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Introduction

Nevanlinna Theory is a powerful tool from complex analysis, invented by Rolf Nevan-

linna1 in 1929, it�s used to study the growth and behaviour of meromorphic functions

on the complex plane. The Nevanlinna characteristic function T (r; f) is a measure of a

function�s growth, and its associated counting function estimates how often certain values

are taken. Nevanlinna theory has many applications in complex analysis and in theory of

functions, in particular, it plays an important role in theory of complex di¤erential equa-

tions. Using this tool, as well as other forms of modern complex analysis, we investigate

several problems relating to complex di¤erential equations, such as growth, oscillation, �x

points, etc, of solutions of complex di¤erential equations. The �rst one who made system-

atic studies in the applications of Nevanlinna theory into complex di¤erential equations

was H. Wittich2 beginning from 1942.

In this thesis, we study the growth of solutions for complex di¤erential equations with

entire coe¢ cients of the form

f (k) +
�
Pk�1 (e

�k�1z) +Qk�1
�
e��k�1z

��
f (k�1) + � � �+

�
P0 (e

�0z) +Q0
�
e��0z

��
f = 0

where k � 2 is an integer and Pj(z); Qj(z) (j = 0; : : : ; k � 1) are polynomials in z; �j
(j = 0; : : : ; k � 1) are complex constants. It�s well known that every solution of the

equation above is entire function. We will see that under some hypotheses, all solutions

of this equation are of in�nite order of growth, for that, we use another conceptions to

estimate the growth of solutions of in�nite order, such as the hyper-order �2; e-type order

�e: We call the solution with e-type order equals zero by subnormal solution.

This work is divided into three chapters.

In chapter one, we prepare for the next two chapters by giving the mathematical

1Rolf Herman Nevanlinna (October 22, 1895 �May 28, 1980) was one of the most famous Finnish

mathematicians.
2Hans Wittich (May 4, 1911 �August 1, 1984) was a German mathematician.
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background. We give the fundamental results and standard notations of Nevanlinna theory

of meromorphic functions, and give some lemmas that we need in the next two chapters.

In chapter two, we study the existence of non-trivial subnormal solutions for second-

order linear di¤erential equations,

f 00 +
�
P1 (e

z) + P2
�
e�z
��
f 0 +

�
Q1 (e

z) +Q2
�
e�z
��
f = 0;

where P1(z); P2(z); Q1(z) and Q2(z) are polynomials in z, with degP1 = degQ1and

degP2 = degQ2, and

f 00 +
�
P1 (e

�z) + P2
�
e��z

��
f 0 +

h
Q1

�
e�z
�
+Q2

�
e��z

�i
f = 0;

where P1(z); P2(z); Q1(z) and Q2(z) are polynomials in z: �; � are complex constants. We

show that under certain conditions these di¤erential equations do not have subnormal

solutions, also that the hyper-order of every solution equals one. This chapter is based on

the work of Li and Yang [22].

In chapter three, we investigate the existence of subnormal solutions for a class of

higher order complex di¤erential equations. We generalize the results of chapter two,

because it�s natural to ask if the results in the case of second-order rest true for higher

order. Throughout this chapter, we prove this possibility of the generalization.

University of Mostaganem M. A. Zemirni



Chapter 1

Nevanlinna theory

In this chapter we give the fundamental results and standard notations of Nevanlinna

theory of meromorphic functions, and give some lemmas that we need in the next two

chapters. For more details, see [10, 14, 17, 28].

Throughout this thesis, by meromorphic functions we always mean functions which

are meromorphic in the complex plane (except at places explicitly stated).

1.1 Poisson-Jensen and Jensen formulae

Theorem 1.1.1 (Poisson-Jensen formula, [10, 14]) Let f be a meromorphic func-

tion such that f(0) 6= 0;1 and let a1; a2; : : : (resp. b1; b2; : : :) denote its zeros (resp. poles);

each taken into account according to its multiplicity. If z = rei� and 0 � r < R <1, then

log jf(z)j =
1

2�

Z 2�

0
log
��f(Rei')�� R2 � r2

R2 � 2rR cos(� � ') + r2d'

+
X
jaj j<R

log

����R(z � aj)R2 � ajz

����� X
jbkj<R

log

����R(z � bk)R2 � bkz

���� : (1.1)

Theorem 1.1.2 (Jensen formula, [14, 17]) Let f be a meromorphic function such that

f(0) 6= 0;1 and let a1; a2; : : : (resp. b1; b2; : : :) denote its zeros (resp. poles); each taken

into account according to its multiplicity. Then, we have

log jf(0)j = 1

2�

Z 2�

0
log
��f(rei')�� d'+ X

jbkj<r
log

�
r

jbkj

�
�
X
jaij<r

log

�
r

jaij

�
: (1.2)

Proof. We prove the formula (1.2) when f has no zeros or poles on jzj = r: Denote

g(z) := f(z)
Y
jaj j<r

�
r2 � ajz
r(z � aj)

� Y
jbkj<r

�
r2 � bkz
r(z � bk)

��1
; (1.3)

1



1.2. Nevanlinna characteristic function 2

then g 6= 0;1 in jzj < r and log jg(z)j is a harmonic function. by the mean property of

classical harmonic functions, we have

log jg(0)j = 1

2�

Z 2�

0
log
��g(rei')�� d': (1.4)

Since

jg(0)j = jf(0)j
Y
jaj j<r

�
r

jaj j

� Y
jbkj<r

�
r

jbkj

��1
; (1.5)

we get that

log jg(0)j = log jf(0)j+
X
jaj j<r

log

�
r

jaj j

�
�
X
jbkj<r

log

�
r

jbkj

�
: (1.6)

For z = rei'; we have ���� r2 � ajzr(z � aj)

���� = ���� r2 � bkzr(z � bk)

���� = 1
for all aj ; bk: Then

log
��g(rei')�� = log ��f(rei')�� : (1.7)

Substituting (1.6) and (1.7) in (1.4), we obtain

log jf(0)j+
X
jaj j<r

log

�
r

jaj j

�
�
X
jbkj<r

log

�
r

jbkj

�
=
1

2�

Z 2�

0
log
��f(rei')�� d';

hence, the formula of Jensen.

1.2 Nevanlinna characteristic function
De�nition 1.2.1 (Unintegrated counting function, [17])

a 2 C is given. Let f be a meromorphic function such that f 6� a: Then n(r; a; f) denotes

the number of roots of the equation f(z)� a = 0 in the disk jzj � r; each root according

to its multiplicity. And n(r;1; f) denotes the number of poles of f in the disk jzj � r;

each pole according to its multiplicity.

De�nition 1.2.2 (Counting function, [17])

Let f be a meromorphic function. For a 2 C, we de�ne

N(r; a; f) = N

�
r;

1

f � a

�
:=

Z r

0

n(t; a; f)� n(0; a; f)
t

dt+ n(0; a; f) log r; f 6� a;

and

N(r;1; f) = N (r; f) :=

Z r

0

n(t;1; f)� n(0;1; f)
t

dt+ n(0;1; f) log r:

University of Mostaganem M. A. Zemirni



1.2. Nevanlinna characteristic function 3

Lemma 1.2.1 ([17]) Let f be a meromorphic function with a-points �1; �2; : : : ; �n in

jzj � r such that 0 < j�1j � j�2j � � � � � j�nj � r; each counted according to its

multiplicity. Then Z r

0

n(t; a; f)

t
dt =

Z r

0

n(t; a; f)� n(0; a; f)
t

dt

=
X

0<j�j j�r
log

r

j�j j
: (1.8)

Proof. Denoting j�j j = rj for j = 1; : : : ; n, we obtain

X
0<j�j j�r

log
r

j�j j
=

nX
j=1

log
r

rj
= n log r �

nX
j=1

log rj

=
nX
j=1

j (log rj+1 � log rj) + n (log r � log rn)

=

nX
j=1

rj+1Z
rj

j

t
dt+

rZ
rn

n

t
dt

=

rZ
0

n(t; a; f)

t
dt:

Example 1.2.1

Let f1(z) = ez and f2(z) = eaz (a 2 C) . We know that f1(z) and f2(z) are entire

functions, then they don�t have poles. Hence,

n(r;1; f1) = n(r;1; f2) = 0;

and

N(r; f1) = N(r; f2) = 0:

Proposition 1.2.1 ([17]) Let f be a meromorphic function with the Laurent expansion

f(z) =
+1X
j=m

cjz
j , cm 6= 0, m 2 Z.

Then

log jcmj =
1

2�

Z 2�

0
log
��f(rei')�� d'+N(r; f)�N �r; 1

f

�
:

Proof. Consider the function

h(z) = f(z)z�m , z 2 C

University of Mostaganem M. A. Zemirni



1.2. Nevanlinna characteristic function 4

It�s clear that m = n(0; 0; f) � n(0;1; f) and h(0) 6= 0;1: The functions h and f have

the same poles and zeros in 0 < jzj � r: By the Jensen formula (1.2) and Lemma 1.2.1,

we obtain

log jcmj = log jh(0)j

=
1

2�

Z 2�

0
log
��h(rei')�� d'+ X

jbkj<r
log

�
r

jbkj

�
�
X
jaij<r

log

�
r

jaij

�

=
1

2�

Z 2�

0
log
��f(rei')r�m�� d'

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0
log
��f(rei')�� d'+�m log r

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0
log
��f(rei')�� d'+� [n(0; 0; f)� n(0;1; f)] log r

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0
log
��f(rei')�� d'+N(r; f)�N �r; 1

f

�
:

De�nition 1.2.3 ([10, 14, 17])

For any real number x � 0, we de�ne

log+ x := max(0; log x):

Lemma 1.2.2 ([17]) We have the following properties :

1. log x � log+ x (x � 0):

2. log+ x � log+ y (0 � x � y):

3. log x = log+ x� log+ 1
x
(x > 0):

4. jlog xj = log+ x+ log+ 1
x
(x > 0):

5. log+

0@ nY
j=1

xj

1A �
nX
j=1

log+ xj (xj � 0; j = 1; : : : ; n):

University of Mostaganem M. A. Zemirni



1.2. Nevanlinna characteristic function 5

6. log+

0@ nX
j=1

xj

1A �
nX
j=1

log+ xj + log n (xj � 0; j = 1; : : : ; n):

Lemma 1.2.3 ([10, 14]) For all a 2 C, we have

log+ jaj = 1

2�

Z 2�

0
log
���a� ei���� d�: (1.9)

Proof. Denote f(z) = a � z; and suppose that jaj < 1: By using Jensen formula (1.2)

with r = 1, we obtain

log jaj = 1

2�

Z 2�

0
log
���f(ei�)��� d� � log 1jaj = 1

2�

Z 2�

0
log
���a� ei���� d� + log jaj

hence,
1

2�

Z 2�

0
log
���a� ei���� d� = 0 = log+ jaj :

If jaj � 1; then f has no zeros in the disc jzj < 1. Therefore,

log+ jaj = log jaj = 1

2�

Z 2�

0
log
���a� ei���� d�:

De�nition 1.2.4 (Proximity function, [17])

Let f be a meromorphic function. For a 2 C, we de�ne the proximity function of f by

m(r; a; f) = m

�
r;

1

f � a

�
:=

1

2�

Z 2�

0
log+

1

jf(rei')� ajd'; f 6� a;

and

m(r;1; f) = m (r; f) :=
1

2�

Z 2�

0
log+

��f(rei')�� d':
Example 1.2.2

For the function f1(z) = ez; we have

m(r; f1) =
1

2�

Z 2�

0
log+

��f1(rei')�� d'
=

1

2�

Z 2�

0
log+

���erei'��� d'
=

1

2�

Z �
2

��
2

r cos'd'

=
r

�
:

University of Mostaganem M. A. Zemirni



1.2. Nevanlinna characteristic function 6

And for the function f2(z) = eaz; a = jajei� 2 C, we have

m(r; f2) =
1

2�

Z 2�

0
log+

��f2(rei')�� d'
=

1

2�

Z 2�

0
log+

���erjajei('+�)��� d'
=

1

2�

Z 2�

0
log+

���erjajei ��� d 
=

1

2�

Z �
2

��
2

rjaj cos( )d 

=
rjaj
�
:

De�nition 1.2.5 (Characteristic function, [17])

For a meromorphic function f , we de�ne its characteristic function as

T (r; f) := m(r; f) +N(r; f):

Example 1.2.3

We have

T (r; ez) = m(r; ez) +N(r; ez) =
r

�
+ 0 =

r

�
;

T (r; eaz) = m(r; eaz) +N(r; eaz) = jaj r
�
+ 0 = jaj r

�
:

Theorem 1.2.2 (Cartan, [14]) Suppose that f is meromorphic in jzj < R. Then

T (r; f) =
1

2�

Z 2�

0
N
�
r; ei�; f

�
d� + log+ jf(0)j , (0 < r < R): (1.10)

Proof. By applying the Jensen formula (1.2) for the function f(z)� ei�; we obtain

log
���f(0)� ei���� = 1

2�

Z 2�

0
log
���f(rei')� ei���� d'+N (r; f)�N �r; ei�; f� : (1.11)

We integrate both sides of (1.11) with respect to �; we obtain

1

2�

Z 2�

0
log
���f(0)� ei���� d� =

1

2�

Z 2�

0

�
1

2�

Z 2�

0
log
���f(rei')� ei���� d'� d�

+N (r; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�

=
1

2�

Z 2�

0

�
1

2�

Z 2�

0
log
���f(rei')� ei���� d�� d'

+N (r; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�:

University of Mostaganem M. A. Zemirni



1.3. The �rst main theorem 7

Using (1.9), we deduce

log+ jf(0)j =
1

2�

Z 2�

0
log+

��f(rei')�� d'+N (r; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�

= m(r; f) +N (r; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�

= T (r; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�

hence, the formula (1.10).

1.3 The �rst main theorem

Theorem 1.3.1 (First main theorem of Nevanlinna, [17]) Let f be a meromorphic

function with the Laurent expansion

f(z)� a =
+1X
j=m

cjz
j , cm 6= 0, m 2 Z, a 2 C:

Then, we have

T

�
r;

1

f � a

�
= T (r; f)� log jcmj+ '(r; a) (1.12)

where

j'(r; a)j � log+ jaj+ log 2:

Proof. Assume �rst a = 0: By Proposition 1.2.1 and Lemma 1.2.2(3), we obtain

ln jcmj =
1

2�

Z 2�

0
log+

��f(rei')�� d'� 1

2�

Z 2�

0
log+

1

jf(rei')jd'+N(r; f)�N
�
r;
1

f

�
= m(r; f)�m

�
r;
1

f

�
+N(r; f)�N

�
r;
1

f

�
= T (r; f)� T

�
r;
1

f

�
hence

T

�
r;
1

f

�
= T (r; f)� ln jcmj (1.13)

with '(r; 0) � 0:

Suppose now, that a 6= 0: We de�ne h(z) = f(z)� a; then

N

�
r;
1

h

�
= N

�
r;

1

f � a

�
;

m

�
r;
1

h

�
= m

�
r;

1

f � a

�
;

N (r; h) = N (r; f) :

University of Mostaganem M. A. Zemirni



1.3. The �rst main theorem 8

Moreover,

log+ jhj = log+ jf � aj � log+ jf j+ log+ jaj+ log 2;

log+ jf j = log+ jf � a+ aj = log+ jh+ aj � log+ jhj+ log+ jaj+ log 2:

Integrating these inequalities we see that

m (r; h) � m (r; f) + log+ jaj+ log 2;

m (r; f) � m (r; h) + log+ jaj+ log 2:

We put

'(r; a) := m (r; h)�m (r; f)

satis�es j'(r; a)j � ln+ jaj+ ln 2:

By applying the formula (1.13) for h, we obtain

T

�
r;

1

f � a

�
= T

�
r;
1

h

�
= T (r; h)� ln jcmj

= m (r; h) +N (r; h)� ln jcmj

= '(r; a) +m (r; f) +N (r; f)� ln jcmj

hence, the result.

Theorem 1.3.2 (Nevanlinna, [17]) Let f be a meromorphic function not being identic-

ally equal to a constant. Then, for all a 2 C, we have

T

�
r;

1

f � a

�
= T (r; f) +O(1) as r ! +1:

Proposition 1.3.3 ([17]) Let f; f1; : : : ; fn (n � 1) be meromorphic functions and a; b; c

and d be complex constants such that ad� bc 6= 0: Then

1. T

 
r;

nY
k=1

fk

!
�

nX
k=1

T (r; fk)

2. T

 
r;

nX
k=1

fk

!
�

nX
k=1

T (r; fk) + log n

3. T (r; fm) = mT (r; f) , 8 m 2 N.

4. T
�
r;
af + b

cf + d

�
= T (r; f) +O(1) as r ! +1 , f 6� �d

c :

Theorem 1.3.4 ([17]) A meromorphic function f is rational if and only if T (r; f) =

O(log r):

University of Mostaganem M. A. Zemirni



1.4. Growth of meromorphic functions 9

Lemma 1.3.1 Let P (z) = bnz
n+ bn�1zn�1+ � � �+ b1z+ b0, (n 2 N�) be polynomial with

constant coe¢ cients and f meromorphic function. Then, for the composed function P �f;

we have

T (r; P (f)) = nT (r; f) +O(1):

The Lemma 1.3.1 is a particular case of Theorem due to G. Valiron and A. Mohon�ko,

see [17, Page 29].

Example 1.3.1

Using Proposition 1.3.3 (4) ; we obtain

T (r; aenz + b) = T (r; enz) +O(1)

= n
r

�
+O(1); 8n 2 N�

and,

T (r; cot z) = T
�
r;
cos z

sin z

�
= T

�
r;�ie

iz + e�iz

eiz � e�iz

�
= T

�
r; i

e2iz + 1

e2iz � 1

�
= T (r; e2iz) +O(1)

= 2
r

�
+O(1):

Let P (z) = bnz
n + bn�1zn�1 + � � � + b1z + b0, (n 2 N�) be polynomial, by Lemma 1.3.1,

we have

T (r; P (eaz)) = nT (r; eaz) +O(1)

= njaj r
�
+O(1):

1.4 Growth of meromorphic functions

De�nition 1.4.1 (Order of growth, [14, 17])

Let f be a meromorphic function. The order of growth of f is de�ned by

�(f) := lim
r!+1

log T (r; f)

log r
:

Example 1.4.1

We have

�(eaz) = lim
r!+1

log
�
jaj r�

�
log r

= 1; 8a 2 C.
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1.4. Growth of meromorphic functions 10

By Example 1.3.1,

� (P (eaz)) = lim
r!+1

log
�
njaj r� +O(1)

�
log r

= 1; 8a 2 C.

Theorem 1.4.1 ([10, 21]) Let f; g be nonconstant meromorphic functions. Then

1. �(f + g) � maxf�(f);�(g)g:

2. �(fg) � maxf�(f);�(g)g:

3. If �(g) < �(f) then �(f + g) = �(fg) = �(f):

Theorem 1.4.2 ([14, 17, 21]) Let f be an entire function and assume that 0 < r < R <

+1 and that the maximum modulus M(r; f) = max
jzj=r

jf(z)j � 1: Then

T (r; f) � logM(r; f) � R+ r

R� rT (R; f):

Proof. Since f is entire, we have

T (r; f) =
1

2�

Z 2�

0
log+

��f(rei')�� d' � 1

2�

Z 2�

0
log+M(r; f)d' = logM(r; f):

To prove the second inequality, take z0 = rei� such that M(r; f) = jf(z0)j : Furthermore,

if jzj < R; then ����R(z � aj)R2 � ajz

���� < 1:
Therefore, by applying the Poisson-Jensen formula (1.1), we obtain

logM(r; f) = log jf(z0)j

=
1

2�

Z 2�

0
log
��f(Rei')�� R2 � r2

R2 � 2rR cos(� � ') + r2d'+
X
jaj j<R

log

����R(z � aj)R2 � ajz

����
� 1

2�

Z 2�

0
log
��f(Rei')�� R2 � r2

R2 � 2rR cos(� � ') + r2d'

=
1

2�

Z 2�

0
log
��f(Rei')�� R2 � r2

(R� r)2 + 2rR(1� cos(� � '))d'

� R2 � r2
(R� r)2

1

2�

Z 2�

0
log+

��f(Rei')�� d'
=

R+ r

R� rm(r; f) =
R+ r

R� rT (r; f):

Corollary 1.4.1 ([17, 21]) Let f be an entire function. Then

�(f) = lim
r!+1

log T (r; f)

log r
= lim
r!+1

log logM (r; f)

log r
:
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1.5. Estimates of the logarithmic derivative 11

De�nition 1.4.2 (Hyper-order[17, 21, 28])

Let f be a meromorphic function. The hyper-order of f is de�ned by

�2(f) := lim
r!+1

log log T (r; f)

log r
;

and if f is entire, then

�2(f) = lim
r!+1

log log T (r; f)

log r
= lim
r!+1

log log logM (r; f)

log r
:

Remark 1.4.1 If �(f) < +1, then �2(f) = 0:

Example 1.4.2

Let h(z) = ee
z
; we have T (r; h) � er

(2�3r)
1
2

; as r ! +1: Then

�(h) = +1;

�2(h) = 1:

Y.M. Chiang and S.A. Gao [8] de�ned the e-type order of meromorphic function as

follows :

De�nition 1.4.3 ([8])

Let f be a meromorphic function. The e-type order of f is de�ned by

�e(f) = lim
r!+1

log T (r; f)

r
:

Remark 1.4.2 (i) If 0 < �e(f) < +1, then �2(f) = 1:

(ii) If �2(f) < 1; then �e(f) = 0:

(iii) If �2(f) = +1; then �e(f) = +1:

Example 1.4.3

For all polynomial P; we have �e(P ) = 0; and �e(P (ez)) = 0:

Remark 1.4.3 By Remark 1.4.1 and Remark 1.4.2, we deduce that, every function f of

�nite order satis�es �e(f) = 0:

1.5 Estimates of the logarithmic derivative

The logarithmic derivative has an important role (as we will see) in study of the

complex di¤erential equations. For that, many researchers are interested in problem of

�nding best estimation of the logarithmic derivative, see [12, 14, 17]. For more details

about new estimations for the growth of the logarithmic derivative,we refer to [19, 20].
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1.5. Estimates of the logarithmic derivative 12

De�nition 1.5.1 ([15])

Let E � [0;+1[ be such a set. The linear and the logarithmic measures of E are de�ned

to be

m(E) =

Z
E
dt and lm(E) =

Z
E\]1;+1[

dt

t

respectively. These may be �nite or in�nite.

Theorem 1.5.1 (Nevanlinna�s main estimate of logarithmic derivative, [17]) Let

f be a transcendental meromorphic function. Then

m

�
r;
f 0

f

�
= S (r; f) ;

where S (r; f) = O (log T (r; f) + log r) outside of a possible exceptional set E � [0;+1)

with �nite linear measure. If f is of �nite order of growth, then

m

�
r;
f 0

f

�
= O(log r):

Corollary 1.5.1 ([17]) Let f be a transcendental meromorphic function and k � 1 be

an integer. Then

m

 
r;
f (k)

f

!
= S (r; f) ;

where S (r; f) = O (log T (r; f) + log r) outside of a possible exceptional set E � [0;+1)

with �nite linear measure. If f is of �nite order of growth, then

m

 
r;
f (k)

f

!
= O(log r):

Theorem 1.5.2 ([12]) Let f be a transcendental meromorphic function, and � > 1 be a

given constant. Then there exists a set E � (1;1) with �nite logarithmic measure and a

constant B > 0 that depends only on � and i; j(0 � i < j); such that for all z satisfying

jzj = r 62 E [ [0; 1] �����f (j)(z)f (i)(z)

����� � B

�
T (�r; f)

r
(log� r) log T (�r; f)

�j�i
:

Lemma 1.5.1 ([12]) Let f(z) be a transcendental meromorphic function with �(f) =

� < +1. Let H = f(k1; j1); : : : ; (kq; jq)g be a �nite set of distinct pairs of integers that

satisfy ki > ji � 0; for i = 1; : : : ; q: And let " > 0 be a given constant. Then there exists

a set E 2 [0; 2�) that has linear measure zero, such that if  2 [0; 2�)nE; then there is a
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1.6. Wiman-Valiron theory 13

constant R0 = R0( ) > 1 such that for all z satisfying arg z =  and jzj = r � R0 and for

all (k; j) 2 H, we have �����f (k)(z)f (j)(z)

����� � jzj(��1+")(k�j):
1.6 Wiman-Valiron theory

In this section we just give a short review of basic notions and most important results.

See [17, 15]. Throughout this section, we assume that f is entire function with Taylor

expansion

f(z) =

1X
n=0

anz
n

where (an)n2N is sequence of complex numbers.

De�nition 1.6.1 ([17, 15])

For a given r > 0, we de�ne the maximum term of f by

�f (r) = max
n�0

janj rn;

and we de�ne the central index �f (r) as the greatest exponentm such that jamj rm = �f (r)

i.e. ���a�f (r)��� r�f (r) = maxn�0
janj rn:

Theorem 1.6.1 ([17]) Let f be an entire function of order �(f) = �: Then

� = lim
r!+1

log �f (r)

log r
= lim
r!+1

log log�f (r)

log r
:

Theorem 1.6.2 ([7]) Let f be an entire function of in�nite order with the hyper-order

�2(f) <1 , and let �f (r) be the central index of f . Then

�2(f) = lim
r!+1

log log �f (r)

log r
:

Theorem 1.6.3 (Wiman-Valiron, [15, 24]) Let f be a transcendental entire function,

and let z be a point with jzj = r at which jf(z)j = M(r; f). Then for all jzj outside a set

E of r of �nite logarithmic measure, we have

f (k)(z) =

�
�f (r)

z

�k
(1 + o(1)) f(z) , (k is an integer; r 62 E)

where �f (r) is the central index of f .
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1.7. Some results about complex di¤erential equations 14

Lemma 1.6.1 ([5]) Let f be an entire function of in�nite order with �2(f) = � (0 � � <

1) and a set E � [1;+1) have �nite logarithmic measure. Then there exists fzk = rke
i�kg

such that jf(zk)j = M(rk; f); �k 2 [0; 2�); lim
k!1

�k = �0 2 [0; 2�); rk 62 E; rk ! 1; and

such that

1. if �2(f) = � (0 < � <1); then for any given "1 (0 < "1 < �);

expfr��"1k g < �f (rk) < expfr�+"1k g;

2. if �(f) = 1 and �2(f) = 0, then for any given "2 (0 < "2 <
1
2) and for any large

M > 0, we have as rk su¢ ciently large

rMk < �f (rk) < expfr"2k g:

1.7 Some results about complex di¤erential equations

In the theory of complex di¤erential equations, the growth of solutions is a very

important property. It is well known that all solutions of the linear di¤erential equation

f (k) +Ak�1(z)f
(k�1) + � � �+A1(z)f 0 +A0(z)f = 0 (1.14)

are entire functions, provided the coe¢ cients A0(z) 6� 0; A1(z); : : : ; Ak�1(z) are entire, see

[16, 17]. A classical result, due to Wittich [26], tells that all solutions of (1.14) are of

�nite order of growth if and only if all coe¢ cients Aj(z); j = 0; : : : ; k�1; are polynomials,

and if some of the coe¢ cients Aj(z); j = 0; : : : ; k� 1 are replaced by transcendental entire

functions, then equation (1.14) has at least one solution of in�nite order, see [9, 17].

There are other conceptions can be applied to get a more precise estimate of the growth

of meromorphic function with in�nite order, such as hyper-order and e-type order. In this

work, we are interested in the case when the solutions of (1.14) are of in�nite order and

the e-type order vanishes.

De�nition 1.7.1 ([11, 25])

If f 6� 0 is a solution of the equation (1:14); and satis�es �e(f) = 0; then we say that f

is a nontrivial subnormal solution of (1:14): For convenience, we also say that f � 0 is a

subnormal solution of (1:14).

Remark 1.7.1 If the equation (1:14) is non-homogeneous,then we de�ne the subnormal

solution as in the previous de�nition.
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1.7. Some results about complex di¤erential equations 15

Now, we consider the di¤erential equation

f 00 +A(z)f 0 +B(z)f = 0 (1.15)

where A(z) and B(z) 6� 0 are entire functions. We have the following results.

Theorem 1.7.1 ([13]) If f 6� 0 is a solution of the equation (1:15) where �(f) < 1,

then as r ! +1;

T (r;B) � T (r;A) +O(log r):

Proof. Suppose that f 6� 0 is a solution of (1:15) where �(f) <1. From (1:15) we have

B(z) = �f
00

f
�A(z)f

0

f
:

From Nevanlinna�s main estimate of logarithmic derivative, we obtain that m(r;B) �

m(r;A) + O(log r); as r ! 1; and because A(z) and B(z) are entire functions, then

T (r;B) � T (r;A) +O(log r); as r !1:

Corollary 1.7.1 ([13]) Let A(z) and B(z) be entire functions where either (i) �(A) <

�(B), or (ii) A is a polynomial and B is transcendental. Then every solution f 6� 0 of

(1:15) has in�nite order.

Proof. (i) Suppose that �(A) < �(B) and �(f) < 1; from Theorem 1.7.1, we have

T (r;B) � T (r;A) +O(log r); therefore �(A) � �(B) which is a contradiction.

(ii) Suppose that A is a polynomial, B is transcendental and �(f) <1; from Theorem

1.7.1, we have T (r;B) � T (r;A)+O(log r): As A is a polynomial, then T (r;A) = O(log r);

hence T (r;B) = O(log r), that means B is a polynomial, which is again a contradiction.

Theorem 1.7.2 ([1]) Let A(z) and B(z) be entire functions of �nite order. If f is a

solution of the equation (1:15), then �2(f) � maxf�(A);�(B)g:

Proof. Set � = maxf�(A);�(B)g: Then for any given " > 0; when r is su¢ ciently large,

we have

jAj � expfr�+"g; jBj � expfr�+"g: (1.16)

From the Wiman-Valiron theory, there is a set F � (1;+1) having logarithmic measure

lm(F ) <1; we can choose z satisfying jzj = r 62 [0; 1] [ F and jf(z)j =M(r; f); then we

get
f (j)(z)

f(z)
=

�
�f (r)

z

�j
(1 + o(1)) ; j = 1; 2; (1.17)
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1.8. Some lemmas and remarks 16

where �f (r) is the central index of f(z): From (1:15) we have

f 00

f
= �A(z)f

0

f
+B(z): (1.18)

Substituting (1.16) and (1.17) into (1.18), we obtain�
�f (r)

r

�2
j1 + o(1)j � expfr�+"g

�
�f (r)

r

�
j1 + o(1)j+ expfr�+"g

where jzj = r 62 [0; 1] [ F and jf(z)j =M(r; f): Therefore,

lim
r!+1

log log �f (r)

log r
� � + ":

Since " > 0 is arbitrary, by Theorem 1.6.2 we have �2(f) � �:

The Theorem 1.7.2 can be generalized to kth order di¤erential equation, as follows :

Theorem 1.7.3 ([4]) Let A0; A1; : : : ; Ak�1 be entire functions of �nite order. If f(z) is

a solution of the equation

f (k) +Ak�1f
(k�1) + � � �+A1f 0 +A0f = 0;

then �2(f) � maxf�(Aj) : j = 0; : : : ; k � 1g:

1.8 Some lemmas and remarks

Lemma 1.8.1 ([17]) Let P (z) = anz
n+an�1zn�1+� � �+a0 be a polynomial with an 6= 0:

Then, for every " > 0; there exists r0 > 0 such that for all r = jzj > r0 we have the

inequalities

(1� ")janjrn � jP (z)j � (1 + ")janjrn:

Proof. The assertion immediately follows from

jP (z)j
janj rn

=

����P (z)anzn

����
=

����anzn + an�1zn�1 + � � �+ a0anzn

����
=

����1 + an�1
an

1

z
+ � � �+ a0

an

1

zn

���� �! 1;

as r �! +1:

Remark 1.8.1 Let P (z); Q(z) be polynomials in z with degP = m;degQ = n;

P (z) = amz
m + am�1z

m�1 + � � �+ a0;

Q (z) = bnz
n + bn�1z

n�1 + � � �+ b0;
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1.8. Some lemmas and remarks 17

where au; bv (u = 0; : : : ;m; v = 0; : : : ; n) are complex constants, ambn 6= 0: For z = rei�

and am = a+ib; we denote �(P; �) := a cos(n�)�b sin(n�): By Lemma 1.8.1, we can obtain

that

��P (e�z) +Q �e��z��� =
8<: jamj em�(�z;�)r(1 + o(1)); (�(�z; �) > 0; r ! +1)

jbnj e�n�(�z;�)r(1 + o(1)); (�(�z; �) < 0; r ! +1)
(1.19)

8� 2 C:

By the estimations (1:19); we obtain

�
�
P (e�z) +Q

�
e��z

��
= 1:

Lemma 1.8.2 ([13, 17]) Let g : (0;+1) ! R and h : (0;+1) ! R be monotone

increasing functions such that g(r) � h(r) outside of an exceptional set E of �nite logar-

ithmic measure. Then, for any � > 1, there exists r0 > 0 such that g(r) � h(�r) holds for

all r > r0.

Proof. Since E is of �nite logarithmic measure, clearly E can contain at most �nitely

many disjoint intervals of the form [r; �r] for r � 1, it follows that there exists an r0 > 0,

such that for any r > r0, the interval [r; �r] must contain a point t where t 62 E [ [0; 1]:

Then g(r) � g(t) � h(t) � h(�r):

Lemma 1.8.3 ([2]) Let f be an entire function with �(f) = � < +1: Suppose there

exists a set E [ [0; 2�) that has linear measure zero, such that for any ray arg z = �0 2

[0; 2�)nE; we have ���f(rei�0)��� �Mrk;

where M =M(�0) > 0 is a constant and k > 0 is a constant independent of �0; then f is

a polynomial with deg f � k:

Lemma 1.8.4 ([13, 18]) Let f(z) be an entire function and suppose that jf (k)(z)j is

unbounded on some ray arg z = �. Then, there exists an in�nite sequence of points

zn = rne
i� (n = 1; 2; : : : ), where rn ! +1, such that f (k)(zn)!1 and�����f (j)(zn)f (k)(zn)

����� � 1

(k � j)! jznj
k�j(1 + o(1)); (j = 0; : : : ; k � 1):
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Chapter 2

Nonexistence of subnormal

solutions for second order complex

di¤erential equations

In this chapter, we study the existence of non-trivial subnormal solutions for second-

order linear di¤erential equations. We show that under certain conditions some di¤erential

equations do not have subnormal solutions, also that the hyper-order of every solution

equals one. This chapter is based on the work of Li and Yang [22].

2.1 Introduction

The investigation of the existence of subnormal solutions of complex di¤erential equa-

tions has been started by H. Wittich [25].

Wittich has given the general forms of all subnormal solutions of the equation

f 00 + P (ez) f 0 +Q (ez) f = 0; (2.1)

where P (w) and Q (w) are nonconstants polynomials in w = ez (z 2 C), and he proved

the following theorem

Theorem 2.1.1 ([25]) If f 6� 0 is a subnormal solution of (2.1), then f must have the

form

f(z) = ecz(a0 + a1e
z + � � �+ amemz);

where m � 0 is an integer and c, a0; a1; : : : ; am are constants with a0am 6= 0.

18
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Based on the comparison of degrees of P and Q, Gundersen and Steinbart [11] re�ned

Theorem 2.1.1 and obtained the exact forms of subnormal solutions of (2.1) as follows.

Theorem 2.1.2 ([11]) Under the assumption of Theorem 2.1.1, the following statements

hold.

1. If degP > degQ and Q 6� 0, then, any subnormal solution f 6� 0 of (2.1) must have

the form

f(z) = a0 + a1e
�z + � � �+ ame�mz;

where m � 1 is an integer and a0; a1; : : : ; am are constants with a0am 6= 0.

2. If Q � 0 and degP � 1, then, any subnormal solution of (2.1) must be a constant.

3. If degP < degQ, then, the only subnormal solution of (2.1) is f � 0.

In 2007, Chen and Shon [3] studied the existence of subnormal solutions of the general

equation

f 00 +
�
P1 (e

z) + P2
�
e�z
��
f 0 +

�
Q1 (e

z) +Q2
�
e�z
��
f = 0; (2.2)

where P1(z); P2(z); Q1(z) and Q2(z) are polynomials in z, and obtained the following

results.

Theorem 2.1.3 ([3]) Let Pj(z); Qj(z) (j = 1; 2) be polynomials in z: If

degQ1 > degP1 or degQ2 > degP2;

then the equation (2:2) has no nontrivial subnormal solution, and every solution of (2:2)

satis�es �2(f) = 1:

Theorem 2.1.4 ([3]) Let Pj(z); Qj(z) (j = 1; 2) be polynomials in z: If

degQ1 < degP1 and degQ2 < degP2

and Q1+Q2 6� 0, then the equation (2:2) has no nontrivial subnormal solution, and every

solution of (2:2) satis�es �2(f) = 1:

In 2013, Xiao [27] considered the problem about what the conditions that will guarantee

the equation

f 00 + P (e�z) f 0 +Q
�
e�z
�
f = 0; (2.3)

where P (w) and Q (w) are nonconstants polynomials in w = ez (z 2 C) ; �; � are complex

constants, does not have a nontrivial subnormal solution.
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2.2 Main results

Li and Yang [22] raised the following question,

Question. What can be said when degP1 = degQ1 and degP2 = degQ2 for (2.2) ?

To answer on this question, they proved the following theorem.

Theorem 2.2.1 ([22]) Let

P1 (z) = anz
n + � � �+ a1z + a0;

Q1 (z) = bnz
n + � � �+ b1z + b0;

P2 (z) = cmz
m + � � �+ c1z + c0;

Q2 (z) = dmz
m + � � �+ d1z + d0;

where ai; bi (i = 0; : : : ; n); cj ; dj (j = 0; : : : ;m) are constants, anbncmdm 6= 0: Suppose

that andm = bncm and any one of the following three hypothesis holds :

1. There exists i satisfying (� bn
an
)ai + bi 6= 0; 0 < i < n:

2. There exists j satisfying (� bn
an
)cj + dj 6= 0; 0 < j < m:

3. (� bn
an
)2 + (� bn

an
)(a0 + c0) + b0 + d0 6= 0:

Then (2:2) has no nontrivial subnormal solution, and every nontrivial solution f sat-

is�es �2(f) = 1:

Example 2.2.1 ([22])

We remark that the equation

f 00 + (e2z + e�z + 1)f 0 + (2e2z + 2e�z � 2)f = 0

has a subnormal solution f0 = e�2z. Here n = 2, m = 1, a2 = 1, b2 = 2, a1 = b1 = 0,

c1 = 1, d1 = 2, a0 + c0 = 1, b0 + d0 = �2, (� b2
a2
) � a1 + b1 = 0, and (� b2

a2
)2 + (� b2

a2
)(a0 +

c0) + b0 + d0 = 0. This shows that the restrictions (i)�(iii) in Theorem 2.2.1 are sharp.

In the same article [22], Li and Yang have investigated the existence of subnormal

solutions of the general form

f 00 +
�
P1 (e

�z) + P2
�
e��z

��
f 0 +

h
Q1

�
e�z
�
+Q2

�
e��z

�i
f = 0; (2.4)

where P1(z); P2(z); Q1(z) and Q2(z) are polynomials in z: �; � are complex constants, and

they proved the following results,
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Theorem 2.2.2 ([22]) Let

P1 (z) = a1m1z
m1 + � � �+ a11z + a10;

P2 (z) = a2m2z
m2 + � � �+ a21z + a20;

Q1 (z) = b1n1z
n1 + � � �+ b11z + b10;

Q2 (z) = b2n2z
n2 + � � �+ b21z + b20;

where mk � 1; nk � 1 (k = 1; 2) are integers, a1i1(i1 = 0; : : : ;m1); a2i2(i2 = 0; : : : ;m2);

b1j1(j1 = 0; : : : ; n1), b2j2(j2 = 0; : : : ; n2); � and � are complex constants, a1m1a2m2b1n1b2n2 6=

0; �� 6= 0: Suppose m1� = c1n1� (0 < c1 < 1) or m2� = c2n2� (0 < c2 < 1): Then (2:4)

has no nontrivial subnormal solution, and every nontrivial solution f satis�es �2(f) = 1:

Theorem 2.2.3 ([22]) Let

P1 (z) = a1m1z
m1 + � � �+ a11z + a10;

P2 (z) = a2m2z
m2 + � � �+ a21z + a20;

Q1 (z) = b1n1z
n1 + � � �+ b11z + b10;

Q2 (z) = b2n2z
n2 + � � �+ b21z + b20;

where mk � 1; nk � 1 (k = 1; 2) are integers, a1i1(i1 = 0; : : : ;m1); a2i2(i2 = 0; : : : ;m2);

b1j1(j1 = 0; : : : ; n1), b2j2(j2 = 0; : : : ; n2); � and � are complex constants, a1m1a2m2b1n1b2n2 6=

0; �� 6= 0: Suppose m1� = c1n1� (c1 > 1) and m2� = c2n2� (c2 > 1): Then (2:4) has no

nontrivial subnormal solution, and every nontrivial solution f satis�es �2(f) = 1:

Example 2.2.2 ([22])

Note that the subnormal solution f0 = e�z + 1 satis�es the equation

f 00 � (e3z + e2z + e�z)f 0 � (e2z + e�z)f = 0:

Here � = 1
2 , � = 1=3, m1 = 6, m2 = 2, n1 = 6, n2 = 3, m1� =

3
2n1� and m2� = n2�.

This shows that the restrictions that m1� = c1n1� (c1 > 1) and m2� = c2n2� (c2 > 1)

can not be omitted.

2.3 Proofs of the main results

2.3.1 Proof of Theorem 2.2.1

Suppose that f(z) is a non-trivial subnormal solution of (2.2). Let

h(z) = e(bn=an)zf(z);
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then h(z) is a non-trivial subnormal solution of

h00 +

�
2(� bn

an
) + P1(e

z) + P2(e
�z)

�
h0

+

�
(� bn
an
)2 + (� bn

an
)
�
P1(e

z) + P2(e
�z)
�
+Q1(e

z) +Q2(e
�z)

�
h = 0:

Since any one of the following three hypotheses holds:

(i) there exists i satisfying (� bn
an
)ai + bi 6= 0, 0 < i < n;

(ii) there exists j satisfying (� bn
an
)cj + dj 6= 0, 0 < j < m;

(iii)

(� bn
an
)2 + (� bn

an
)(a0 + c0) + b0 + d0 6= 0;

we obtain

(� bn
an
)2 + (� bn

an
)(P1(e

z) + P2(e
�z)) +Q1(e

z) +Q2(e
�z) 6� 0: (2.5)

From andm = cmbn, we obtain

degP2(z) > m� 1 � deg[(� bn
an
)P2(z) +Q2(z)]: (2.6)

Combining (2.5) and (2.6) with

degP1(z) > n� 1 � deg[(� bn
an
)P1(z) +Q1(z)]; (2.7)

we obtain the conclusion by using Theorem 2.1.4.

2.3.2 Proof of Theorem 2.2.2

Suppose f(6� 0) is a solution of (2.4), then f is an entire function. Next we will

prove that f is transcendental. Since Q1(e�z) + Q2(e
��z) 6� 0, we see that any nonzero

constant can not be a solution of the (2.4). Now suppose that f0 = bnz
n + � � �+ b1z + b0,

(n � 1; bn; : : : ; b0 are constants, bn 6= 0) is a polynomial solution of (2.4).

(1) m1� = c1n1� (0 < c1 < 1). Take z = rei�, such that �(�z; �) = j�j cos(arg � + �) > 0,

then �(�z; �) = n1c1
m1

�(�z; �) > 0. From (2.4) and Lemma 1.8.1, that for a su¢ ciently large
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r and " > 0, we have

jbnj rn jb1n1 j en1�(�z;�)r(1� o(1)) �
���Q1 �e�z�+Q2 �e��z���� jf0j

�
��f 000 ��+ ��P1 (e�z) + P2 �e��z��� ��f 00��

� ja1m1 j em1�(�z;�)rn(n� 1) jbnj rn�1(1 + o(1))

� M1e
m1

n1c1
m1

�(�z;�)r
rn�1(1 + o(1))

� M1e
n1c1�(�z;�)rrn�1(1 + o(1)); (2.8)

where M1 > 0 is some constant. Since 0 < c1 < 1, we see that (2.8) is a contradiction.

(2) m2� = c2n2� (0 < c2 < 1). Take z = rei�, such that �(�z; �) = j�j cos(arg � + �) < 0,

then �(�z; �) = n2c2
m2

�(�z; �) < 0. From (2.4) and Lemma 1.8.1, that for a su¢ ciently large

r and for " > 0, we have

jbnj rn jb2n2 j e�n2�(�z;�)r(1� o(1)) �
���Q1 �e�z�+Q2 �e��z���� jf0j

�
��f 000 ��+ ��P1 (e�z) + P2 �e��z��� ��f 00��

� ja2m2 j e�m2�(�z;�)rn(n� 1) jbnj rn�1(1 + o(1))

� M2e
�m2

n2c2
m2

�(�z;�)r
rn�1(1 + o(1))

� M2e
�n2c2�(�z;�)rrn�1(1 + o(1)); (2.9)

whereM2 > 0 is some constant. Since 0 < c2 < 1, we see that (2.9) is also a contradiction.

Thus we obtain that f is transcendental.

By Theorem 1.7.2 andmaxf�(P1(e�z)); �(P2(e��z)); �(Q1(e�z)); �(Q2(e��z))g = 1, we

see that �2(f) � 1. By Theorem 1.5.2, we can see that there exists a subset E � (1;1)

having a logarithmic measuremlE <1 and a constant B > 0 such that for all z satisfying

jzj = r 62 [0; 1] [ E, we have�����f (j)(z)f(z)

����� � B[T (2r; f)]j+1; j = 1; 2: (2.10)

(1) Suppose m1� = c1n1� (0 < c1 < 1). Take z = rei�, such that �(�z; �) > 0, then

�(�z; �) = n1c1
m1

�(�z; �) > 0. From (2.4), (2.10), that for a su¢ ciently large r and r 62
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[0; 1] [ E, we have

jb1n1 j en1�(�z;�)r(1� o(1)) �
���Q1 �e�z�+Q2 �e��z����

�
����f 00(z)f(z)

����+ ��P1 (e�z) + P2 �e��z��� ����f 0(z)f(z)

����
� B [T (2r; f)]3 + ja1m1 j em1�(�z;�)rB [T (2r; f)]2 (1 + o(1))

� C [T (2r; f)]3 e
m1

n1c1
m1

�(�z;�)r
(1 + o(1))

� C [T (2r; f)]3 en1c1�(�z;�)r(1 + o(1)); (2.11)

where C > 0 is some constant. Since 0 < c1 < 1, by Lemma 1.8.2, (2.11), we obtain

�2(f) � 1. So �2(f) = 1.

Next we prove that any f(6� 0) is not subnormal. If f is subnormal, then for any " > 0,

T (r; f) � e"r: (2.12)

When taking z = rei�, such that �(�z; �) > 0, by (2.11) and (2.12), we deduce that

jb1n1 jen1�(�z;�)r(1� o(1)) � C[T (2r; f)]3en1c1�(�z;�)r(1 + o(1))

� Ce6"r � en1c1�(�z;�)r(1 + o(1)):
(2.13)

We see that (2.13) is a contradiction when 0 < " < 1
6n1�(�z; �)(1 � c1). Hence (2.4) has

no non-trivial subnormal solution and every solution f satis�es �2(f) = 1.

(2) Suppose m2� = c2n2� (0 < c2 < 1). Take z = rei�, such that �(�z; �) < 0, then

�(�z; �) = n2c2
m2

�(�z; �) < 0. Using the similar method as in the proof of (1), we obtain

the conclusion.

2.3.3 Proof of Theorem 2.2.3

Suppose that f(6� 0) is a solution of (2.4), then f is an entire function. Next we will

prove that f is transcendental. Since Q1(e�z) + Q2(e
��z) 6� 0, we see that any nonzero

constant can not be a solution of the equation (2.4). Now suppose that f0 = bnz
n + � � �+

b1z + b0, (n � 1; bn; : : : ; b0 are constants, bn 6= 0) is a polynomial solution of (2.4). Take

z = rei�, such that �(�z; �) = j�j cos(arg� + �) > 0, then �(�z; �) = m1
c1n1

�(�z; �) > 0.
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From (2.4) and Lemma 1.8.1, that for a su¢ ciently large r and for " > 0, we have

jbnjnrn�1 ja1m1 j em1�(�z;�)r(1� o(1)) �
��P1 (e�z) + P2 �e��z��� ��f 00��

�
��f 000 ��+ ���Q1 �e�z�+Q2 �e��z���� jf0j

� jb1n1 j en1�(�z;�)rn(n� 1) jbnj rn(1 + o(1))

� Me
n1

m1
c1n1

�(�z;�)r
rn(1 + o(1))

� Me
m1
c1
�(�z;�)r

rn(1 + o(1)) (2.14)

where M > 0 is some constant. Since c1 > 1, we see that (2.14) is a contradiction. Thus

we obtain that f is transcendental.

First step. We prove that �(f) = 1. We assume that �(f) = � < 1. By Lemma

1.5.1, we know that for any given " > 0, there exists a set E � [0; 2�) which has linear

measure zero, such that if  2 [0; 2�) n E, then there is a constant R0 = R0( ) > 1, such

that for all z satisfying arg z =  and jzj = r � R0, we have����f 00(z)f 0(z)

���� � r��1+": (2.15)

Let H = f� 2 [0; 2�) : �(�z; �) = 0g. Then H is a �nite set. Now we take a ray

arg z = � 2 [0; 2�) n (E [H), then �(�z; �) > 0 or �(�z; �) < 0. We divide the proof into

the following two cases.

Case 1. If �(�z; �) > 0, then �(�z; �) = m1
c1n1

�(�z; �) > 0, �(��z; �) < 0 and �(��z; �) <

0. We assert that jf 0(rei�)j is bounded on the ray arg z = �. If jf 0(rei�)j is unbounded on

the ray arg z = �, then by Lemma 1.8.4, there exists a sequence of points zt = rte
i�(t =

1; 2; : : : ) such that as rt !1, f 0(zt)!1 and���� f(zt)f 0(zt)

���� � rt(1 + o(1)): (2.16)

By (2.4), we obtain that

� [P1(e�zt) + P2(e��zt)] =
f 00(zt)

f 0(zt)
+ [Q1(e

�zt) +Q2(e
��zt)]

f(zt)

f 0(zt)
: (2.17)

From �(�z; �) > 0, we have

jP1(e�zt) + P2(e��zt)j � ja1m1 jem1�(�zt;�)rt(1� o(1)); (2.18)

jQ1(e�zt) +Q2(e��zt)j �Men1�(�zt;�)rt(1 + o(1)): (2.19)

Substituting (2.15), (2.16), (2.18) and (2.19) in (2.17), we obtain

ja1m1 j em1�(�zt;�)rt(1� o(1)) � r��1+"t +Men1�(�zt;�)rtrt(1 + o(1))

� Mr�+"t e
m1
c1
�(�zt;�)rt(1 + o(1)): (2.20)
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Since c1 > 1, �(�zt; �) > 0, when rt !1, (2.20) is a contradiction. Hence jf 0(rei�)j � C.

So

jf(rei�)j � Cr: (2.21)

Case 2. If �(�z; �) < 0, then �(�z; �) = m2
c2n2

�(�z; �) < 0, �(��z; �) > 0 and �(��z; �) >

0. Using the similar method as above, we can obtain that

jf(rei�)j � Cr: (2.22)

Since the linear measure of E [ H is zero, by (2.21), (2.22) and Lemma 1.8.3, we know

that f(z) is a polynomial, which contradicts the assumption that f(z) is transcendental.

Therefore �(f) =1.

Second step. We prove that (2.4) has no non-trivial subnormal solution. Now suppose

that (2.4) has a non-trivial subnormal solution f0. By the conclusion in the �rst step,

�(f0) =1. By Theorem 1.7.2, we see that �2(f0) � 1. Set �2(f0) = ! � 1. By Theorem

1.5.2, we see that there exists a subset E1 � (1;1) having �nite logarithmic measure and

a constant B > 0 such that for all z satisfying jzj = r 62 [0; 1] [ E1, we have�����f (j)0 (z)

f0(z)

����� � B[T (2r; f0)]
3; (j = 1; 2): (2.23)

From the Wiman-Valiron theory, there is a set E2 � (1;1) having �nite logarithmic

measure, so we can choose z satisfying jzj = r 62 E2 and jf0(z)j =M(r; f0). Thus, we have

f
(j)
0 (z)

f0(z)
=

�
�f0(r)

z

�j
(1 + o(1)); j = 1; 2; (2.24)

where �f0(r) is the central index of f0(z).

By Lemma 1.6.1, we see that there exists a sequence fzn = rne
i�ng such that jf0(zn)j =

M(rn; f0), �n 2 [0; 2�), limn!1 �n = �0 2 [0; 2�), rn 62 [0; 1] [ E1 [ E2, rn ! 1, and if

! > 0, we see that for any given "1 (0 < "1 < !), and for su¢ ciently large rn,

expfr!�"1n g < �f0(rn) < expfr!+"1n g; (2.25)

and if ! = 0, then by �(f0) =1 and Lemma 1.6.1, we see that for any given "2 (0 < "2 <

1=2), and for any su¢ ciently large M , as rn is su¢ ciently large,

rMn < �f0(rn) < expfr"2n g: (2.26)
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From (2.25) and (2.26), we obtain that

�f0(rn) > rn; rn !1: (2.27)

For �0, let � = �(�z; �0) = j�j cos(arg� + �0), then � < 0, or � > 0, or � = 0. We divide

this proof into three cases.

Case 1. � > 0. By �n ! �0, we see that there is a constant N(> 0) such that, as

n > N , �(�zn; �n) > 0. Since f0 is a subnormal solution, for any given " (0 < " <

1
12(1�

1
c1
)�(�zn; �n)), we have

[T (2rn; f0)]
3 � e6"rn � e

1
2
(1� 1

c1
)�(�zn;�n)rn : (2.28)

By (2.23), (2.24), (2.28), we have�
�f0(rn)

rn

�j
(1 + o(1)) =

�����f (j)0 (zn)

f0(zn)

�����
� B [T (2rn; f)]

3

� Be
1
2
(1� 1

c1
)�(�zn;�n)rn ; j = 1; 2: (2.29)

Since �(�zn; �n) > 0, from (2.4), (2.24), we obtain that

�f0(rn)

rn
ja1m1 jem1�(�zn;�n)rn(1� o(1)) �

����f 00(zn)f0(zn)

�
P1(e

�zn) + P2(e
��zn)

�����
=

����f 000 (zn)f0(zn)
+
h
Q1(e

�zn) +Q2(e
��zn)

i����
�

�
�f0(rn)

rn

�2
(1 + o(1)) + jb1n1 jen1�(�zn;�n)rn(1 + o(1))

� M1

�
�f0(rn)

rn

�2
e
m1
c1
�(�zn;�n)rn(1 + o(1)): (2.30)

From (2.29) and (2.30), we can obtain

ja1m1 je
m1(1� 1

c1
)�(�zn;�n)rn(1� o(1)) �M1Be

1
2
(1� 1

c1
)�(�zn;�n)rn(1 + o(1)): (2.31)

Since c1 > 1 and m1 � 1, we see that (2.31) is a contradiction.

Case 2. � < 0. By �n ! �0, we see that there is a constant N(> 0) such that, as

n > N , �(�zn; �n) < 0. Since f0 is a subnormal solution, for any given " (0 < " <

� 1
12(1�

1
c2
)�(�zn; �n)), we have

[T (2rn; f0)]
3 � e6"rn � e

� 1
2
(1� 1

c2
)�(�zn;�n)rn : (2.32)

University of Mostaganem M. A. Zemirni



2.3. Proofs of the main results 28

By (2.23), (2.24), (2.32) we have�
�f0(rn)

rn

�j
(1 + o(1)) =

�����f (j)0 (zn)

f0(zn)

�����
� B[T (2rn; f0)]

3

� Be
� 1
2
(1� 1

c2
)�(�zn;�n)rn ; j = 1; 2: (2.33)

By (2.24) and (2.4), we obtain

�f0(rn)

rn
ja2m2 je�m2�(�zn;�n)rn(1� o(1)) �

����f 00(zn)f0(zn)

�
P1(e

�zn) + P2(e
��zn)

�����
=

����f 000 (zn)f0(zn)
+
h
Q1(e

�zn) +Q2(e
��zn)

i����
�

�
�f0(rn)

rn

�2
(1 + o(1)) + jb2n2 je�n2�(�zn;�n)rn(1 + o(1))

� M2

�
�f0(rn)

rn

�2
e
�m2
c2
�(�zn;�n)rn(1 + o(1)): (2.34)

From (2.33) and (2.34), we can deduce that

ja2m2 je
�m2(1� 1

c2
)�(�zn;�n)rn(1� o(1)) �M2Be

� 1
2
(1� 1

c2
)�(�zn;�n)rn(1 + o(1)): (2.35)

Since c2 > 1 and m2 � 1, we see that (2.35) is a contradiction.

Case 3. � = 0. Then �0 2 H = f�j� 2 [0; 2�); �(�z; �) = 0g. Since �n ! �0, for any

given " > 0, we see that there is an integer N (> 0), as n > N , �n 2 [�0 � "; �0 + "] and

zn = rne
i�n 2 
 = fz : �0 � " � arg z � �0 + "g. By Theorem 1.5.2, there exists a subset

E3 � (1;1) having �nite logarithmic measure and a constant B > 0, such that for all z

satisfying jzj = r 62 [0; 1] [ E3, we have����f 000 (z)f 00(z)

���� � B[T (2r; f 00)]
2: (2.36)

Now we consider the growth of f0(rei�) on a ray arg z = � 2 
 n f�0g. Denote 
1 =

[�0 � "; �0), 
2 = (�0; �0 + "]. We can easily see that when �1 2 
1; �2 2 
2, then

�(�z; �1) � �(�z; �2) < 0. Without loss of generality, we suppose that �(�z; �) > 0 (� 2 
1)

and �(�z; �) < 0 (� 2 
2).

Since when � 2 
1, �(�z; �) > 0. Recall f0 is subnormal, then for any given " (0 <

" < 1
8(1�

1
c1
)�(�z; �)),

[T (2r; f 00)]
2 � e4"r � e

1
2
(1� 1

c1
)�(�z;�)r

: (2.37)

We assert that jf 00(rei�)j is bounded on the ray arg z = �. If jf 00(rei�)j is unbounded on

the ray arg z = �, then by Lemma 1.8.4, there exists a sequence fyj = Rje
i�g such that
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Rj !1, f 00(yj)!1 and ����f0(yj)f 00(yj)

���� � Rj(1 + o(1)): (2.38)

By (2.36) and (2.37), we see that for su¢ ciently large j,����f 000 (yj)f 00(yj)

���� � B[T (2Rj ; f
0
0)]

2 � Be
1
2
(1� 1

c1
)�(�yj ;�)Rj : (2.39)

By (2.4), we deduce that

ja1m1 jem1�(�yj ;�)Rj (1� o(1)) �
��P1(e�yj ) + P2(e��yj )��

�
����f 000 (yj)f 00(yj)

����+ ���Q1(e�yj ) +Q2(e��yj )��� ����f0(yj)f 00(yj)

����
� C1e

1
2
(1� 1

c1
)�(�yj ;�)Rjen1�(�yj ;�)RjRj(1 + o(1))

� C1e
[ 1
2
(1� 1

c1
)+

m1
c1
]�(�yj ;�)RjRj(1 + o(1)): (2.40)

Since �(�yj ; �) > 0, c1 > 1, we know that when Rj !1, (2.40) is a contradiction. Hence

jf0(rei�)j � Cr; (2.41)

on the ray arg z = � 2 
1.

When � 2 
2, �(�z; �) < 0. Recall f0 is subnormal, then for any given " (0 < " <

�1
8(1�

1
c2
)�(�z; �)),

[T (2r; f 00)]
2 � e4"r � e

� 1
2
(1� 1

c2
)�(�z;�)r

: (2.42)

We assert that jf 00(rei�)j is bounded on the ray arg z = �. If jf 00(rei�)j is unbounded

on the ray arg z = �, using the similar proof as above, we can obtain that

ja2m2 je
�m2(1� 1

c2
)�(�yj ;�)Rj (1� o(1)) � C2e

� 1
2
(1� 1

c2
)�(�yj ;�)RjRj(1 + o(1)) (2.43)

Since �(�yj ; �) < 0 and c2 > 1, we know that when Rj ! 1, (2.43) is a contradiction.

Hence

jf0(rei�)j � Cr; (2.44)

on the ray arg z = � 2 
2. By (2.41) and (2.44), we see that jf0(rei�)j satis�es

jf0(rei�)j � Cr; (2.45)

on the ray arg z = � 2 
 n f�0g. However, since f0 is transcendental and fzn = rne
i�ng

satis�es jf0(zn)j =M(rn; f0), we see that for any large N(> 2), as n is su¢ ciently large,

jf0(zn)j = jf0(rnei�n)j � rNn : (2.46)
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Since zn 2 
, by (2.45) and (2.46), we see that for su¢ ciently,large n,

�n = �0:

Thus for su¢ ciently large n, �(�zn; �n) = 0 and

jP1(e�zn) + P2(e��zn)j � C; jQ1(e�zn) +Q2(e��zn)j � C: (2.47)

By (2.4) and (2.24), we obtain that

�
�
�f0(rn)

zn

�2
(1 + o(1))

=
�
P1(e

�zn) + P2(e
��zn)

���f0(rn)
zn

�
(1 + o(1)) + [Q1(e

�zn) +Q2(e
��zn)]:

(2.48)

By (2.47), (2.48) and (2.27) we obtain that

�f0(rn) � 2Crn; (2.49)

by (2.25) (or (2.26)), we see that (2.49) is a contradiction. Hence (2.4) has no non-trivial

subnormal solution.

Third step. We prove that all solutions of (2.4) satis�es �2(f) = 1. If there is a

solution f1 satisfying �2(f1) < 1, then �e(f1) = 0, that is to say f1 is subnormal, but

this contradicts the conclusion in Step 2. Hence �2(f) = 1. This completes the proof of

Theorem 2.2.3.
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Chapter 3

Nonexistence of subnormal

solutions for a class of higher order

complex di¤erential equations

In this chapter, we investigate the existence of subnormal solutions for a class of

higher order complex di¤erential equations. We generalize the result of N. Li and L. Z.

Yang [22], L. P. Xiao [27] and also result of Z. X. Chen and K. H. Shon [3].

3.1 Introduction

In [11], Gundersen and Steinbart considered the higher order non-homogeneous linear

di¤erential equation

f (k) + Pk�1 (e
z) f (k�1) + � � �+ P0 (ez) f = Q1 (e

z) +Q2
�
e�z
�
; (3.1)

where Q1(z); Q2(z); P0(z); : : : ; Pk�1(z) are polynomials in z. They obtained the following

Theorem.

Theorem 3.1.1 ([11]) Suppose in equation (3:1) we have k � 2 and

degP0 > degPj (3.2)

for all 1 � j � k � 1. Then any subnormal solution f of (3:1) must have the form

f(z) = S1(e
z) + S2(e

�z);

where S1(z) and S2(z) are polynomials in z.
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From the proof of Theorem 3.1.1, we see that the condition (3.2) in Theorem 3.1.1

guarantees that the corresponding homogeneous di¤erential equation

f (k) + Pk�1 (e
z) f (k�1) + � � �+ P0 (ez) f = 0 (3.3)

of (3.1) has no nontrivial subnormal solutions.

In [6], Chen and Shon investigated the existence and estimated the number of nontrivial

subnormal solutions of the equation (3.3).

Chen and Shon in [4] and Liu and Yang in [23] improved the Theorems 2.1.3, 2.1.4 to

higher periodic di¤erential equation

f (k) +
�
Pk�1 (e

z) +Qk�1
�
e�z
��
f (k�1) + � � �+

�
P0 (e

z) +Q0
�
e�z
��
f = 0 (3.4)

and they proved the following results.

Theorem 3.1.2 ([23, 4]) Let Pj(z); Qj(z) (j = 0; : : : ; k � 1) be polynomials in z with

degPj = mj ; degQj = nj. If P0 satis�es

m0 > maxfmj : 1 � j � k � 1g = m

or Q0 satis�es

n0 > maxfnj : 1 � j � k � 1g = n;

then (3:4) has no nontrivial subnormal solution, and every solution of (3:4) is of hyper-

order �2(f) = 1:

Theorem 3.1.3 ([4]) Let Pj(z); Qj(z) (j = 0; : : : ; k�1) be polynomials in z with degPj =

mj ; degQj = nj ; and P0 +Q0 6� 0. If there exists ms; nd (s; d 2 f0; : : : ; k � 1g) satisfying

both the inequalities

ms > maxfmj : j = 0; : : : ; s� 1; s+ 1; : : : ; k � 1g = m;

nd > maxfnj : j = 0; : : : ; d� 1; d+ 1; : : : ; k � 1g = n;

then (3:4) has no nontrivial subnormal solution, and every solution of (3:4) is of hyper-

order �2(f) = 1:

3.2 Main results

Firstly, we want to answer to the question,
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Question. Can Theorems 2.2.2, 2.2.3 be generalized to higher order di¤erential equa-

tion ? And we will prove the following results.

Let

f (k)+
�
Pk�1 (e

�k�1z) +Qk�1
�
e��k�1z

��
f (k�1)+� � �+

�
P0 (e

�0z) +Q0
�
e��0z

��
f = 0; (3.5)

where

Pj (z) = ajmjz
mj + aj(mj�1)z

mj�1 + � � �+ aj0; j = 0; : : : ; k � 1;

Qj (z) = bjnjz
nj + bj(nj�1)z

nj�1 + � � �+ bj0; j = 0; : : : ; k � 1

and mj � 1; nj � 1 (j = 0; : : : ; k � 1; k � 2) are integers, aju 6= 0; bjv 6= 0 and �j 6= 0

(j = 0; : : : ; k � 1; u = 0; : : : ;mj ; v = 0; : : : ; nj) are complex constants.

Theorem 3.2.1 ([29]) Suppose that

cjm0�0 = mj�j ; 0 < cj < 1;8j = 1; : : : ; k � 1

or

djn0�0 = nj�j ; 0 < dj < 1;8j = 1; : : : ; k � 1;

then the equation (3:5) has no nontrivial subnormal solution, and every solution of (3:5)

satis�es �2(f) = 1.

Theorem 3.2.2 ([29]) If P0 (e�0z)+Q0 (e��0z) 6� 0, and if there exists s; t 2 f0; : : : ; k�

1g such that 8<: ms�s = cjmj�j ; cj > 1; j = 0; : : : ; s� 1; s+ 1; : : : ; k � 1;

nt�t = djnj�j ; dj > 1; j = 0; : : : ; t� 1; t+ 1; : : : ; k � 1;

then the equation (3:5) has no nontrivial subnormal solution, and every solution of (3:5)

satis�es �2(f) = 1.

As a generalization to higher order equation of Theorem 1.5 and Theorem 1.6 in [27],

we have the following results.

Theorem 3.2.3 ([29]) Let

Pj (e
�jz) = ajmje

mj�jz + aj(mj�1)e
(mj�1)�jz + � � �+ aj0; j = 0; : : : ; k � 1;
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where mj � 1 (j = 0; : : : ; k � 1; k � 2) are integers, aju 6= 0 and �j 6= 0 (j = 0; : : : ; k � 1;

u = 0; : : : ;mj) are complex constants. Suppose that cjm0�0 = mj�j ; 0 < cj < 1; 8j =

1; : : : ; k � 1: Then the equation

f (k) + Pk�1 (e
�k�1z) f (k�1) + � � �+ P0 (e�0z) f = 0 (3.6)

has no nontrivial subnormal solution, and every solution satis�es �2(f) = 1.

Theorem 3.2.4 ([29]) Let

P �j (e
�jz) = ajmje

mj�jz + aj(mj�1)e
(mj�1)�jz + � � �+ aj1e�jz; j = 0; : : : ; k � 1;

where mj � 1 (j = 1; : : : ; k � 1; k � 2) are integers, aju 6= 0 and �j 6= 0 (j = 0; : : : ; k � 1;

u = 0; : : : ;mj) are complex constants. Suppose that P0 (e�0z) 6� 0 and there exists s 2

f1; : : : ; k � 1g such that cjms�s = mj�j ; 0 < cj < 1;8j = 0; : : : ; s � 1; s + 1; : : : ; k � 1:

Then the equation

f (k) + P �k�1 (e
�k�1z) f (k�1) + � � �+ P �0 (e�0z) f = 0 (3.7)

has no nontrivial subnormal solution, and every solution satis�es �2(f) = 1.

In [23], Liu-Yang gave an example that shows that in Theorem 3.1.2, if there exists

degPi = degPj and degQi = degQj (i 6= j), then the equation (3.4) may have a nontrivial

subnormal solution.

Example ([23, page 610]). A subnormal solution f = e�z satis�es the following

equation

f (n) + f (n�1) + � � �+ f 00 +
�
e2z + e�2z

�
f 0 +

�
e2z + e�2z

�
f = 0;

where n is an odd number.

Question. What can we say when degP0 = degP1 and degQ0 = degQ1 in the

equation (3.4)? We have the following result.

Theorem 3.2.5 ([29]) Let Pj(z); Qj(z) (j = 0; : : : ; k � 1) be polynomials in z with

degP0 = degP1 = m;degQ0 = degQ1 = n; degPj = mj ; degQj = nj (j = 2; : : : ; k � 1);

let

P1 (z) = amz
m + am�1z

m�1 + � � �+ a0;

P0 (z) = bmz
m + bm�1z

m�1 + � � �+ b0;

Q1 (z) = cnz
n + cn�1z

n�1 + � � �+ c0;

Q0 (z) = dnz
n + dn�1z

n�1 + � � �+ d0;
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where au; bu; cv; dv (u = 0; : : : ;m; v = 0; : : : ; n) are complex constants, ambmcndn 6= 0: If

amdn = bmcn, m > maxfmj : j = 2; : : : ; k � 1g, n > maxfnj : j = 2; : : : ; k � 1g and

e�(bm=am)z is not a solution of (3:4), then the equation (3:4) has no nontrivial subnormal

solution, and every solution f of (3:4) satis�es �2(f) = 1.

Example. This example shows that the Theorem 3.2.5, is not a particular case (and

is di¤erent) of Theorems 3.1.2, 3.1.3. Consider the di¤erential equation

f 000 +
�
ez + e�z

�
f 00 +

�
e3z � e�2z

�
f 0 +

�
�2e3z + 2e�2z

�
f = 0:

By Theorems 3.1.2, 3.1.3, we can�t say anything about the existence or nonexistence

of nontrivial subnormal solutions, because neither hypotheses of Theorem 3.1.2 nor of

Theorem 3.1.3 are satis�ed. But, we can see that all hypotheses of Theorem 3.2.5 are

satis�ed, then, we guarantee that the above equation has no nontrivial subnormal solution.

In fact, we have k = 3; P2(ez) = ez; Q2(e
z) = e�z; P1(ez) = e3z; Q1(e

z) = �e�2z; P0(ez) =

�2e3z and Q0(ez) = 2e�2z: m = 3; n = 2; m > 1 = degP2; n > 1 = degQ2: am = 1; bm =

�2; cn = �1 and dn = 2; and we have amdn = bmcn: It�s clear that e�(bm=am)z = e2z is not

a solution of the equation above.

Remark 1. In Theorem 3.2.5, if the equation (3:4) accepts e�(bm=am)z as a solution,

then (3:4) has a subnormal solution. But, if e�(bm=am)z doesn�t satisfy (3:4); is there

another subnormal solution may satisfy (3:4)? The conditions of Theorem 3.2.5 guarantee

that, if (3:4) doesn�t accept e�(bm=am)z as a subnormal solution, then (3:4) doesn�t accept

any other subnormal solution.

Remark 2. In Theorem 3.2.5, we can replace the condition " e�(bm=am)z is not a

solution of (3:4) " by many partial conditions. For example

1. Pj (0) +Qj (0) = 0; (j = 0; : : : ; k � 1).

2. Pj (0) +Qj (0) = 1; (j = 0; : : : ; k � 1) and am 6= bm:

3. Pj (0) +Qj (0) = 1; (j = 0; : : : ; k � 1), am = bm and k is even number.

4. Pj (0) +Qj (0) = 0; Pl (0) +Ql (0) = 1 (j = 0; : : : ; s; l = s + 1; : : : ; k � 1), am = bm

and s; k are both even or both odd. And so on.

Remark 3. In Theorem 2.2.1, the hypotheses (1-3) can be replaced by the condition

"e�(bn=an)z is not a solution of (2.2)".
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3.3 Proofs of main results

3.3.1 Proof of Theorem 3.2.1

(1) Suppose that f is a nontrivial solution of (3:5); then f is an entire function. Since

P0 (e
�0z) + Q0 (e

��0z) 6� 0; then every nonzero constant is not a solution of (3:5): Now,

suppose that f0 = anz
n+ � � �+a0 (n � 1; a0; : : : ; an are constants, an 6= 0) is a polynomial

solution of (3:5): If cjm0�0 = mj�j ; (0 < cj < 1;8j = 1; : : : ; k � 1), then we choose

z = rei�; such that �(�0z; �) = j�0j cos(arg�0+�) > 0; then �(�jz; �) =
cj
mj

m0�(�0z; �) >

0; (8j = 1; : : : ; k � 1): By Lemma 1.8.1 and (3:5) for a su¢ ciently large r; we have

janj ja0m0 j em0�(�0z;�)rrn(1 + o(1)) =
��P0 (e�0z) +Q0 �e��0z��� jf0j

�
���f (k)0

���+ k�1X
j=1

��Pj (e�jz) +Qj �e��jz��� ���f (j)0 ���
� Mecm0�(�0z;�)rrn(1 + o(1));

where 0 < c = maxfcj : j = 1; : : : ; k � 1g < 1: This is a contradiction. Then (3.5)

has no nonzero polynomial solution. If djn0�0 = nj�j ; (0 < dj < 1;8j = 1; : : : ; k � 1),

then we choose z = rei�; such that �(�0z; �) = j�0j cos(arg�0 + �) < 0; then �(�jz; �) =
dj
nj
n0�(�0z; �) < 0; (8j = 1; : : : ; k�1): Using the similar method as in the case �(�0z; �) >

0, we obtain

janj jb0n0 j e�n0�(�0z;�)rrn(1 + o(1)) �Me�dn0�(�0z;�)rrn(1 + o(1));

where 0 < d = maxfdj : j = 1; : : : ; k � 1g < 1: This is a contradiction. So, (3.5) has no

nonzero polynomial solution.

(2) By Theorem 1.5.2 we can see that there exists a set E � (1;1) with �nite logarithmic

measure and there is a constant B > 0 such that for all z satisfying jzj = r 62 E [ [0; 1];

we have �����f (j)(z)f(z)

����� � B [T (2r; f)]k+1 ; j = 1; : : : ; k: (3.8)

Suppose that f 6� 0 is a subnormal solution, then �e(f) = 0: Hence, for all " > 0, and for

su¢ ciently large r; we have

T (r; f) < e"r: (3.9)

Substituting (3.9) into (3.8) with su¢ ciently large jzj = r 62 E [ [0; 1]; we obtain�����f (j)(z)f(z)

����� � Be2"(j+1)r � Be2"(k+1)r; j = 1; : : : ; k: (3.10)
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(i) Suppose that cjm0�0 = mj�j ; (0 < cj < 1;8j = 1; : : : ; k� 1). Take z = rei� such that

r 62 E [ [0; 1] and �(�0z; �) = j�0j cos(arg�0 + �) > 0; then �(�jz; �) =
cj
mj

m0�(�0z; �) >

0; (8j = 1; : : : ; k � 1): Therefore��P0 (e�0z) +Q0 �e��0z��� = ja0m0 j em0�(�0z;�)r(1 + o(1)); (3.11)

��Pj (e�jz) +Qj �e��jz��� =
��ajmj �� emj�(�jz;�)r(1 + o(1))

=
��ajmj �� ecjm0�(�0z;�)r(1 + o(1))

� Decm0�(�0z;�)r(1 + o(1)); (3.12)

where D = max
1�j�k�1

f
��ajmj ��g and 0 < c = max

1�j�k�1
fjcj jg < 1: Substituting (3.10), (3.11)

and (3.12) into (3.5), we obtain

ja0m0 j em0�(�0z;�)r(1 + o(1)) =
��P0 (e�0z) +Q0 �e��0z���

�
�����f (k)f

�����+
k�1X
j=1

��Pj (e�jz) +Qj �e��jz���
�����f (j)f

�����
� Be2"(k+1)r + (k � 1)DBecm0�(�0z;�)re2"(k+1)r(1 + o(1)):

Hence,

ja0m0 j em0�(�0z;�)r(1 + o(1)) �Me[cm0�(�0z;�)+2"(k+1)]r(1 + o(1)) (3.13)

for some constant M > 0: Since 0 < c < 1; we can see that (3.13) is a contradiction when

0 < " <
1� c
2(k + 1)

m0�(�0z; �):

Hence, the equation (3.5) has no nontrivial subnormal solution.

(ii) Suppose that djn0�0 = nj�j ; (0 < dj < 1;8j = 1; : : : ; k � 1). We choose z =

rei�; such that r 62 E [ [0; 1] and �(�0z; �) = j�0j cos(arg�0 + �) < 0; then �(�jz; �) =
dj
nj
n0�(�0z; �) < 0; (8j = 1; : : : ; k � 1): Using the similar method as in the proof of (i)

above, we obtain

jb0n0 j e�n0�(�0z;�)r(1 + o(1)) �Me[�dn0�(�0z;�)+2"(k+1)]r(1 + o(1)); (3.14)

where 0 < d = max
1�j�k�1

fjdj jg < 1; and for some constant M > 0: We see that (3.14) is a

contradiction when

0 < " < � 1� d
2(k + 1)

n0�(�0z; �):

Hence, (3.5) has no nontrivial subnormal solution.

(3) By Theorem 1.7.3, every solution f of (3.5) satis�es �2(f) � 1: Suppose that

�2(f) < 1; then �e(f) = 0; i.e., f is subnormal solution and this contradicts the conclusion

above: So �2(f) = 1:
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3.3.2 Proof of Theorem 3.2.2

Suppose that f 6� 0 is a solution of equation (3:5), then f is an entire function. Since

P0 (e
�0z) +Q0 (e

��0z) 6� 0, then f cannot be nonzero constant.

(1)We will prove that f is a transcendental function. We assume that f is polynomial

solution to (3:5), and we set

f(z) = anz
n + � � �+ a0;

where n � 1; a0; : : : ; an are constants with an 6= 0: Suppose that s � t: If n � s; then

f (s) 6� 0; and we have���f (s)(z)��� = Asn janj rn�s(1 + o(1)) , jzj = r !1:

Take z = rei� such that �(�sz; �) > 0; therefore��Ps(e�sz) +Qs(e��sz)�� = jasms j ems�(�sz;�)r(1 + o(1))
and we obtain��Ps(e�sz) +Qs(e��sz)�� ���f (s)(z)��� = Asn janj jasms j ems�(�sz;�)rrn�s(1 + o(1)): (3.15)

From ms�s = cjmj�j , we obtain mj�(�jz; �) =
ms
cj
�(�sz; �) > 0; (cj > 1; j = 0; : : : ; s �

1; s+ 1; : : : ; k � 1): Hence,��Pj(e�jz) +Qj(e��jz)�� =
��ajmj �� emj�(�jz;�)r(1 + o(1))

=
��ajmj �� emscj �(�sz;�)r(1 + o(1))

and we have ���f (j)(z)��� =
8<: Ajn janj rn�j(1 + o(1)); if j � n

0; if j > n:

Then, we obtain for j = 0; : : : ; s� 1; s+ 1; : : : ; k � 1��Pj(e�jz) +Qj(e��jz)�� ���f (j)(z)��� = Ajn janj
��ajmj �� emscj �(�sz;�)rrn�j(1 + o(1))

� DeCms�(�sz;�)rrn(1 + o(1)); (3.16)

where D = max
j
fAjn janj

��ajmj ��g and 0 < C = max
j
f 1cj g < 1: Substituting (3.15) and (3.16)

into (3:5), we obtain

Asn janj jasms j ems�(�sz;�)rrn�s(1 + o(1)) =
��Ps(e�sz) +Qs(e��sz)�� ���f (s)(z)���

�
���f (k)(z)���+ k�1X

j=0;j 6=s

��Pj(e�jz) +Qj(e��jz)�� ���f (j)(z)���
� MeCms�(�sz;�)rrn(1 + o(1)); (3.17)
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where M some constant. Since, 0 < C < 1 and �(�sz; �) > 0; we can see that (3.17) is

a contradiction: If n < s; then f (s) � 0: Since P0 (e�0z) +Q0 (e
��0z) 6� 0, we can rewrite

(3:5) as

f(z) = �
nX
j=1

Pj(e
�jz) +Qj(e

��jz)

P0(e�0z) +Q0(e��0z)
f (j)(z) (3.18)

and we obtain a contradiction since the left side of equation (3.18) is a polynomial function

but the right side is a transcendental meromorphic function. Hence, every solution of (3:5)

is transcendental function.

(2) Now, we will prove that every solution f of (3:5) satis�es �(f) = +1: We assume

that �(f) = � < +1: By Lemma 1.5.1, we know that for any given " > 0 there exists a set

E � [0; 2�) that has linear measure zero, and for each  2 [0; 2�)nE; there is a constant

R0 = R0( ) > 1 such that for all z satisfying arg z =  ; and jzj = r � R0; we have for

l � k � 1 �����f (j)(z)f (l)(z)

����� � jzj(��1+")(j�l); j = l + 1; : : : ; k: (3.19)

Let H = f� 2 [0; 2�) : �(�sz; �) = 0g; H is a �nite set. By the hypotheses of Theorem

3.2.2, we have H = f� 2 [0; 2�) : �(�jz; �) = 0g (j = 0; : : : ; k � 1): We take z = rei�;

such that � 2 [0; 2�)nE [H: Then, �(�sz; �) > 0 or �(�sz; �) < 0: If �(�sz; �) > 0; then

�(�jz; �) > 0 for all j = 0; : : : ; s�1; s+1; : : : ; k�1:We assert that
��f (s)(z)�� is bounded on

the ray arg z = �: If
��f (s)(z)�� is unbounded, then by Lemma 1.8.4, there exists an in�nite

sequence of points zu = rue
i� (u = 1; 2; : : : ) where ru ! +1 such that f (s)(zu)!1 and�����f (j)(zu)f (s)(zu)

����� � 1

(s� j)! jzuj
s�j(1 + o(1)); (j = 0; : : : ; s� 1): (3.20)

By (3:5) we obtain

jasms j ems�(�szu;�)ru(1 + o(1)) =
��Ps(e�szu) +Qs(e��szu)��

�
�����f (k)(zu)f (s)(zu)

�����+
k�1X

j=0;j 6=s

��Pj(e�jzu) +Qj(e��jzu)��
�����f (j)(zu)f (s)(zu)

�����
� r(��1+")(k�s)u +

X
j>s

��ajmj �� emj�(�jzu;�)rur(��1+")(j�s)u

+
X
j<s

1

(s� j)!
��ajmj �� emj�(�jzu;�)rurs�ju (1 + o(1))

� MeCms�(�szu;�)rur(��1+")(k�s)+su (1 + o(1)); (3.21)

for some M > 0: Since 0 < C = max
j
f 1cj g < 1, and �(�szu; �) > 0; then (3.21) is a

University of Mostaganem M. A. Zemirni



3.3. Proofs of main results 40

contradiction when ru ! +1: Hence,
��f (s)(z)�� is bounded on the ray arg z = �: Therefore,���f(rei�)��� � C1r

s: (3.22)

If �(�sz; �) < 0; then �(�jz; �) < 0 for all j = 0; : : : ; s � 1; s + 1; : : : ; k � 1; in particular

�(�tz; �) < 0; i.e., �nt�(�tz; �) > 0: We assert that
��f (t)(z)�� is bounded on the ray

arg z = �: If
��f (t)(z)�� is unbounded then by Lemma 1.8.4, there exists an in�nite sequence

of points zu = rue
i� (u = 1; 2; : : : ) where ru ! +1 such that f (t)(zu)!1 and�����f (j)(zu)f (t)(zu)

����� � 1

(t� j)! jzuj
t�j(1 + o(1)); (j = 0; : : : ; t� 1):

We obtain

jbtmt j e�nt�(�tzu;�)ru(1 + o(1)) �Me�Dnt�(�tzu;�)rur(��1+")(k�t)+tu (1 + o(1)) (3.23)

for some constant M > 0: Since 0 < D = max
j
f 1dj g < 1 and �nt�(�tz; �) > 0; we see that

(3.23) is a contradiction when ru ! +1: Thus���f(rei�)��� � C2r
t: (3.24)

Since the linear measure of E [H is zero, by (3.22), (3.24) and Lemma 1.8.3, we conclude

that f is polynomial, which contradicts the fact that f is transcendental. Therefore

�(f) = +1:

(3) Finally, we will prove that (3:5) has no non trivial subnormal solution. Suppose

that (3:5) has a subnormal solution f: So, �(f) =1; and by Theorem 1.7.3, we see that

�2(f) � 1: Set �2(f) = � � 1: By Theorem 1.5.2, there exists a set E1 � (1;1) having

a �nite logarithmic measure, and there is a constant B > 0 such that for all z satisfying

jzj = r 62 [0; 1] [ E1; we have�����f (j)(z)f(z)

����� � B [T (2r; f)]k+1 , j = 1; : : : ; k: (3.25)

From Wiman-Valiron theory, there is a set E2 � (1;1) having �nite logarithmic measure,

so we can choose z satisfying jzj = r 62 E2 and jf(z)j =M(r; f): Thus, we have

f (j)(z)

f(z)
=

�
�f (r)

z

�j
(1 + o(1)), j = 1; : : : ; k: (3.26)

By Lemma 1.6.1, we can see that there exists a sequence fzn = rne
i�ng such that jf(zn)j =

M(rn; f); �n 2 [0; 2�); lim
n!1

�n = �0 2 [0; 2�); rn 62 [0; 1][E1[E2; rn !1; and such that
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1. if � > 0; then for any given "1 (0 < "1 < �);

expfr��"1n g < �f (rn) < expfr�+"1n g (3.27)

2. if � = 0; and since �(f) = 1, then for any given "2 (0 < "2 <
1
2) and for any large

M > 0, we have as rn su¢ ciently large

rMn < �f (rn) < expfr"2n g: (3.28)

From (3.27) and (3.28), we obtain that

�f (rn) > rn, rn !1: (3.29)

Since �0 may belong to f� 2 [0; 2�) : �(�sz; �) > 0g; or f� 2 [0; 2�) : �(�sz; �) < 0g; or

f� 2 [0; 2�) : �(�sz; �) = 0g; we divide the proof into three cases.

Case 1. �0 2 f� 2 [0; 2�) : �(�sz; �) > 0g: By, �n ! �0; there exists N > 0 such that, as

n > N; we have �(�szn; �n) > 0: Since f is subnormal, then for any given " > 0; we have

T (r; f) � e"r: (3.30)

By (3.25), (3.26) and (3.30), we obtain�
�f (rn)

rn

�j
(1 + o(1)) =

�����f (j)(zn)f(zn)

����� � B [T (2rn; f)]
k+1 � e2(k+1)"r, j = 1; : : : ; k: (3.31)

Because �(�szn; �n) > 0; then �(�jzn; �n) > 0 (j = 0; : : : ; s � 1; s + 1; : : : ; k � 1); and we

have ��Ps(e�szn) +Qs(e��szn)�� = jasms j ems�(�szn;�n)rn(1 + o(1)) (3.32)

and

��Pj(e�jzn) +Qj(e��jzn)�� =
��ajmj �� emj�(�jzn;�n)rn(1 + o(1))

=
��ajmj �� emscj �(�szn;�n)rn(1 + o(1))

� MeCms�(�szn;�n)rn(1 + o(1)), j 6= s; (3.33)

where M = max
j
f
��ajmj ��g and 0 < C = max

j
f 1cj g < 1: By (3.29), (3.31), (3.32), (3.33) and

(3:5), we obtain

jasms j ems�(�szn;�n)rn(1 + o(1)) � kMBeCms�(�szn;�n)rne2(k+1)"rn(1 + o(1)): (3.34)
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Since 0 < C < 1 and �(�szn; �n) > 0 we can see that (3.34) is a contradiction when

rn !1 and

0 < " <
1� C
2(k + 1)

ms�(�szn; �n):

Case 2. �0 2 f� 2 [0; 2�) : �(�sz; �) < 0g: By, �n ! �0; there exists N > 0 such that, as

n > N; we have �(�szn; �n) < 0; then �(�jzn; �n) > 0 (j = 0; : : : ; s � 1; s + 1; : : : ; k � 1).

In particular �(�tzn; �n) < 0; i.e., �nt�(�tzn; �n) > 0: We have

��Pt(e�tzn) +Qt(e��tzn)�� = jbtnt j e�nt�(�tzn;�n)rn(1 + o(1)) (3.35)

and

��Pj(e�jzn) +Qj(e��jzn)�� =
��bjnj �� enj�(�jzn;�n)rn(1 + o(1))

=
��bjnj �� entdj �(�tzn;�n)rn(1 + o(1))

� MeDnt�(�tzn;�n)rn(1 + o(1)), j 6= t; (3.36)

where M = max
j
f
��bjnj ��g and 0 < D = max

j
f 1dj g < 1: By (3.29), (3.31), (3.35), (3.36) and

(3:5), we obtain

jbtnt j e�nt�(�tzn;�n)rn(1 + o(1)) � kMBe�Dnt�(�tzn;�n)rne2(k+1)"rn(1 + o(1)): (3.37)

Since 0 < D < 1 and �nt�(�tzn; �n) > 0 we can see that (3.37) is a contradiction when

rn !1 and

0 < " < � 1�D
2(k + 1)

nt�(�tzn; �n):

Case 3. �0 2 H = f� 2 [0; 2�) : �(�sz; �) = 0g: By, �n ! �0; for any given  > 0; there

exists N > 0 such that, as n > N; we have �n 2 [�0� ; �0+ ] and zn = rne
i�n 2 S(�0) =

fz : �0 �  � arg z � �0 + g: By Theorem 1.5.2, there exists a set E3 � (1;1) having

�nite logarithmic measure, and there a constant B > 0, such that for all z satisfying

jzj = r 62 [0; 1] [ E3; we have for l � k � 1�����f (j)(z)f (l)(z)

����� � B [T (2r; f)]k+1 , j = l + 1; : : : ; k: (3.38)

Now, we consider the growth of f(rei�) on the ray arg z = � 2 [�0 � ; �0) [ (�0; �0 + ]:

Denote S1(�0) = [�0 � ; �0) and S2(�0) = (�0; �0 + ]: We can easily see that when

�1 2 S1(�0) and �2 2 S2(�0) then �(�sz; �1)�(�sz; �2) < 0: Without loss of the generality,

we suppose that �(�sz; �) > 0 for � 2 S1(�0) and �(�sz; �) < 0 for � 2 S2(�0): For
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� 2 S1(�0); we have �(�sz; �) > 0: Since, f is subnormal, then for any given " > 0; we

have

T (r; f) � e"r: (3.39)

We assert that
��f (s)(rei�)�� is bounded on the ray arg z = �: If

��f (s)(z)�� is unbounded then
by Lemma 1.8.4, there exists an in�nite sequence of points wu = rue

i� (u = 1; 2; : : : ) where

ru ! +1 such that f (s)(wu)!1 and�����f (j)(wu)f (s)(wu)

����� � 1

(s� j)!r
s�j
u (1 + o(1)) � rsu(1 + o(1)); j = 0; : : : ; s� 1: (3.40)

By (3.38) and (3.39), we obtain�����f (j)(wu)f (s)(wu)

����� � B [T (2ru; f)]
k+1 � e2(k+1)"ru , j = s+ 1; : : : ; k: (3.41)

By (3:5), (3.32), (3.33), (3.40) and (3.41), we deduce

jasms j ems�(�szn;�)ru(1 + o(1)) � kMBeCms�(�swu;�)rue2(k+1)"rursu(1 + o(1)): (3.42)

Since 0 < C < 1 and �(�swu; �) > 0 we can see that (3.42) is a contradiction when ru !1

and

0 < " <
1� C
2(k + 1)

ms�(�swu; �):

Hence, ���f(rei�)��� �M1r
s (3.43)

on the ray arg z = � 2 [�0 � ; �0): For � 2 S2(�0); we have �(�sz; �) < 0; �(�tz; �) < 0

and we assert that
��f (t)(rei�)�� is bounded on the ray arg z = �: If

��f (t)(z)�� is unbounded
then by Lemma 1.8.4, there exists an in�nite sequence of points wu = rue

i� (u = 1; 2; : : : )

where ru ! +1 such that f (t)(wu)!1 and�����f (j)(wu)f (t)(wu)

����� � 1

(t� j)!r
t�j
u (1 + o(1)) � rtu(1 + o(1)); j = 0; : : : ; t� 1: (3.44)

By (3.38) and (3.39), we obtain�����f (j)(wu)f (t)(wu)

����� � B [T (2ru; f)]
k+1 � e2(k+1)"ru ; j = t+ 1; : : : ; k: (3.45)

By (3:5), (3.35), (3.36), (3.44) and (3.45), we deduce

jbtnt j e�nt�(�twu;�)ru(1 + o(1)) � kMBe�Dnt�(�twu;�)rue2(k+1)"rnrtu(1 + o(1)): (3.46)
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Since 0 < D < 1 and �nt�(�tzn; �n) > 0 we can see that (3.46) is a contradiction when

rn !1 and

0 < " < � 1�D
2(k + 1)

nt�(�tzn; �n):

Hence, ���f(rei�)��� �M2r
t (3.47)

on the ray arg z = � 2 (�0; �0 + ]: By (3.43) and (3.47), we have���f(rei�)��� �Mrk (3.48)

on the ray arg z = � 6= �0; z 2 S(�0): Since f has in�nite order and fzn = rne
i�n 2 S(�0)g

satis�es jf(zn)j = M(rn; f); we see that for any large N > 0; and as n su¢ ciently large,

we have ���f(rnei�n)��� � expfrNn g: (3.49)

Then, from (3.48) and (3.49), we getMrkn � expfrNn g that is a contradiction. Hence, (3:5)

has no nontrivial subnormal solution.

(4) By Theorem 1.7.3, every solution f of (3:5) satis�es �2(f) � 1: Suppose that

�2(f) < 1; then �e(f) = 0; i.e., f is subnormal solution and this contradicts the conclusion

above: So �2(f) = 1:

3.3.3 Proof of Theorem 3.2.3

We consider Qj(z) � 0 (j = 1; : : : ; k � 1) in (3.5). By similar method of proof to Theorem

3.2.1, we conclude the result.

3.3.4 Proof of Theorem 3.2.4

We consider Qj(z) � 0 (j = 1; : : : ; k � 1) in (3:5). We use the same method as in the

proof of Theorem 3.2.2. Just in the case when �(�sz; �) < 0; we use the fact that
��f (k)(z)��

is bounded on the ray arg z = �: If
��f (k)(z)�� is unbounded then by Lemma 1.8.4, there

exists an in�nite sequence of points zn = rne
i� (n = 1; 2; : : : ) where rn ! +1 such that

f (k)(zn)!1 and �����f (j)(zn)f (k)(zn)

����� � rkn(1 + o(1)); (j = 0; : : : ; k � 1): (3.50)
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By the de�nition of P �j (e
�jz); and because �(�sz; �) < 0; i.e., �(�jz; �) < 0;8j, by ms�s =

cjmj�j . Then, we can write

��P �j (e�jzn)�� = jaj1j e�(�jzn;�)rn(1 + o(1)): (3.51)

By (3.7), (3.50) and (3.51), we have

1 �
k�1X
j=0

��P �j (e�jzn)��
�����f (j)(zn)f (k)(zn)

�����
�

k�1X
j=0

jaj1j e�(�jzn;�)rnrkn(1 + o(1)): (3.52)

Since �(�jz; �) < 0;8j , then (3.52) is a contradiction as rn ! 1: Thus,
��f (k)(z)�� � M;

so jf(z)j �Mrk:

3.3.5 Proof of Theorem 3.2.5

Suppose that f is a nontrivial subnormal solution of (3.4). Let

h(z) = f(z)e(bm=am)z:

Then h is a nontrivial subnormal solution of the equation

h(k) +
k�1X
j=0

�
Rj (e

z) + Sj
�
e�z
��
h(j) = 0; (3.53)

where

Rj (e
z) + Sj

�
e�z
�
= Cjk

�
� bm
am

�k�j
+
k�1X
l=j

Cjl

�
� bm
am

�l�j �
Pl (e

z) +Ql
�
e�z
��
:

Because m > maxfmj : j = 2; : : : ; k � 1g and n > maxfnj : j = 2; : : : ; k � 1g; we have

degR1 = degP1 = m;

degS1 = degQ1 = n:

From amdn = bmcn; we see in the formula

R0 (e
z) + S0

�
e�z
�
=

�
� bm
am

�k
+
k�1X
l=2

�
� bm
am

�l �
Pl (e

z) +Ql
�
e�z
��

+

�
� bm
am

��
P1 (e

z) +Q1
�
e�z
��
+
�
P0 (e

z) +Q0
�
e�z
��
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that

degR0 < m;

degS0 < n:

Then, we have

degR1 = m > degRj : j = 0; 2; : : : ; k � 1;

degS1 = n > degSj : j = 0; 2; : : : ; k � 1

and since e�(bm=am)z is not a solution of (3.4), then

R0 (e
z) + S0

�
e�z
�
=

�
� bm
am

�k
+
k�1X
l=0

�
� bm
am

�l �
Pl (e

z) +Ql
�
e�z
��
6� 0:

By applying Theorem 3.1.3 on the equation (3.53), we obtain the conclusion.
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Conclusion and perspective

Throughout this work, we have been talking about the possibility of generalization of

some results related to second-order complex di¤erential equations to higher-order complex

di¤erential equations in analogous manner or di¤erent manner, and extension for other

results. For example, we generalized the results of Li and Yang : Theorem 2.2.2 and

Theorem 2.2.3 to Theorem 3.2.1 and Theorem 3.2.2, and these last two theorems are

extensions for results of Liu and Yang, Chen and Shon : Theorem 3.1.2 and Theorem

3.1.3.

Theorem 2.2.3 is generalized to Theorem 3.2.5 and we considered at that case, the

equation

f (k)+
�
Pk�1 (e

z) +Qk�1
�
e�z
��
f (k�1)+� � �+

�
P1 (e

z) +Q1
�
e�z
��
f 0+

�
P0 (e

z) +Q0
�
e�z
��
f = 0

with degP1 = degP0 and degQ1 = degQ0:

From that, we hope to solve the next problem :

What can be said about the subnormal solutions of the equation above if we suppose

that

degPj = degP0 and degQj = degQ0 ; 8j = 0; : : : ; k � 1 ?

or, What are the hypotheses that guarantee that the equation above doesn�t have subnor-

mal solution ?

We hope also, study the existence or nonexistence of subnormal solutions of the equa-

tion of the general form

f 00 + P (eA)f 0 +Q(eB)f = 0

where P (z); Q(z) are polynomials in z, with degP = degQ and ; A(z) and B(z) are

polynomials in z with degA = degB or A(z) and B(z) are transcendental entire functions

with �p(A) = �p(B); here, �p denote the p-iterated order. See [23].

47
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Another problem is about the existence or nonexistence of subnomral solutions of the

equation

f 00 +
�
P1(e

A) +Q1(e
�A)

�
f 0 +

�
P1(e

B) +Q2(e
�B)

�
f = 0

where P (z); Q(z); A(z) and B(z) are polynomials in z.

Other questions are raised about di¤erential polynomials generated by the nontrivial

solutions and especially nontrivial subnormal solutions of all forms of di¤erential equations

mentioned in this thesis. The problems related to the di¤erential polynomials are about

estimate the growth of order and if possible estimate the e-type order, oscillation theory,

etc.
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