr eXp{TU+eH ; |
where B3(> 0) is a constant. Hence by (4.21), we obtain that oo(f, 29) > n.
This and the fact that oo(f, 20) < n yield oa(f, z9) = n.

(4.21)
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Case 2. 40, < 0. Set ¢ = min {cl(ij> 1 e{0,..,k—1}\{i1,....,in} and j =

1,.. m}
From (4.1), (4.2), (4.13), (4.18) and (3.2) for all z satisfying |zg — z| =r, 7 — 0
and arg(zo —z) =0 € [0, — 7,0, + ] \ (H1 U Hy), we obtain

cop) 11 (ar, f)12k
H()} |

— 4.22
S (4.22)

1 < Byr¥exp {7°‘71+5} exp {(1 +¢)

where By(> 0) is a constant. Hence by (4.22), we obtain that oo(f, z9) > n.
This and the fact that oo(f, 20) < n yield oa(f, z9) = n.
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Chapter 5

Growth of Solutions of Higher
Order Linear Difterential

Equations with Solutions of

Another Equation as Coefficients

1 Introduction and Main Results
For the linear differential equation:
"+ AR)f"+ B(2)f =0, (5.1)

where A(z) and B(z) (# 0) are entire functions, it is well-known that each so-
lution of the equation (5.1) is an entire function. If B(z) is transcendental and
f1, fo are two linearly independent solutions of the equation (5.1), then at least
one of fi, fo must have an infinite order. Hence, most solutions of the equation
(5.1) have infinite order. On the other hand, there are equations of the form (5.1)
that possess a solution f(z£ 0) of finite order, for example, f(z) = e* satisfies
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f +e*f —(e7*+1)f = 0. Thus, a natural question is : What conditions on
A(z) and B(z) will guarantee that every solution f(# 0) of equation (5.1) has
an infinite order ? There are many results in the literature about the order of
growth of solutions of (5.1), see [10, 19, 21, 27, 31].

The following result is a summary of results derived from Gundersen [21], Heller-
stein, Miles and Rossi [27], and Ozawa [44].

Theorem 5.1 Suppose that A(z) and B(z) are entire functions satisfying one of

the following conditions :
(i) o(A) < o(B).
(1i) A(z) is a polynomial and B(z) is a transcendental entire function.

(117) 0(A) < o(B) <

D=

Then every non-trivial solution of (5.1) is of infinite order.

By Theorem 5.1, the main problem left to consider is whether every non-trivial
solution of (5.1) has infinite order if 0(A) = o(B) or if o(B) < o(A) and
g(A) > % In general, the conclusion is false for these situations, for example,
f(2) = exp(P(z)) satisfies the equation

J'+ AR+ (=P = (P)? = A(2)P) f =0,

where A(z) is an entire function and P(z) is a non-constant polynomial. For
the case of 0(B) < o(A) and o(A) > 1, there are also some examples listed
in [21] showing that a non-trivial solution of equation (5.1) has a finite order.
Therefore, it is interesting to find conditions on A(z) and B(z) guaranteeing
that every non-trivial solution of (5.1) is of infinite order. Many parallel results
obtained after Theorem 5.1 focus on the case o(A) > o(B) and ¢(A) > 3 and
can be founed in [10, 34, 35, 37, 38, 39, 49, 51].

64



Recently, this problem was studied using a new idea that a coefficient of (5.1) is
a non-trivial solution of the following equation

W'+ P(2)w =0 (5.2)

where P(z) = a,z" + ... + ag, a, # 0,a, # 0, see for example [36, 40, 50, 51].
The following result shows that the idea is viable.

Theorem 5.2 [50] Let A(z) be a non-trivial solution of (5.2) and let B(z) be a
transcendental entire function with o(B) < % Then every non-trivial solution
of (5.1) is of infinite order.

Now a new idea is used to study the growth of solutions of (5.1), in which two
coefficients of (5.1) are non-trivial solutions (5.2). In [41], the authors proved
the following result:

Theorem 5.3 Suppose that A(z) and B(z) are two linearly independent solutions
of (5.2). If the number of accumulation rays of the zero sequence of A(z) is less

than n+2, then every non-trivial solution of (5.1) is of infinite order.

The next result in [41] shows that two coefficients of (5.2) are non-trivial solutions
of (5.3) and (5.4) respectively

W'+ Q1(2)w =0 (5.3)
W + Q2(2)w = 0, (5.4)
where Q1(2) = ap2" + ... + ap,a, # 0, Q2(2) = by2™ + ... + by, by, # 0.

Theorem 5.4 Suppose that A(z) and B(z) are non-trivial solutions of (5.3) and
(5.4) respectively. Suppose that A(z) and B(z) satisfy one of the following con-
ditions:

(i) m > n.
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(1)) m < n.

(i1i) m = n, arga, # argb,,, the number of accumulation rays of the zero
sequence of A(z) is less than n + 2.

(iv) m =n, and a, = cb,,, where 0 < ¢ < 1.
Then every non-trivial solution of (5.1) is of infinite order.

The main purpose of this chapter is to generalize the results in Theorems 5.3,

5.4 to the higher order linear differential equation
FO 4 A (2) f*5 D 4+ Ag(2)f =0, (5.5)

where k£ > 2 is an integer and Aj_1(2),..., Ag(z) # 0 are entire functions. We
will prove the following results :

Theorem 5.5 Let k > 2 be an integer and let AO( ), A1(2), ..., Ap_1(2) be entire
functions. Suppose that there exists s € {1, ...,k — 1} such that Ag(z) and As(z)
are two linearly independent solutions of (5. 3) and forj #0,s, 0(A;) < o(Ao).
If the number of accumulation rays of the zero sequence of Ag(z) is less than

n+ 2, then every non-trivial solution of (5.5) is of infinite order.

Theorem 5.6 Let k > 2 be an integer and let Ay(2), A1(2), ..., Ak_1(z) be entire
functions. Suppose that there exist s,d € {1,...,k—1} such that As(z) and Aq(z)
are two linearly independent solutions of (5.3) and Ay(2) is a non-trivial solution
of (5.4) such that max{c(A;) : j # 0,s,d} < g(Ap) . Suppose that Ay(z) and
As(z) satisfy one of the following conditions:

(i) m > n.

(1)) m < n.
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(11i) m = n, arga, # argb,,, the number of accumulation rays of the zero

sequence of Ag(z) is less than n + 2.
(iv) m =n, a, = cby,, where 0 < c < 1.

Then every transcendental solution of (5.5) is of infinite order.

2 Auxiliary Results

Lemma 5.1 [20] Let f be a transcendental meromorphic function of finite order
o(f), Let e > 0 be a given real constant and let k and j be two integers such that
k> j > 0. Then the following statement hold.

(1) There exists a set Fy C [0,2m) that has linear measure zero, such that if
Wy € [0,2m) — Ey, then there is a constant Ry = Ry(vo) > 1 such that for all z
satisfying arg z = 1y and |z| > Ry,

(k) .
J2E) et tee) (5.6)

(11) There ezists a set Ey C (1,400) that has finite logarithmic measure, such
that for all z satisfying |z| ¢ E2 U [0, 1], the inequality (5.6) holds.

The following Lemma, originally due to Hille is curcial for the proof of our results:

Lemma 5.2 [22, 28, /6] Let A(z) be a non-trivial solution of w" + P(z)w = 0,
where P(z) = ap,2" + ... + ag,a, # 0. Set 0; = zﬂ_naijg(a) and S; = S(0,0,41),
where j = 0,1,....,n 4+ 1 and 0,42 = 0y + 2w. Then A(z) has the following

properties :

(1) In each sector S;, A(z) either blows up or decays to zero exponentially.
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(ii) If for some j, A(z) decays to zero in S;, then it must blow up in S;_y and

Sjt1. However it is possible for A(z) to blow up in many adjacent sectors.

(i11) If A(z) decays to zero in S;, then A(_z) has at most finitely many zeros in
any closed sub-sector within S;_1 U S; U Sji1.

(w) If A(z) blows up in Sj_; af&d S;, then for each € > 0, A(z) has infinitly
many zeros in each sector S(6; —e,0; + €) and furthermore, as r — 400,

n+2
2
Y

G 2y/|an|
n<5(9j —e.0j+e7), 0,A> =(1+ 0(1))7r(n+2)7’
where n(S(ej —¢&,0; + €,T),O,A) is the number of zeros of A(z) in the
region S(0; — ¢,0; + &,7) counting multiplicity.

Remark 5.1 [/1] It follows from definition 1.9 and Lemma 5.2 that the number
of accumulation rays of the zero sequence of every non-trivial solution of (5.2)
is less than or equal to n + 2, and the set of the accumulation rays of the zero
sequence of every non-trivial solution of (5.2) is a subset of {0; : 0 < j <n+1},

where 6; = m;fijg(m,j =0,1,....,n+1.

Lemma 5.3 [18] Let A(z) be defined as in lemma 5.2. Then the following equality
holds:

2 ’an‘ n+2
——r 2, asT —> +00
n—+ 2

Lemma 5.4 [33] Let 01 < 0y be given to fix a sector S(0) : 6 < argz < 0o, let
k > 2 be a natural number, and let 6 > 0 be any real number such that kd < 1.
Suppose that Ay(2), ..., Ag—1(2) with Ag(z) £ 0 are entire functions such that for

real constants o > 0, 5 > 0, we have, for any some s=1,....k —1

log M(r, A) = (14 0(1))

[As(2)] = exp((1+ )al2]")

68



and

|4;(2)| < exp(dalz|”)
forallj=0,....,s —1,s+1,....k — 1 whenever |z| =r > rs in the sector S(0).
Given € > 0 smal enough, iof f is a transcendental solution of finite order o < oo
of the linear differential equation (5.5), then the following conditions hold:
(i) There exists t € {0,...,s — 1} and a complex constant by # 0 such that
f® = b, as z — 400 in the sector S(e) : 0+ < argz < 0, —e. More precisely,

[FO(2) = be| < exp(—(1 = kd)alz|")

in S(e), provided |z| is large enough.
(ii) For each integer q > t+1,

[f9(2)] < exp(—(1 — kd)alz|")
in S(3e), for all |z| large enough.
Lemma 5.5 [33] Suppose that f(z) is an entire function, and that |f*)(z)| is

unbounded on a ray argz = 6. Then there exists a sequence z, = rpe’ tending
to infinity such that f*)(z,) — +oo and that

1

< G+ ol

‘f(i)(zn)
provided 1 < k.

3 Proof of Main Results

Proof of Theorem 5.5 Suppose on the contrary to the assertion that there exists

a non-trivial solution f of (5.5) with o(f) < oo, we aim for a contradiction.

2jm—arg(ay) and

Using Lemma 5.2 and the condition of Theorem 5.5, set 0; = ===
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Sj={z:0; <argz <011}, =0,...,n+1, 0,90 =0+ 27,

By the condition of Theorem 5.5 and the definition of accumulation rays of the
zero sequence of meromorphic functions, we know that p(As) > 2. It follows
from Lemma 5.2 that there exists at least one sector of the n + 2 sectors, such
that A(z) decays to zero exponentially, without loss of generality, say S;, = {z :
0, <argz <41}, 0 < jo <n-+1. That is for any 6 € (6;,,0,,+1),

~ loglog |AS(7laei9)‘ n+ 2
lim = )
r—00 10g r 2

(5.7)

Next we claim that it is impossible that both As(z) and Ay(z) decay to zero
exponentially in a common sector. To prove our claim, without loss of generality,
we suppose that A,(z) and Ay(z) decay to zero exponentially in Sy. Set h = i—;.
It follows from ([18], Lem.3) that as r — 400,

1 2y/]an|

N(r, m) =(14+o(1)T(r,h) =(1+ 0(1))7#,

holds for any b € C, with at most finitely many exceptions, where v = "T” Set
w= As;—bA. It is easy to see that w is a solution of (5.2). It follows from ([18],
Thm.3) that

Nir ) = Nir, 1) = (14 (1) 22— 2

|an|r®,

as r — 4o00. Combining the two equalities mentioned above, we get p(w) = 0.
Thus implies that w blows up exponentialy in every sector S;, j =0,1,...,n+ 1.
This contradicts the assumption that w decay to zero exponentially in .Sy. Hence,

Ay(z) blows up exponentially in S;,, that is, for any 6 € (6;,,0;,+1),

. loglog|Ag(re®)|  n+2
lim = :
r=00 log r 2

(5.8)

By Lemma 5.1, there exists a set £y C [0, 27) that has linear measure zero, such
that if ¢y € [0,27) — E}, then there is a constant Ry = Ry(t9) > 1 such that for
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all z satisfying arg z = 1y and |z| > Ry,

F0(2) D, §=1,..,k (5.9)

Let € € (0,0(Ap)/2) be a given constant. Since o(A4;) < o(Ap) for all i # 0, s
and 0 <17 < k — 1, then there exists an R; > 1 such that

|Ai(2)] < exp(r’® %) (5.10)

for all |z] =7 > R;.

Thus, there exists a sequence of points z; = re?’, where r; — 400 as [ — 400
and 0 € (6,,,0;,+1) — E1, such that (5.7),(5.8) and (5.9),(5.10) hold. Combining
(5.7)-(5.9), (5.10) and (5.5), for any [ > lj,

n2 e i0
exp(r; 2 ) < |Ao(re”)]

AGED fO (re)
< ]+ S St
f(re e
o 1 n+2
Sr?”(l+wg+<k—2)exp( ).
exp(r;® )
Obviously, that is a contradiction for sufficiently large [ and for any given € > 0.

Hence the conclusion of Theorem 5.5 holds.

Proof of Theorem 5.6 Suppose the contrary to the assertion, that there ex-

ists a non-trivial solution f of (5.5) with o(f) < oo, we aim for contradiction.

It follows from ([3], Thm.1) that o(A4,) = %2 and o(4y) = 2.

(1) Suppose that the condition (i) holds.

Then max{c(4;):i=1,....k — 1} < o(Ap). Therefore, the conclusion of Theo-
rem 5.6 is deduced from [13].

(2) Suppose that the condition (ii) holds. Set

27m — arg by, .
Fa,=1{0;€10,27) : 0; = ]m—l—Zg b =01 m
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2w —argay

FAS:{eje[o,zn):ej_ } j=0,1,...n+1.

n+2

the ray argz =6 :

(a) Ag(re) satisfies

. loglog |[Ay(re®)|”t  n 42
lim =
r—-+00 log r 2

and Ay(re) satisfies

. loglog |Ag(re®®)|  m 42
lim =
r—-+00 logr 9
(b) Ay(re) satisfies (5.11) and Ay(re') satisfies

loglog [Ag(re™)|™t  m+2

r—+00 logr 2
(c) As(re”) satisfies

. loglog |Ay(re)] n+2
lim =
r—+00 ]Og T 2
and Ag(re?) satisfies (5.12).

(d) Ay(re') satisfies (5.14) and Ay(re') satisfies (5.13).

By Lemma 5.1, there exists a set £, C [0, 27) that has linear measure zero, such
that if 1 € [0,27) — E, then there is a constant Ry = Ry(¢g) > 1 such that for
all z satisfying arg z = 1y and |z| > Ry, (5.9) holds. Set £ = E; U Fy, U Fy,.
Then for any 6 € [0,27) — E, Ay(2), As(z) have four possible growth types on

(5.11)

(5.12)

(5.13)

(5.14)

(a) If Ay(re”?) and Ag(re) satisfy the growth type (a), then using similar

reasoning as in the proof of Theorem 5.5, we get a contradiction.
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(b”) Suppose that A,(re?’) and Ay(re') satisfy the growth type (b). Suppose
that |f(¥(z)| is unbounded on the ray argz = #. Using Lemma 5.5, there
exists an infinite sequence of points 2, = 1€ tending to infinity such that
f@(z) — 0o and

(i) .
‘;@((Z;‘ <= +o()|a|™, i=0,1,..,d—1 (5.15)
as [ — 4o0.

By Lemma 5.1, there exists a set £, C [0, 27) that has linear measure zero, such
that if ¢y € [0,27) — Ey, then there exist a constant Ry = Ry(ty) > 1 such that
for all z satisfying arg z = vy and |z| > Ry, we have (5.9).

It follows from the proof of Theorem 5.5 that A4(z) blows up exponentially, that

is on the ray arg z = 0, we have

. loglog |A4(re®®)| n+2
lim =
r—-+o0 log r 2

It follows from (5.5), (5.9), (5.10) and (5.15) that

m2—e i0
exp{r;* "} < |Ag(re”)] <

f(k) 2 f(z i f(k—l) 5 £z
‘ f(,il)l) Hf(d()(;)l)‘ + |Ap-1(re 9)\‘ f(z;) ) Hf(d()(lz)z)‘ + ...

ot \As(mew)”f;ES)Z)Hf{d()?;)‘ oo [Ag(rie™) |

o 1 1 nt2_ o
M17°Zd+2 m(l + AoV TE + ——— + (k — 3) exp{r;? })
exp{r; "} exp{r;’ E}

Where M;(> 0) is a constant. That is a contradiction for sufficiently large [ and

o(A
for € € (O, (2‘1)

by Phragmén-Lindelof principle.

). Hence |f@(z)| must be bounded in the whole complex plane
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(¢) Suppose that A,(re”) and Ay(re’) satisfy the growth type (c). From

Bank and Laine’s results ([3], Thm. 1) we get o(4,) = "2 > ™2 = 5(4),

there exists a real number [ > 0, such that o(A,) = 2 > B2 > m42 — 5(4),

Then for any given € € (0, g;755) and 1 € (0, M

’rL-2|-2 _n}

), we have

[As(2)] > exp {(1+ 6)al2
and
| A0(2)] < exp {27401 < exp {27421 < exp {5arl2| ")

as z — +oo in 3(%) ={z:0;+5 <argz <0, —5},7=0,1,...,n+ 1, where

a and ¢ are positive constants satisfying 6k < 1 and 0; = %T;aijg;(%)'

On the other hand, it follows from the proof of Theorem 5.5 that A(z) decays

2jm—arg(ay,)

n+2 and

to zero exponentialy in S; = {z : 0; < argz < 6;1},6; =
0,10 = 0y + 2w, that is for the arg z = 6, we have

loglog |Aq(re®)|™t  n+42

lim
r—+00 logr 2
Hence 1
[ Aglre®)] <

< exp {5a|z\n32_5}
n+27€
exp{\z| 2 }

we have also

n+2

|Ai(2)] < exp {\Z|U(A°)+"} < exp {|z|“(‘45)_2’7} < exp {504\z|2_€}, i1 #0,s,d
By Lemma 5.4 |, there exists t € {0,1,..,s — 1} and b; # 0 such that
F9(2) = bl < exp{ = (1= kd)al2|F 7}
as z — +oo in Sj(e). For each integer i >t + 1,

’f(l)(2)| < eXp{ — (1 _ k5)0¢|z‘nz+2_77}
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as z — +oo in S;(%).
Hence |f®)(2)| must be bounded in the whole complex plane by Phragmén-
Lindelof principle.

(d”) Suppose that A,(re) and Ag(re?) satisfy the growth type (d). Suppose
that | f*)(2)| is unbounded on the ray arg z = 6. Using Lemma 5.5, there exists
an infinite sequence of points 2z = r;e tending to infinity such that f() (2) = o0

and
1

f
<
Gl < 6o
as | — 4o0.
It follows from the proof of Theorem 5.5 that Ay4(z) decays to zero exponentially,

(T+o(W)|zl*", i=0,1,..,5—1 (5.16)

that is on the ray arg z = 6, we have

. loglog |[Ag(re?)|"*  n+2
lim —
r—+00 logr 2

It follows from (5.5), (5.9), (5.10) and (5.16) that

exp{r;? "} < [Au(ne)] <

'f(k)(Zl)Hf{S()le)l ’HAkl(rlew)wf(’;(j(zz)Hf(s)zlz ’+
)
N e e R NG
M2T7+20(f)(1+eXP{T’zl(AOHE} +exp{7“};2_€} i eXP{TZ_ZE})

as [ — +o00, where M, is a positive constant.

o(A,
(2‘))‘

Hence |f*)(z)| must be bounded in the whole complex plane by Phragmén-

Obviously, this is a contradiction for sufficiently large [ and for ¢ € (0,

Lindelof principle.
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Combining the case of (b’)-(d’), by the Liouville Theorem, f has to be a poly-
nomial. This contradicts with the fact that f is transcendental.

(3) Suppose that the condition (iii) holds.

This implies that the set of accumulation rays of the zero sequence of A4(z) and
Ap(z) are not the same. Then there exists a sector S(a, ) = {2z : a < arg z < 5},
such that for any 6 € (a, §), (5.7) and (5.8) hold. Then using similar reasoning
as in the proof of Theorem (5.5), we get a contradiction, and then the conclusion
is obtained.

(4) Suppose that the condition (iv) holds.

By Lemma 5.1, there exists a set Fy C (1, +00) that has finite logarithmic mea-
sure, such that for all z satisfying |z| ¢ [0, 1] U E5, (5.9) holds.

Since A,(z) and Ay(z) are non trivial solutions of (5.3) and (5.4) respectively,
by Lemma 5.3, as » — 400, the following equalities hold,

|an‘

log M (r, As) = (1 +o(1))—r" (5.17)
o
and
bm
log M (r, Ag) = (1 + 0(1))| |7“O‘ (5.18)
«
Where oo = 2. We choose a sequence of points {z} tending to infinity, |2 =
r, € (1,+00) — Kb, such that
[Ao(z1)| = M (ri, Ao). (5.19)

Combining (5.5) , (5.9), (5.17)-(5.19), as | — 400, we get

exp {(1 + 0(1))mw} = M(ry, Ay)

«

= [Ao(z)]

k—1
< Ja*0(1+ > sl + [As(=2)])
] S
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< |zl|k"(f)<1 + (k —2)exp {rla_g} + exp {(1 +0(1)) Zn‘r?})

This implies that |b,,| < |a,|. This contradicts the condition |b,,| > |a,|. The

conclusion of Theorem 5.6 holds.

7



Conclusion

In this thesis, we have studied the properties of growth of solutions of higher-
order linear differential equations.

We extended some previous results on p-iterated order and p-iterated type of so-
lutions of linear differential equations with entire and meromorphic coefficients.
We have also investigated the hyper-order of analytic solutions of linear differen-
tial equations whose coefficients are analytic near a singular points. The question
here is what about the case when coefficients are meromorphic functions near a
singular point?

Finally, we have considered the growth of solutions of linear differential equations
whose certain coefficients are solutions to another second-order linear differential
equation. The questions that arise are :

What can be the order of growth in the non-homogeneous case?

What can we obtain if we consider the second member in this case as a solution

to another second-order linear differential equation?
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