REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABDELHAMID IBN BADIS MOSTAGANEM

Faculté des Sciences Exactes et Sciences de la Nature et de la vie

Département de Mathématiques

MEMOIRE DE MASTER

Option : Analyse Fonctionnelle

$Intitul\'ee \\ INTRODUCTION~AU~CALCUL~QUANTIQUE$

Présentée par : **BENAROUSSA NADIA KACEM HIZIYA**

Soutenue le : devant le jury composé de :

Encadreur : Mr **LATREUCH** Prof., Université de Mostaganem Examinateur : Mr Prof., Université de Mostaganem Examinateur : Mr Prof., Université de Mostaganem

Remerciements

- Avant tout, nous remercions DIEU, le tout puissant, pour la force, la volonté, la santé et la patience qu'il ma donné pour accomplir ce travail.
 - Nous tenons à exprimer notre grand respect et nous gratitude à notre promoteur le professeur :
 - Mr Zinelaabidin LATROUCH, pour nous avoir honoré en acceptant de diriger notre mémoire, pour son
- encadrement de qualité, ses précieuses suggestions scientifiques, sa présence encourageante, et sa patience tout au long de ce travail.
 - Nos profonds remerciements pour les membres de jury Mr Houari FETTOUCH et Mr Mustapha MOHEMMEDI qui ont accepté d'évaluer ce travail.
- Nos reconnaissances vont aussi à tous nos enseignants pour leurs apports inestimables en informations indispensables pour notre formation.
- Enfin, nous remercions chaleureusement toutes personnes ayant contribués de prés ou de loin à l'élaboration de ce travail.
 - Nous adresse mes remerciements infinis à nos parents pour leurs soutiens et leurs encouragements.
 - Une pensée particulière est adressée à tous nos collègues et amis, Pour terminer, Merci pour tous ceux qui, par leurs remarques et leurs conseils, ont contribué à la réalisation de ce travail.

Table des matières

Introduction			3	
1	Notations et Préliminaires			
	1.1	Définitions et notations	4	
	1.2	q-Dérivées	8	
	1.3	q-Intégrales	10	
		1.3.1 q-Primitives	10	
		1.3.2 Intégrale de Jackson	11	
	1.4	Les deux formules de q-Binôme-Gauss et de Heine	16	
	1.5	Fonctions q-Exponentielles	18	
	1.6	Fonctions q-trigonométriques	21	
	1.7	Fonctions q-hypegéométriques	24	
	1.8	Fonction q-Gamma	25	
	1.9	Fonction q-Béta	26	
2	Les équations aux q-différences de premier ordre			
	2.1	Les équations aux q-différences linéaire de premier ordre	28	
		2.1.1 Equation de la forme $D_q y(x) = ay(x) \dots \dots \dots \dots$	31	
		2.1.2 Equation de la forme $D_q y(x) = ay(qx) \dots \dots \dots \dots$	31	
		2.1.3 Equations de la forme $D_q y(x) = ay(x) + b \dots \dots \dots$	32	
		2.1.4 Equations de la forme $D_q y(x) = ay(qx) + b$	32	
		2.1.5 Equations de la forme $D_q y(x) = \alpha x y(x) \dots \dots \dots \dots$	32	
	2.2	Transformation des équations aux q-différences non linéaire à des équations		
		linéaires	33	
		2.2.1 Equations de Riccati	33	
		2.2.2 Equations homogènes de la forme $f\left(\frac{D_q y(x)}{y(x)}, x\right) = 0$	34	
		2.2.3 Equations de la forme $[y(qx)]^{c_1}[y(x)]^{c_2} = g(x)$	35	
\mathbf{Bi}	Bibliographie			

Résumé

Dans ce mémoire, on s'interesse à rappeler les principales notions et résultats de la qthéorie, puis on étudie des équations aux q-différences de premier ordre.

Ce travaille se compose de deux chapitre :

Chapitre 1 : est consacré à des résultats préliminaires et notations de la q-théorie :il sert essentiellement à motiver le travail. Nous donnons pour cela les définitions

des séries basique hypergéométriques, de q-dérivées, des q-intégrales de Jackson et les q-analogues de fonctions eulériennes avec leurs propriétés et des exemples.

Chapitre 2 : Nous traitons des équations aux q-différences de premier ordre, et on explique comment transformée des équations non linéaires à des équations linéaires, dans trois cas : équations de Riccati, équations homogènes de la forme

$$f\left(\frac{D_{q}y\left(x\right)}{y\left(x\right)},x\right) = 0$$

et les équations de la forme

$$(y(qx))^{c_1} (y(x))^{c_2} = g(x).$$

Introduction

Plusieurs mathématiciens sont intéressés par le calcul quantique qui a essentielement debuté en 1748. Au dix-neuvième siècle (1846), Heine introduit la notion de q-analogue ou q-extension (sous entendu que la formule originale se trouve être limite quand q tend vers 1 de sa q-déforme). En 1867 son élève Thomae a utilisé les travaux de Fermat en probabilité pour introduire la notion de q-intégrale entre 0 et 1, Cette notion est prolongée au début du vingtième siècle par F. H. Jackson [1870-1960] : il a introduit la q-théorie de q-analogue, il s'est intéressé aux q-analogues de certaines fonctions spéciales, de même il s'est construit les notions de q-dérivée, q-intégrale.

Pendant le 20^{ieme} sciecle l'application de cette théorie a trouvé des assises dans plusieurs domaines scientifiques : physique, mécanique quantique, combinatoire.

Plusieurs mathématiciens et physiciens ont constribué à l'essor de cette théorie par des travaux considérables.

Ce mémoire se compose de deux parties essentielles :

Dans la première partie intituté : "Eléments du calcul quantique", nous rappellons quelques définitions et propriétés en q-théorie (q-dérivées, des q-intégrales, des séries hypergéométriques, la fonction q-Gamma et q-Béta ainsi que quelques exemples).

La second partie porte essentiellement sur les équations aux q-différences de premier ordre.

Nous traitons des équations aux q-différences de premier ordre qui sont définies par :

$$f\left(x,y\left(x\right),D_{q}y\left(x\right)\right)=0$$

et

$$g(x,y(x),y(qx)) = 0.$$

En suite, on explique comment transformée des équations non linéaires à des équations linéaires, dans trois cas : équations de Riccati, équations homogènes de la forme

$$f\left(\frac{D_{q}y\left(x\right)}{y\left(x\right)},x\right) = 0$$

et les équations de la forme

$$(y(qx))^{c_1} (y(x))^{c_2} = g(x).$$

Chapitre 1

Eléments du calcul quantique

Dans ce chapitre, nous présentons les principales définitions et résultats sur le calcul quantique. Pour plus d'informations, on peut consulter ([1], [2], [3], [5], [6], [7]).

1.1 Définitions et notations

Définition 1.1 On définit le q-analogue d'un entier n par

$$[n]_q = \frac{q^n - 1}{q - 1} = q^{n-1} + q^{n-2} + \dots + 1.$$
(1.1)

Définition 1.2 On définit la q-factorielle d'un entier n par

$$[n]_q! = \begin{cases} 1 & \text{si } n = 0 \\ [1]_q [2]_q \dots [n]_q & \text{si } n \in \mathbb{N}^* \end{cases}$$
 (1.2)

Définition 1.3 On définit les coefficients q-binomiaux par

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{[n]_{q}!}{[n-k]_{q}! [k]_{q}!}, \tag{1.3}$$

 $où 0 < q < 1 \text{ et } n, k \in \mathbb{N}.$

Propriétés 1.1 Soient $n, k \in \mathbb{N}$, et 0 < q < 1. On a

(i)
$$\begin{bmatrix} n \\ 0 \end{bmatrix}_q = \begin{bmatrix} n \\ n \end{bmatrix}_q = 1$$
 (1.4)

(ii)
$$\begin{bmatrix} n \\ n-k \end{bmatrix}_{a} = \begin{bmatrix} n \\ k \end{bmatrix}_{a}$$
 (1.5)

(iii)
$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_{a} = \begin{bmatrix} n \\ k-1 \end{bmatrix}_{a} + q^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{a}. \tag{1.6}$$

(iv)
$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q$$
.

Preuve.

(i) D'après (1.02) on
a $[0]_q!=1,$ alors

$$\begin{bmatrix} n \\ 0 \end{bmatrix}_q = \frac{[n]_q!}{[n-0]_q! [0]_q!}$$
$$= \frac{[n]_q!}{[n]_q!} = \begin{bmatrix} n \\ n \end{bmatrix}_q$$
$$= 1$$

(ii) D'après la définition des coefficients q-binomiaux, on a

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}$$

$$= \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$$

$$= \frac{[n]_{q}!}{[n-(n-k)]_{q}![n-k]_{q}!}$$

$$= \begin{bmatrix} n \\ n-k \end{bmatrix}_{q}.$$

(iii) Pour tout $1 \le k \le n-1$, on a

$$[n]_{q} = 1 + q + \dots + q^{n-1}$$

$$= (1 + q + \dots + q^{k-1}) + q^{k} (1 + q + \dots + q^{n-k-1})$$

$$= [k]_{q} + q^{k} [n - k]_{q}.$$
(1.7)

D'autre part,

$$\left[\begin{array}{c} n+1 \\ k \end{array} \right]_q \ = \ \frac{[n+1]_q!}{[n+1-k]_q! \, [k]_q!} \\ = \ \frac{[n]_q! \, [n+1]_q}{[n+1-k]_q! \, [k]_q!} .$$

D'après (1.07),

$$\begin{bmatrix} n+1 \\ k \end{bmatrix}_{q} = \frac{[n]_{q}! \left([k]_{q} + q^{k} [n+1-k]_{q} \right)}{[n+1-k]_{q}! [k]_{q}!}$$

$$= \frac{[n]_{q}! [k]_{q}}{[n+1-k]_{q}! [k]_{q}!} + q^{k} \frac{[n]_{q}! [n+1-k]_{q}! [k]_{q}!}{[n+1-k]_{q}! [k]_{q}!}$$

$$= \frac{[n]_{q}!}{[n+1-k]_{q}! [k-1]_{q}!} + q^{k} \frac{[n]_{q}!}{[n-k]_{q}! [k]_{q}!}$$

$$= \begin{bmatrix} n \\ k-1 \end{bmatrix}_{q} + q^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{q}.$$

(iv) D'après (1.05) et (1.06),

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ n-k \end{bmatrix}_q$$

$$= \begin{bmatrix} n-1 \\ n-k-1 \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1 \\ n-k \end{bmatrix}_q$$

$$= \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q .$$

Soit a un nombre complexe. Le symbôle de Pochhammer, utilisé en théorie des séries hypergéométriques et en combinatoire, est défini par :

Définition 1.4 Soit $a \in \mathbb{C}$. On définit le symbôle de Pochhammer par

$$(a)_n = \begin{cases} 1 & \text{si } n = 0\\ \prod_{k=0}^{n-1} (a+k) = (a)(a+1)\dots(a+n-1) & \text{si } n \in \mathbb{N}^* \end{cases}$$
(1.8)

Définition 1.5 Le q-analogue du symbole de Pochhammer appelé q-shift factoriel est défini pour $q \in \mathbb{C}^*$ et $a \in \mathbb{C}$ par

$$(a,q)_n = (1-a)_q^n = \begin{cases} 1 & \text{si } n=0\\ \prod_{k=0}^{n-1} (1-aq^k) & \text{si } n \in \mathbb{N}^* \end{cases}$$
 (1.9)

et pour $q \in [0,1[$, on définit

$$(a,q)_{\infty} = (1-a)_q^{\infty} = \prod_{k=0}^{\infty} (1-aq^k).$$
 (1.10)

Définition 1.6 Le q-analogue du $(x-a)^n$ est défini par

$$(x-a)_q^n = \begin{cases} 1 & \text{si } n = 0 \\ (x-a)(x-aq)\dots(x-aq^{n-1}) & \text{si } n \in \mathbb{N}^* \end{cases}.$$

Théorème 1.1

$$\sum_{k=0}^{\infty} \frac{(a;q)_k x^k}{(q;q)_k} = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}, \quad |x| < 1, \quad 0 < |q| < 1.$$
(1.11)

Preuve. Soit

$$f_a(x) = \sum_{k=0}^{\infty} \frac{(a;q)_k x^k}{(q;q)_k}.$$

Pour 0 < |q| < 1, cette série converge si |x| < 1, alors,on a

$$\lim_{k\to\infty}\left|\frac{(a;q)_{k+1}}{(q;q)_{k+1}}\frac{(q;q)_k}{(a;q)_k}x\right|=\lim_{k\to\infty}\left|\frac{1-aq^k}{1-q^k}x\right|=|x|\,.$$

On note $D_q f(x) = \frac{f(qx) - f(x)}{(q-1)x}$, d'où

$$\frac{f_a(x) - f_a(qx)}{(1 - q)x} = D_q f_a(x)
= \sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} \frac{1 - q^k}{1 - q} x^{k-1}
= \frac{1 - a}{1 - q} \sum_{k=1}^{\infty} \frac{(aq;q)_{k-1}}{(q;q)_{k-1}} x^{k-1}
= \frac{1 - a}{1 - q} \sum_{k=0}^{\infty} \frac{(aq;q)_k}{(q;q)_k} x^k
= \frac{1 - a}{1 - q} f_{aq}(x).$$

alors

$$f_a(x) - f_a(qx) = (1 - a) x f_{aq}(x),$$

D'autre part

$$f_{a}(x) - f_{a}(qx) = \sum_{k=0}^{\infty} \frac{(a;q)_{k}}{(q;q)_{k}} x^{k} - \sum_{k=0}^{\infty} \frac{(aq;q)_{k}}{(q;q)_{k}} x^{k}$$

$$= \sum_{k=1}^{\infty} \frac{(aq;q)_{k-1}}{(q;q)_{k}} \left[1 - a - \left(1 - aq^{k} \right) \right] x^{k}$$

$$= -ax \sum_{k=1}^{\infty} \frac{(aq;q)_{k-1}}{(q;q)_{k-1}} = -ax \sum_{k=0}^{\infty} \frac{(aq;q)_{k}}{(q;q)_{k}} x^{k}$$

$$= -ax f_{aq}(x).$$

Ce qui implique

$$f_a(x) = (1 - ax) f_{aq}(x),$$

alors

$$(1 - ax) [f_a(x) - f_a(qx)] = (1 - a) x f_a(x) \implies f_a(x) = \frac{1 - ax}{1 - x} f_a(qx).$$

L'itération de la formule précédente donne

$$f_{a}(x) = \frac{(1-ax)(1-aqx)...(1-axq^{n-1})}{(1-x)(1-qx)...(1-xq^{n-1})} f_{a}(q^{n}x)$$

$$= \frac{(ax;q)_{n}}{(x;q)_{n}} f_{a}(q^{n}x)$$

$$= \frac{(ax;q)_{\infty}}{(x;q)_{\infty}} f_{a}(0).$$

Où

$$f_a(0) = 1.$$

1.2 q-Dérivées

Définition 2.1 On définit la q-différentielle d'une fonction f par

$$d_q f(x) = f(qx) - f(x), \qquad (1.12)$$

en particulier

$$d_q x = (q-1) x.$$

Proposition 2.1 La q-différentielle de produit de deux fonctions f,g donnée par

$$d_{a}(f(x)g(x)) = f(qx)d_{a}g(x) + g(x)d_{a}f(x).$$
(1.13)

Preuve.

D'après la définition du q-différentielle, on a

$$d_{q}(f(x) g(x)) = f(qx) g(qx) - f(x) g(x)$$

$$= f(qx) g(qx) - f(qx) g(x) + f(qx) g(x) - f(x) g(x)$$

$$= f(qx) d_{q}g(x) + g(x) d_{q}f(x).$$

Définition 2.2 On définit la q-dérivée de la fonction f par

$$D_{q}f(x) = \frac{d_{q}f(x)}{d_{q}x} = \frac{f(qx) - f(x)}{(q-1)x}, pour \ x \neq 0,$$
(1.14)

et $D_q f(0) = f'(0)$ pourvue que f'(0) existe.

Exemples 2.1

1) Soit $f(x) = \sqrt{x}$, on a

$$D_q(\sqrt{x}) = \frac{\sqrt{qx} - \sqrt{x}}{(q-1)x}$$
$$= \frac{1}{(\sqrt{q}+1)\sqrt{x}}, x > 0.$$

2) Soit $f(x) = x^n$, $n \in \mathbb{N}$, on a

$$D_q(x^n) = \frac{(qx)^n - x^n}{(q-1)x}$$
$$= \frac{q^n - 1}{q-1}x^{n-1}$$
$$= [n]_q x^{n-1}.$$

3) Soit $f(x) = \frac{1}{x}$, on a

$$D_{q}\left(\frac{1}{x}\right) = \frac{\frac{1}{qx} - \frac{1}{x}}{(q-1)x}$$
$$= \frac{\left(\frac{1}{q} - 1\right)\frac{1}{x}}{(q-1)x}$$
$$= -\frac{1}{qx^{2}}.$$

Remarque 2.1 Il est claire que si f est dérivable, alors $D_q f(x)$ tend vers f'(x) lorsque q tend vers 1.

Propriétés 2.1 Soient f et g deux fonctions arbitraire, et soient a, b deux réelles.

i) D_q est un opérateur linéaire, i.e.

$$D_{q}(af(x) + bg(x)) = aD_{q}(f(x)) + bD_{q}(g(x))$$
(1.15)

ii) $D_{q}(f(x)g(x)) = f(qx)D_{q}(g(x)) + g(x)D_{q}(f(x)), \qquad (1.16)$

et on a aussi

$$D_{q}(f(x)g(x)) = f(x)D_{q}(g(x)) + g(qx)D_{q}(f(x)).$$
(1.17)

iii)
$$D_{q}\left(\frac{f\left(x\right)}{g\left(x\right)}\right) = \frac{g\left(x\right)D_{q}\left(f\left(x\right)\right) - f\left(x\right)D_{q}\left(g\left(x\right)\right)}{g\left(x\right)g\left(qx\right)}, g\left(x\right)g\left(qx\right) \neq 0. \tag{1.18}$$

iv) Soient $\alpha, \beta \in \mathbb{R}$, on définit la fonction u par $u(x) = \alpha x^{\beta}$. Alors

$$D_{q}\left[f\left(u\left(x\right)\right)\right] = \left(D_{q^{\beta}}f\right)\left(u\left(x\right)\right)D_{q}\left(u\left(x\right)\right). \tag{1.19}$$

Preuve.

i)

$$D_{q}(af(x) + bg(x)) = \frac{af(qx) + bg(qx) - af(x) - bg(x)}{(q-1)x}$$

$$= \frac{a(f(qx) - f(x))}{(q-1)x} \frac{b(g(qx) - g(x))}{(q-1)x}$$

$$= aD_{q}(f(x)) + bD_{q}(g(x))$$

ii)

$$D_{q}(f(x) g(x)) = \frac{d_{q}(f(x) g(x))}{(q-1) x}$$

$$= \frac{f(qx) d_{q}(g(x)) + g(x) d_{q}(f(x))}{(q-1) x}$$

$$= f(qx) D_{q}(g(x)) + g(x) D_{q}(f(x)).$$

iii) Il est claire que $g\left(x\right)\frac{f\left(x\right)}{g\left(x\right)}=f\left(x\right)$, alors

$$D_{q}\left(g\left(x\right)\frac{f\left(x\right)}{g\left(x\right)}\right) = D_{q}\left(f\left(x\right)\right),$$

ce qui implique

$$g(qx) D_q\left(\frac{f(x)}{g(x)}\right) + \frac{f(x)}{g(x)} D_q(g(x)) = D_q(f(x)),$$

donc

$$D_{q}\left(\frac{f\left(x\right)}{g\left(x\right)}\right) = \frac{g\left(x\right)D_{q}\left(f\left(x\right)\right) - f\left(x\right)D_{q}\left(g\left(x\right)\right)}{g\left(x\right)g\left(qx\right)}$$

iv)

$$D_{q} [f (u (x))] = D_{q} [f (\alpha x^{\beta})] = \frac{f (\alpha q^{\beta} x^{\beta}) - f (\alpha x^{\beta})}{qx - x}$$

$$= \frac{f (\alpha q^{\beta} x^{\beta}) - f (\alpha x^{\beta})}{\alpha q^{\beta} x^{\beta} - \alpha x^{\beta}} \frac{\alpha q^{\beta} x^{\beta} - \alpha x^{\beta}}{qx - x}$$

$$= \frac{f (q^{\beta} u) - f (u)}{q^{\beta} u - u} \frac{u (qx) - u (x)}{qx - x}$$

$$= (D_{q^{\beta}} f) (u (x)) D_{q} (u (x)).$$

Remarque 2.1 Il n'existe pas une régle générale pour la q-dérivée de la composée de deux fonctions.

1.3 q-Intégrales

1.3.1 q-Primitives

Définition 3.1 On dit que la fonction F est la q-primitive de la fonction f si $D_qF(x) = f(x)$, et on note

$$F(x) = \int f(x) d_q x. \tag{1.20}$$

Proposition 3.1 Si 0 < q < 1. Alors, quand ajoutant une constante, toute fonction f a au plus une q-primitive qui est continues en x = 0.

Preuve.

On suppose F_1 et F_2 deux q-primitives de f qui sont continues au point 0. Posons $\varphi = F_1 - F_2$. La fonction φ est continue au point 0, et vérifie la propriété suivante $\varphi(qx) = \varphi(x)$ pour tout x, avec $D_q \varphi = 0$. Pour tout A > 0, posons

$$m = \inf \{ \varphi(x) | qA \le x \le A \},$$

$$M = \sup \{ \varphi(x) | qA \le x \le A \},$$

posons m < M, au moins l'un des deux cas $\varphi(0) \neq m$ ou $\varphi(0) \neq M$ est vrais.

Si $\varphi(0) \neq m$, par la continuité en x = 0, soit $\epsilon > 0$ donnée, on peut trouver $\delta > 0$ telle que

$$m + \epsilon \notin \varphi(]0, \delta[)$$
.

D'autre part, $q^{N}A < \delta$ pour tout N assez grand, avec $\varphi\left(qx\right) = \varphi\left(x\right)$, on a

$$m+\epsilon\in\left]m,M\right[\subset\varphi\left[qA,A\right]=\varphi\left[q^{N+1}A,q^{N}A\right]\subset\varphi\left(\left]0,\delta\right[\right),$$

ce qui est une contradiction, par conséquent, m=M et φ est une fonction constante sur l'intervalle [qA,A] .

1.3.2 Intégrale de Jackson

Soit f une fonction arbitraire. Pour construire leur q-primitive $F\left(x\right)$, on introduit l'opérateur \hat{M}_q , qui définie par

$$(\hat{M}_q(F(x)) := F(qx),$$

Alors par la définition de D_q , on a

$$\frac{1}{(q-1)x} \left(\hat{M}_q - 1 \right) F(x) = \frac{F(qx) - F(x)}{(q-1)x} = f(x),$$

On peut formellement écrit

$$F(x) = \frac{1}{\left(1 - \hat{M}_q\right)} \left((1 - q) x f(x) \right)$$
$$= (1 - q) \sum_{n=0}^{\infty} \hat{M}_q^n \left(x f(x) \right).$$

alors,

$$\int f(x) d_q x = (1 - q) x \sum_{n=0}^{\infty} q^n f(q^n x),$$

cette dernière expression est appelée l'intégrale de Jackson.

Définition 3.2 La primitive de Jackson (l'intégrale de Jackson) d'une fonction f est définie par

$$F(x) = (1 - q) x \sum_{n=0}^{\infty} f(q^n x) q^n.$$
 (1.21)

Exemple 3.1 Soit $f(x) = x^n$ et $n \in \mathbb{N}$, on a

$$\int x^{n} d_{q} x = (1-q) x \sum_{j=0}^{+\infty} f(q^{j}x) q^{j}$$

$$= (1-q) x \sum_{j=0}^{+\infty} q^{j} q^{jn} x^{n}$$

$$= (1-q) x^{n+1} \sum_{j=0}^{+\infty} q^{j(n+1)}$$

$$= \frac{(1-q) x^{n+1}}{1-q^{n+1}}$$

$$= \frac{x^{n+1}}{[n+1]_{q}}.$$

Théorème 3.1 Soit 0 < q < 1. Si $|f(x)x^{\alpha}|$ est borné sur l'intervalle]0,A] pour tout $0 \le \alpha < 1$, alors l'intégrale de Jackson converge vers une fonction F(x) sur]0,A]. De plus, F(x) est continue en x = 0 et F(0) = 0.

Preuve. On suppose que pour certains réels α tels que $0 \le \alpha < 1$, $|f(x)x^{\alpha}| < M$ sur [0, A], d'où pour tout $k \ge 0$,

$$|f(q^k x)| < M(q^k x)^{-\alpha}$$
.

Multipliant par q^k , on obtient

$$\left|q^{k}f\left(q^{k}x\right)\right| < Mq^{k}\left(q^{k}x\right)^{-\alpha} = Mx^{-\alpha}\left(q^{1-\alpha}\right)^{k},$$

ce qui implique

$$\left| \sum_{k=0}^{\infty} q^k f\left(q^k x\right) \right| < \sum_{k=0}^{\infty} M x^{-\alpha} \left(q^{1-\alpha}\right)^k = \frac{M x^{-\alpha}}{1 - q^{1-\alpha}}.$$

Alors pour $1-\alpha>0$ et 0< q<1, notre série est majorée par une série géométrique convergente.

On remarque que F(0) = 0, pour démontrer que F(x) est continue en x = 0, pour tout $0 < x \le A$,

$$\left| (1-q) x \sum_{k=0}^{\infty} q^k f(q^k x) \right| < \frac{M(1-q) x^{1-\alpha}}{1-q^{1-\alpha}},$$

qui tend vers 0 quand $x \to 0$, pour 1 - q > 0.

Exemple 3.2 Soit

$$f(x) = \frac{1}{x} = D_q F(x), \ x \neq 0$$

puisque,

$$D_q \log x = \frac{\log(qx) - \log(x)}{(q-1)x} = \frac{\log q}{q-1} \frac{1}{x}, \ x \neq 0$$

donc

$$F(x) = \frac{q-1}{\log q} \log x$$

cette q-primitive de f n'est pas continue en 0, alors

$$\int \frac{1}{x} d_q x = \frac{q-1}{\log q} \log x,$$

d'autre part

$$\int \frac{1}{x} d_q x = (1 - q) x \sum_{n=0}^{\infty} q^n f(q^n x) = +\infty,$$

dans ce cas, la formule de Jackson échoue car $f(x)x^{\alpha} = \frac{1}{x^{1-\alpha}}$ n'est pas bornée pour tout $0 \le \alpha < 1$.

Formule de Jackson pour les intégrales définie

Définition 3.3 Supposons que 0 < a < b, on définit la q-intégrale par

$$\int_{0}^{b} f(x) d_{q}x := (1 - q) b \sum_{n=0}^{+\infty} f(q^{n}b) q^{n}, \ 0 < q < 1,$$
(1.22)

et

$$\int_{a}^{b} f(x) d_{q}x := \int_{0}^{b} f(x) d_{q}x - \int_{0}^{a} f(x) d_{q}x.$$
 (1.23)

Exemple 3.3 Soient $a = 0, b = 1, f(x) = \ln x$

$$\int_{0}^{1} \ln(x) d_{q}x = (1-q) \sum_{n=0}^{+\infty} \ln(q^{n}) q^{n}$$

$$= (1-q) \frac{q \ln q}{(1-q)^{2}}$$

$$= \frac{q \ln q}{(1-q)},$$

telle que
$$\sum_{n=0}^{\infty} nq^n = q \frac{d}{dq} \sum_{n=0}^{\infty} q^n = q \frac{d}{dq} \frac{1}{1-q} = \frac{q}{(1-q)^2}, \ 0 < q < 1.$$

Proposition 3.2

i) Si F une q-primitive de la fonction f, continue en x=0, alors le q-analogue de la formule de Newton-Leibniz est

$$\int_{a}^{b} f(x) d_{q}x = F(b) - F(a), \ 0 \le a < b < \infty.$$
 (1.24)

$$D_{q}\left(\int_{0}^{x} f(t) d_{q}t\right) = f(x). \tag{1.25}$$

Preuve.

i) Comme F(x) est continue en 0, alors on peut appliquer la formule de Jackson, en ajoutant une constante, c'est-à-dire

$$F(x) = (1-q) x \sum_{k=0}^{\infty} q^k D_q F(xq^k) + F(0)$$
$$= (1-q) x \sum_{k=0}^{\infty} q^k f(xq^k) + F(0),$$

alors,

$$\int_{a}^{b} f(x) d_{q}x = \int_{0}^{b} f(x) d_{q}x - \int_{0}^{a} f(x) d_{q}x$$
$$= F(b) - F(a).$$

ii) On a d'après (1.24) pour b = x et a = 0

$$\int_{0}^{x} f(t) d_{q}t = F(x) - F(0),$$

ainsi,

$$D_{q}\left(\int_{0}^{x} f(t) d_{q}t\right) = D_{q}\left(F(x) - F(0)\right)$$
$$= f(x).$$

Théorème 3.2 Soient f et g sont deux fonctions continues, alors

i)

$$\int_{a}^{b} f(x) D_{q}g(x) d_{q}x = f(b) g(b) - f(a) g(a) - \int_{a}^{b} g(qx) D_{q}f(x) d_{q}x.$$
 (1.26)

ii)
$$\int_{a}^{b} f(qx) D_{q}g(x) d_{q}x = f(b) g(b) - f(a) g(a) - \int_{a}^{b} g(x) D_{q}f(x) d_{q}x. \tag{1.27}$$

Preuve. En appliquant (1.24) à notre fonctions f(x)g(x), on obtient

$$\int_{a}^{b} D_{q}(f(x)g(x)) d_{q}x = f(b)g(b) - f(a)g(a),$$

d'autre part, par la règle de produit, on a

$$\int_{a}^{b} f(x) D_{q}g(x) d_{q}x + \int_{a}^{b} g(qx) D_{q}g(x) d_{q}x = f(b) g(b) - f(a) g(a),$$

alors,

$$\int_{a}^{b} f(x) D_{q}g(x) d_{q}x = f(b) g(b) - f(a) g(a) - \int_{a}^{b} g(qx) D_{q}f(x) d_{q}x.$$

Proposition 3.3 Le q-analogue du théorème de changement de variable pour $u(x) = \alpha x^{\beta}$, $\alpha \in \mathbb{C}$ et b > 0, est donné par

$$\int_{u(a)}^{u(b)} f(u) d_q u = \int_{a}^{b} f(u(x)) D_{q^{\frac{1}{\beta}}} u(x) d_{q^{\frac{1}{\beta}}} x$$
(1.28)

$$= \int_{a}^{b} f(u(x)) d_{q^{\frac{1}{\beta}}} u(x). \qquad (1.29)$$

Preuve. Supposons que F(x) est une q-primitive de f(x), alors

$$\int f(u)d_q u = F(u) = F(u(x)).$$

En utilisant la q-dérivée de la composée F(u(x)) pour tout $q' \in]0;1[$, donc on a

$$F(u(x)) = \int_{a}^{b} D_{q'}F(u(x))d_{q'}x$$

$$= \int_{a}^{b} \left(D_{q'^{\beta}}F\right)(u(x))D_{q'}u(x)d_{q'}x$$

$$= \int_{a}^{b} \left(D_{q'^{\beta}}F\right)(u(x))d_{q'}u(x).$$

choisir $q'=q^{\frac{1}{\beta}},$ on a $D_{q'^{\beta}}F=D_qF=f$; alors,

$$\int_{u(a)}^{u(b)} f(u)d_q u = \int_a^b f(u(x))d_{q^{\frac{1}{\beta}}}u(x).$$

Intégrale de Jackson impropre

Pour définir les intégrales de Jackson impropre, en utilisant la sommation des intégrales

$$\int_{0}^{\infty} f(x) d_{q}x := \sum_{n=-\infty}^{+\infty} \int_{q^{n+1}}^{q^{n}} f(x) d_{q}x, \ q < 1.$$
 (1.30)

telle que

$$\int_{q^{n+1}}^{q^n} f(x) d_q x = \int_{0}^{q^n} f(x) d_q x - \int_{0}^{q^{n+1}} f(x) d_q x$$

$$= (1-q) \sum_{k=0}^{\infty} f(q^{n+k}) q^{n+k} - (1-q) \sum_{k=0}^{\infty} f(q^{n+k+1}) q^{n+k+1}$$

$$= (1-q) q^n f(q^n).$$

Définition 3.4 Pour $q \neq 1$, la q-intégrale de Jackson de 0 à ∞ est définie par

$$\int_{0}^{\infty} f(x) d_{q}x := |1 - q| \sum_{k = -\infty}^{+\infty} f(q^{n}) q^{n}.$$
(1.31)

Remarque 3.1 Il est claire que, pour ces q-intégrales sont valides à conditions que les sommes convergent absolument.

Théorème 3.3 L'intégrale de Jackson impropre converge si $x^{\alpha}f(x)$ est bornée quand x est au voisinage de 0, pour certains $\alpha < 1$ et x assez grand pour certains $\alpha > 1$.

Preuve. On a,

$$\int_{0}^{\infty} f(x) d_{q}x = |1 - q| \sum_{n = -\infty}^{+\infty} f(q^{n}) q^{n}.$$

alors,

$$\sum_{n=-\infty}^{+\infty} f(q^n) q^n = \sum_{n=0}^{+\infty} f(q^n) q^n + \sum_{n=1}^{+\infty} f(q^{-n}) q^{-n}.$$

La première somme converge par la preuve du Théorème 3.1. pour la deuxième somme, on suppose $|x^{\alpha}f(x)| < M$ où $\alpha > 1$ et M > 0. Alors, pour n assez grand,

$$|q^{-n}f(q^{-n})| = q^{n(\alpha-1)}|q^{-\alpha n}f(q^{-n})| < Mq^{n(\alpha-1)}.$$

Alors la deuxième somme est inférieure à une série géométrique convergente, et donc converge.

1.4 Les deux formules de q-Binôme-Gauss et de Heine

Proposition 4.1 Soit f un polynôme de degré N et $c \in \mathbb{R}$, le q-analogue de développement de Taylor est

$$f(x) = \sum_{j=0}^{N} (D_q^j f)(c) \frac{(x-c)_q^j}{[j]_q!}.$$
 (1.32)

Formule de q-Binôme-Gauss

Soit

$$f(x) = (x+a)_q^n, \ n \in \mathbb{N} \ et \ a \in \mathbb{R}.$$

Pour $j \leq n$, on a

$$(D_q^j f)(x) = [n]_q [n-1]_q \dots [n-j+1]_q (x+a)_q^{n-j}.$$
(1.33)

D'autre part

$$(x+a)_{a}^{m} = (x+a)(x+qa)...(x+q^{m-1}a). (1.34)$$

Alors, pour x=0, on obtient

$$(a)_q^m = a(qa)...(q^{m-1}a) = q^{\frac{m(m-1)}{2}}a^m.$$
 (1.35)

On remplace (1.35) dans la formule (1.33), on obtient

$$(D_q^j f)(0) = [n]_q [n-1]_q \dots [n-j+1]_q q^{\frac{(n-j)(n-j-1)}{2}} a^{n-j}.$$

Alors le q-Taylor de f est

$$(x+a)_q^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q q^{\frac{(n-j)(n-j-1)}{2}} a^{n-j} x^j.$$

On remplace j par n-j, on obtient

$$(x+a)_q^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q q^{\frac{j(j-1)}{2}} a^j x^{n-j}.$$
 (1.36)

qui est appellée formule de q-Binôme-Gauss.

Dans la formule (1.36), on remplace x et a par 1 et x respectivement, on obtient

$$(1+x)_q^n = \sum_{j=0}^n q^{\frac{j(j-1)}{2}} \begin{bmatrix} n \\ j \end{bmatrix}_q x^j, \tag{1.37}$$

faisons tendre n vers ∞ , on obtient

$$(1+x)_q^{\infty} = \sum_{j=0}^{\infty} q^{\frac{j(j-1)}{2}} \frac{x^j}{(1-q)(1-q^2)\dots(1-q^j)}.$$
 (1.38)

Formule de q-Binôme- Heine

Soit

$$g(x) = \frac{1}{(1-x)_a^n}, n \in \mathbb{N}.$$

En appliquant D_q , on obtient

$$D_q g(x) = D_q \frac{1}{(1-x)_q^n} = \frac{[n]_q}{(1-x)_q^{n+1}},$$

alors

$$D_q^j g(x) = \frac{[n]_q [n+1]_q \dots [n+j-1]_q}{(1-x)_q^{n+1}},$$

ce qui implique

$$D_{q}^{j}g\left(0\right)=\left[n\right]_{q}\left[n+1\right]_{q}...\left[n+j-1\right]_{q},\forall\;j\geqslant1$$

ďoù

$$\frac{1}{(1-x)_q^n} = \sum_{j=0}^{\infty} \frac{[n]_q [n+1]_q \dots [n+j-1]_q x^j}{[j]_q!}.$$
 (1.39)

Cette dernière expression est appelée formule de q-Binôme-Heine. Dans la formule (1.39) faisons tendre n vers ∞ , on obtient

$$\frac{1}{(1-x)_q^{\infty}} = \sum_{j=0}^{\infty} \frac{x^j}{(1-q)(1-q^2)\dots(1-q^j)},$$

οù

$$\lim_{n \to \infty} [n]_q = \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q},$$

et

$$\begin{split} \lim_{n \to \infty} \left[\begin{array}{c} n \\ j \end{array} \right]_q &= \lim_{n \to \infty} \frac{\left(1 - q^n\right)\left(1 - q^{n-1}\right) \dots \left(1 - q^{n-j+1}\right)}{\left(1 - q\right)\left(1 - q^2\right) \dots \left(1 - q^j\right)} \\ &= \frac{1}{\left(1 - q\right)\left(1 - q^2\right) \dots \left(1 - q^j\right)}. \end{split}$$

Théorème 4.1 Si yx = qxy, où q est un nombre commutatif avec x et y, alors

$$(x+y)^n = \sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^j y^{n-j}.$$
 (1.40)

Preuve . L'équation (1.40) est vraie pour n=1, et on vérifie si elle est vraie pour n+1, On a

$$(x+y)^{n+1} = (x+y)^n (x+y)$$

$$= \left(\sum_{j=0}^n {n \brack j}_q x^j y^{n-j}\right) (x+y)$$

$$= \sum_{j=0}^n {n \brack j}_q x^j y^{n-j} x + \sum_{j=0}^n {n \brack j}_q x^j y^{n-j+1}$$

$$= \sum_{j=0}^n {n \brack j}_q x^j (q^{n-j} x y^{n-j}) + \sum_{j=0}^n {n \brack j}_q x^j y^{n-j+1}$$

$$= \sum_{j=1}^n q^{n-j+1} {n \brack j-1}_q x^j y^{n-j+1} + \sum_{j=0}^n {n \brack j}_q x^j y^{n-j+1}$$

$$= y^{n+1} + \sum_{j=1}^n \left(q^{n-j+1} {n \brack j-1}_q + {n \brack j}_q\right) x^j y^{n-j+1} + x^{n+1}$$

$$= \sum_{j=0}^{n+1} {n+1 \brack j}_q x^j y^{n+1-j},$$

telle que

$$y^k x = qy^{k-1}xy = q^2y^{k-2}xy^2 = \dots = q^k xy^k$$

1.5 Fonctions q-Exponentielles

La fonction exponentielle classique est donnée par

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
(1.41)

Définition 5.1 Les deux q-analogues de la fonction exponentielle sont définies par

i)

$$e_q^x = \sum_{n=0}^{\infty} \frac{x^n}{[n]_q!}.$$
 (1.42)

ii)

$$E_q^x = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{x^n}{[n]_q!}.$$
 (1.43)

Propriétés 5.1

i)

$$D_q e_q^x = e_q^x, (1.44)$$

ii)

$$D_q E_q^x = E_q^{qx}, (1.45)$$

iii) Si yx = qxy, on a

$$e_q^x e_q^y = e_q^{x+y},$$
 (1.46)

iv)

$$e_{\frac{1}{a}}^x = E_q^x, \tag{1.47}$$

 $\mathbf{v})$

$$e_q^x = \frac{1}{(1 - (1 - q)x)_q^{\infty}}. (1.48)$$

 et

$$E_q^x = (1 + (1 - q)x)_q^{\infty}. (1.49)$$

Preuve.

i) On sait que $D_q\left(x^n\right)=\left[n\right]_qx^{n-1}$, alors

$$D_{q}e_{q}^{x} = \sum_{n=0}^{\infty} \frac{D_{q}x^{n}}{[n]_{q}!}$$

$$= \sum_{n=0}^{\infty} \frac{[n]_{q}x^{n-1}}{[n]_{q}!}$$

$$= \sum_{n=1}^{\infty} \frac{x^{n-1}}{[n-1]_{q}!}$$

$$= \sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!}$$

$$= e_{q}^{x}.$$

ii)

$$D_{q}E_{q}^{x} = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{D_{q}x^{n}}{[n]_{q}!}$$

$$= \sum_{n=1}^{\infty} q^{\frac{n(n-1)}{2}} \frac{[n]_{q}x^{n-1}}{[n]_{q}!}$$

$$= \sum_{n=1}^{\infty} q^{\frac{(n-1)(n-2)}{2}} q^{n-1} \frac{x^{n-1}}{[n-1]_{q}!}$$

$$= \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{q^{n}x^{n}}{[n]_{q}!}$$

$$= E_{q}^{qx}.$$

iii)

$$e_{q}^{x}e_{q}^{y} = \left(\sum_{j=0}^{\infty} \frac{x^{j}}{[j]_{q}!}\right) \left(\sum_{k=0}^{\infty} \frac{y^{k}}{[k]_{q}!}\right)$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{x^{j}y^{k}}{[j]_{q}! [k]_{q}!}$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{[j+k]_{q}!}{[j]_{q}! [k]_{q}!} \frac{x^{j}y^{k}}{[j+k]_{q}!},$$

Si on prend n = j + k, on obtient

$$e_q^x e_q^y = \sum_{n=0}^{\infty} \left(\sum_{j=0}^n \begin{bmatrix} n \\ j \end{bmatrix}_q x^j y^{n-j} \right) \frac{1}{[n]_q!},$$

en utilisant le théorème (4.1), on obtient

$$e_q^x e_q^y = \sum_{n=0}^{\infty} \frac{(x+y)_q^n}{[n]_q!} = e_q^{x+y}.$$

iv) Dans la formule (1.42) en remplaçant q par $\frac{1}{q}$, on obtient

$$e_{\frac{1}{q}}^{x} = \sum_{n=0}^{\infty} \frac{\left(1 - \frac{1}{q}\right)^{n} x^{n}}{\left(1 - \frac{1}{q}\right) \left(1 - \frac{1}{q^{2}}\right) \dots \left(1 - \frac{1}{q^{n}}\right)}$$

$$= \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{\left(1 - q\right)^{n} x^{n}}{\left(1 - q\right) \left(1 - q^{2}\right) \dots \left(1 - q^{n}\right)}$$

$$= \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{x^{n}}{[n]_{q}!}$$

$$= E_{q}^{x}.$$

v) On a

$$\frac{1}{(1-x)_q^{\infty}} = \sum_{n=0}^{\infty} \frac{x^n}{(1-q)(1-q^2)\dots(1-q^j)} \\
= \sum_{n=0}^{\infty} \frac{\frac{1}{(1-q)^n}x^n}{\frac{1}{(1-q)^n}(1-q)(1-q^2)\dots(1-q^j)} \\
= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{1-q}\right)^n}{1\left(\frac{1-q^2}{1-q}\right)\dots\left(\frac{1-q^n}{1-q}\right)} \\
= \sum_{n=0}^{\infty} \frac{\left(\frac{x}{1-q}\right)^n}{1\left(\frac{1-q^2}{1-q}\right)\dots\left(\frac{1-q^n}{1-q}\right)} \\
= e_q^{\frac{x}{(1-q)}}.$$

alors

$$e_q^x = \frac{1}{(1 - (1 - q)x)_q^{\infty}}.$$

1.6 Fonctions q-trigonométriques

Définition 6.1 Les fonctions q-trigonométriques sont définies par

$$\sin_q x = \frac{e_q^{ix} - e_q^{-ix}}{2i}, \quad Sin_q x = \frac{E_q^{ix} - E_q^{-ix}}{2i},$$
 (1.50)

$$\cos_q x = \frac{e_q^{ix} + e_q^{-ix}}{2}, \quad Cos_q x = \frac{E_q^{ix} + E_q^{-ix}}{2}.$$
 (1.51)

Propriétés 6.1

i)

$$\operatorname{Si} n_q x = \sin_{\frac{1}{q}} x, \tag{1.52}$$

 et

$$Cos_q x = \cos_{\frac{1}{q}} x. (1.53)$$

ii)

$$\cos_q x Cos_q x = \frac{e_q^{ix} E_q^{ix} + e_q^{-ix} E_q^{-ix} + 2}{4},$$
(1.54)

et

$$\sin_q x \operatorname{Si} n_q x = -\frac{e_q^{ix} E_q^{ix} + e_q^{-ix} E_q^{-ix} - 2}{4}.$$
 (1.55)

iii)

$$\cos_q x Cos_q x + \sin_q x \operatorname{Si} n_q x = 1. \tag{1.56}$$

iv)

$$D_q \sin_q x = \cos_q x, \tag{1.57}$$

$$D_q \cos_q x = -\sin_q x,\tag{1.58}$$

$$D_q \operatorname{Si} n_q x = Cos_q x, \tag{1.59}$$

$$D_q Cos_q x = -\operatorname{Si} n_q x. \tag{1.60}$$

Preuve.

i) D'après (1.47)

$$Si n_q x = \frac{E_q^{ix} - E_q^{-ix}}{2i} \\
= \frac{e_{\frac{1}{q}}^{ix} - e_{\frac{1}{q}}^{-ix}}{2i} \\
= sin_{\frac{1}{q}} x,$$

et

$$Cos_{q}x = \frac{E_{q}^{ix} + E_{q}^{-ix}}{2}$$

$$= \frac{e_{\frac{1}{q}}^{ix} + e_{\frac{1}{q}}^{-ix}}{2}$$

$$= \cos_{\frac{1}{q}}x.$$

ii) En utilisant $e_q^x E_q^{-x} = 1$, on obtient

$$\cos_{q} x Cos_{q} x = \frac{\left(e_{q}^{ix} + e_{q}^{-ix}\right) \left(E_{q}^{ix} + E_{q}^{-ix}\right)}{4}$$
$$= \frac{e_{q}^{ix} E_{q}^{ix} + e_{q}^{-ix} E_{q}^{-ix} + 2}{4}.$$

et

$$\sin_q x \operatorname{Si} n_q x = -\frac{\left(e_q^{ix} - e_q^{-ix}\right) \left(E_q^{ix} - E_q^{-ix}\right)}{4}$$
$$= -\frac{e_q^{ix} E_q^{ix} + e_q^{-ix} E_q^{-ix} - 2}{4}.$$

iii) D'après (1.50) et (1.51), on a

$$\cos_{q} x Cos_{q} x + \sin_{q} x \operatorname{Si} n_{q} x = \left(\frac{e_{q}^{ix} + e_{q}^{-ix}}{2}\right) \left(\frac{E_{q}^{ix} + E_{q}^{-ix}}{2}\right) + \left(\frac{e_{q}^{ix} - e_{q}^{-ix}}{2i}\right) \left(\frac{E_{q}^{ix} - E_{q}^{-ix}}{2i}\right)$$

$$= \frac{e_{q}^{ix} E_{q}^{ix} + e_{q}^{-ix} E_{q}^{-ix} + 2 - e_{q}^{ix} E_{q}^{ix} - e_{q}^{-ix} E_{q}^{-ix} + 2}{4}$$

$$= 1$$

iv) En appliquant (1.19), où u(x) = ix, et d'après (1.44). On a

$$D_{q} \sin_{q} x = D_{q} \left(\frac{e_{q}^{ix} - e_{q}^{-ix}}{2i} \right)$$

$$= \frac{1}{2i} \left(D_{q} \left(e_{q}^{ix} \right) - D_{q} \left(e_{q}^{-ix} \right) \right)$$

$$= \frac{1}{2i} \left(i e_{q}^{ix} + i e_{q}^{-ix} \right)$$

$$= \frac{e_{q}^{ix} + e_{q}^{-ix}}{2}$$

$$= \cos_{q} x,$$

$$D_q \cos_q x = D_q \left(\frac{e_q^{ix} + e_q^{-ix}}{2} \right)$$

$$= \frac{1}{2} \left(D_q \left(e_q^{ix} \right) + D_q \left(e_q^{-ix} \right) \right)$$

$$= \frac{i}{2} \left(\frac{e_q^{ix} - e_q^{-ix}}{2} \right)$$

$$= -\frac{e_q^{ix} - e_q^{-ix}}{2i}$$

$$= -\sin_q x,$$

En utilisant que $E_q^x = e_{\frac{1}{a}}^x$, on obtient

$$D_{q} \operatorname{Si} n_{q} x = D_{q} \left(\frac{E_{q}^{ix} - E_{q}^{-ix}}{2i} \right)$$

$$= \frac{1}{2i} \left(D_{q} \left(e_{\frac{1}{q}}^{ix} \right) - D_{q} \left(e_{\frac{1}{q}}^{-ix} \right) \right)$$

$$= \frac{1}{2i} \left(i e_{\frac{1}{q}}^{ix} + i e_{\frac{1}{q}}^{-ix} \right)$$

$$= \frac{e_{\frac{1}{q}}^{ix} + e_{\frac{1}{q}}^{-ix}}{2}$$

$$= \frac{E_{q}^{ix} + E_{q}^{-ix}}{2}$$

$$= Cos_{q} x,$$

$$D_{q}Cos_{q}x = D_{q}\left(\frac{E_{q}^{ix} + E_{q}^{-ix}}{2}\right)$$

$$= D_{q}\left(\frac{e_{\frac{1}{q}}^{ix} + e_{\frac{1}{q}}^{-ix}}{2}\right)$$

$$= \frac{1}{2}\left(D_{q}\left(e_{\frac{1}{q}}^{ix}\right) + D_{q}\left(e_{\frac{1}{q}}^{-ix}\right)\right)$$

$$= \frac{1}{2}\left(ie_{\frac{1}{q}}^{ix} - ie_{\frac{1}{q}}^{-ix}\right)$$

$$= \frac{i}{2}\left(E_{q}^{ix} - E_{q}^{-ix}\right)$$

$$= -\left(\frac{E_{q}^{ix} - E_{q}^{-ix}}{2i}\right)$$

$$= -\operatorname{Si} n_{q}x.$$

1.7 Fonctions q-hypegéométriques

Définition 7.1 Une série hypergéométrique est une fonction qui est définie par

$$r\varphi_{s}(a_{1},...,a_{r};b_{1},...,b_{s};z) = \sum_{n=0}^{\infty} \frac{(a_{r})_{n}}{(b_{s})_{n}} \frac{z^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{[a_{1}(a_{1}+1)...(a_{1}+n-1)]...[a_{r}(a_{r}+1)...(a_{r}+n-1)]}{[b_{1}(b_{1}+1)...(b_{1}+n-1)]...[b_{s}(b_{s}+1)...(b_{s}+n-1)]} \frac{z^{n}}{n!},$$
(1.61)

où $r,s\in\mathbb{N},\,a_1,\,...,\,a_r,\,b_1,\,...,\,b_s\in\mathbb{C}$ et $b_1,\,...,\,b_s\neq 1,q^{-1},q^{-2},...$

Exemple 7.1

1)

$$_{0}\varphi_{0}\left(-;-;z\right) = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = e^{z}.$$

2)

$$_{1}\varphi_{0}\left(a;\underline{\ \ };z\right)=\sum_{n=0}^{\infty}\frac{a\left(a+1\right)...\left(a+n-1\right)}{n!}z^{n}=\frac{1}{\left(1-z\right)^{a}}.$$

Définition 7.2 Le q-analogue de la série hypergéométrique est donnée par

$${}_{r}\Phi_{s}(a_{1},...,a_{r};b_{1},...,b_{s};q,z) = \sum_{n=0}^{\infty} \frac{(a_{1},q)_{n} (a_{2},q)_{n} ... (a_{r},q)_{n}}{(q,q)_{n} (b_{1},q)_{n} ... (b_{s},q)_{n}} \left[(-1)^{n} q^{\frac{n(n-1)}{2}} \right]^{1+s-r} z^{n}. \quad (1.62)$$

 $O\grave{u}\ r,s\in\mathbb{N},\ a_{1},\ ...,\ a_{r}\ ,\ b_{1},\ ...,\ b_{s}\in\mathbb{C}\ \ et\ b_{1},\ ...,\ b_{s}\neq1,q^{-1},q^{-2},...$

Notation 7.1 La série q-hypergéométrique à une autre notation qui est donnée par

$$_{r}\Phi_{s}(a_{1},...,a_{r};b_{1},...,b_{s};q;z) =_{r} \Phi_{s} \begin{bmatrix} a_{1},...,a_{r} \\ b_{1},...,b_{s} \end{bmatrix};q;z$$
 (1.63)

Exemple 7.2

1)

$${}_{0}\Phi_{0}\left[\begin{array}{c} -;q;z \end{array}\right] = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} q^{\frac{n(n-1)}{2}}}{\left(q,q\right)_{q}^{n}} z^{n} = E_{q}^{\frac{z}{(q-1)}}.$$

2)

$$_{1}\Phi_{0}\begin{bmatrix} 0 \\ - \end{bmatrix};q;z\end{bmatrix} = \sum_{n=0}^{\infty} \frac{1}{(q,q)_{q}^{n}} z^{n} = e_{q}^{\frac{z}{(1-q)}}.$$

3)
$${}_{1}\Phi_{0}\left[\begin{array}{c} a \\ - \end{array}; q; z\right] = \sum_{n=0}^{\infty} \frac{(a;q)_{n} z^{n}}{(q;q)_{n}} = \frac{(az;q)_{\infty}}{(z;q)_{\infty}}, |z| < 1$$

1.8 Fonction q-Gamma

Définition 8.1 La fonction Gamma classique est définie par

$$\Gamma\left(t\right) = \int_{0}^{\infty} x^{t-1}e^{-x}dx, \ t > 0.$$

Propriétés 8.1

i)

$$\Gamma(t+1) = t \Gamma(t), t > 0.$$

ii)

$$\Gamma(n+1) = n!, \ \forall n \in \mathbb{N}.$$

Définition 8.2 Pour tout t > 0, Le q-analogue de la fonction Gamma est donnée par

$$\Gamma_q(t) = \frac{(q,q)_{\infty}}{(q^t,q)_{\infty}} (1-q)^{1-t}.$$
 (1.64)

Propriétés 8.2

i)

$$\Gamma_q(t) = \int_0^\infty x^{t-1} E_q^{-qx} d_q x.$$

ii) Pour tout t > 0, on a

$$\Gamma_{q}(t+1) = [t]_{q} \Gamma_{q}(t).$$

iii)

$$\Gamma_q(1) = 1.$$

Preuve.

i)

$$\int_{0}^{\infty} x^{t-1} E_{q}^{-qx} d_{q} x = \int_{0}^{\infty} x^{t-1} \left((1-q) q x, q \right)_{\infty} d_{q} x$$

$$= \sum_{n=0}^{\infty} q^{n} \left(\frac{q^{n}}{1-q} \right)^{t-1} \left((1-q) q \frac{q^{n}}{1-q}, q \right)_{\infty}$$

$$= (1-q)^{1-t} \sum_{n=0}^{\infty} q^{nt} \left(q^{n+1}, q \right)_{\infty}.$$

Utilisant Théorème 1.1, on obtient

$$\int_{0}^{\infty} x^{t-1} E_{q}^{-qx} d_{q} x = (1-q)^{1-t} \sum_{n=0}^{\infty} q^{nt} \frac{(q,q)_{\infty}}{(q,q)_{n}}$$

$$= (1-q)^{1-t} \frac{(q,q)_{\infty}}{(q^{t},q)_{\infty}}$$

$$= \Gamma_{q}(t).$$

$$\frac{(q,q)_{\infty}}{(q^{n+1},q)_{\infty}} = (q,q)_n$$

ii)En utilisant l'intégration par partie, on obtient

$$\Gamma_q(t+1) = \int_0^\infty x^t E_q^{-qx} d_q x$$

$$= -\int_0^\infty x^t d_q E_q^{-x}$$

$$= [t] \int_0^\infty x^{t-1} E_q^{-qx} d_q x$$

$$= [t] \Gamma_q(t).$$

iii)

$$\Gamma_{q}(1) = \int_{0}^{\infty} E_{q}^{-qx} d_{q}x$$
$$= E_{q}^{0} - E_{q}^{-\infty}$$
$$= 1.$$

Οù

$$E_q^{-\infty} = \lim_{x \to \infty} \frac{1}{e_q^x} = 0,$$

 et

$$E_q^0 = 1.$$

1.9 Fonction q-Béta

La fonction Béta classique est définie par

$$B(\alpha, \beta) = \int_{0}^{1} x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \ \alpha, \beta > 0.$$

οù

$$B(\alpha, \beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Définition 9.1 Pour tout $\alpha, \beta > 0$, on définit la fonction q-Béta par

$$B_q(\alpha, \beta) = \int_0^1 x^{\alpha - 1} \frac{(qx, q)_{\infty}}{(q^{\beta}x, q)_{\infty}} d_q x.$$
 (1.65)

Propriété 9.1 Pour tout $\alpha, \beta > 0$, on a

$$B_{q}(\alpha, \beta) = \frac{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)}{\Gamma_{q}(\alpha + \beta)}$$
(1.66)

Preuve.

$$B_{q}(\alpha, \beta) = \int_{0}^{1} x^{\alpha - 1} \frac{(qx, q)_{\infty}}{(q^{\beta}x, q)_{\infty}} d_{q}x$$

$$= (1 - q) \sum_{n=0}^{\infty} q^{n\alpha - n} \frac{(q^{n+1}, q)_{\infty}}{(q^{n+\beta}, q)_{\infty}} q^{n}$$

$$= (1 - q) \frac{(q, q)_{\infty}}{(q^{\beta}, q)_{\infty}} \sum_{n=0}^{\infty} \frac{(q^{\beta}, q)_{n}}{(q, q)_{n}} q^{n\alpha},$$

d'après Théorème 1.1, on obtient

$$B_{q}(\alpha,\beta) = (1-q) \frac{(q,q)_{\infty}}{(q^{\beta},q)_{\infty}} \frac{(q^{\alpha+\beta},q)_{\infty}}{(q^{\alpha},q)_{\infty}}$$

$$= \frac{(q,q)_{\infty}}{(q^{\alpha},q)_{\infty}} (1-q)^{1-\alpha} \frac{(q,q)_{\infty}}{(q^{\beta},q)_{\infty}} (1-q)^{1-\beta} \frac{(q^{\alpha+\beta},q)_{\infty}}{(q,q)_{\infty}} (1-q)^{-1+\alpha+\beta}$$

$$= \frac{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)}{\Gamma_{q}(\alpha+\beta)}.$$

Chapitre 2

Les équations aux q-différences de premier ordre

Dans ce chapitre on s'intéresse à la résolution des équations aux q-différences du premier ordre qui sont donnée par :

$$f(x, y(x), D_a y(x)) = 0,$$
 (2.1)

et

$$g(x, y(x), y(qx)) = 0.$$
 (2.2)

2.1 Les équations aux q-différences linéaire de premier ordre

Considèrons l'équation au q-différence

$$D_{a}y(x) = a(x)y(qx) + b(x).$$
 (2.3)

c'est une équation au q-différence linéaire non homogène de premier ordre du coéfficients non constantes. Son étude est clairement équivalente à

$$D_q y(x) = a(x) y(x) + b(x).$$
 (2.4)

Et (2.3) est équivalente à,

$$D_{q}y(x) = \widetilde{a}(x)y(x) + \widetilde{b}(x).$$

οù

$$\widetilde{a}(x) = a(qx); \widetilde{b}(x) = b(qx),$$
(2.5)

La formule (2.5) peut être obtenu de l'expression (2.3) si en remplaçant x par $q^{-1}x$ et q par q^{-1} et vise versa.

Exemple 1.1 On considère par exemple l'équation (2.3). Leur équation homogène est

$$D_a y(x) = a(x) y(qx). (2.6)$$

Par la définition D_q , on obtient

$$\frac{y(qx) - y(x)}{(q-1)x} = a(x)y(qx),$$

alors

$$y(x) = [1 + (1 - q) xa(x)] y(qx).$$
 (2.7)

On répète l'opération précédente dans la formule (2.7) N fois, on obtient

$$y(x) = y(x_0) \prod_{t=q^{-1}x_0}^{x} [1 + (1-q)ta(t)]$$

$$= y(q^N x) \prod_{i=0}^{N-1} [1 + (1-q)xq^ia(q^ix)].$$
(2.8)

Si $N \to \infty$, et 0 < q < 1, alors $q^N \to 0$, donc

$$y(x) = y(0) \prod_{i=0}^{\infty} \left[1 + (1-q) x q^{i} a(q^{i} x) \right].$$
 (2.9)

Exemple 1.2 On suppose que

$$a\left(x\right) = \frac{q^{k} - 1}{q - 1} \frac{1}{q^{k}x - 1}, k \in \mathbb{N}.$$

Il est claire que la solution est

$$y(x) = y(0) \prod_{i=0}^{\infty} \left[1 + (1 - q) x q^{i} a \left(q^{i} x \right) \right]$$

$$= y(0) \prod_{i=0}^{\infty} \left(\frac{1 - q^{i} x}{1 - q^{k+i} x} \right)$$

$$= y(0) \frac{\prod_{i=0}^{\infty} (1 - q^{i} x)}{\prod_{i=0}^{\infty} (1 - q^{k+i} x)}$$

$$= y(0) \frac{(x; q)_{\infty}}{(q^{k} x; q)_{\infty}}$$

$$= y(0) (x; q)_{k}.$$

Maintenant, on considère l'équation non homogène (2.3). En utilisant la méthode de la variation du constante

$$y(x) = c(x) y_0(x).$$
 (2.10)

quand $y_0(x)$ est la solution de l'équation homogène (2.6), alors

$$D_{q}y(x) = D_{q}(c(x) y_{0}(x))$$

$$= c(qx) D_{q}(y_{0}(x)) + y_{0}(x) D_{q}c(x)$$

$$= c(qx) a(x) y_{0}(qx) + y_{0}(x) D_{q}c(x),$$

D'autre part, On remplace (2.10) dans la formule (2.3), on obtient

$$D_q(c(x) y_0(x)) = a(x) c(qx) y_0(qx) + b(x),$$

alors

$$c(qx) a(x) y_0(qx) + y_0(x) D_q c(x) = a(x) c(qx) y_0(qx) + b(x),$$

ce qui implique

$$y_0(x) D_q c(x) = b(x)$$

alors

$$D_q c(x) = y_0^{-1}(x) b(x).$$

Donc

$$c(x) = \int_{x_0}^{x} y_0^{-1}(t) b(t) d_q t + c.$$
 (2.11)

D'où la solution générale de (2.3) est

$$y(x) = y_0(x) c + \int_{x_0}^x y_0(x) y_0^{-1}(t) b(t) d_q t, \qquad (2.12)$$

avec

$$c = y_0^{-1}(x_0) y(x_0)$$
.

On prend $x_0 = 0$, et en utilisant la formule (1.22), on obtient

$$c(x) = (1 - q) x \sum_{i=0}^{\infty} q^{i} y_{0}(x) y_{0}^{-1}(q^{i} x) b(q^{i} x), \qquad (2.13)$$

alors

$$y(x) = y_0(x) c + (1 - q) x \sum_{i=0}^{\infty} q^i y_0(x) y_0^{-1}(q^i x) b(q^i x).$$
 (2.14)

En appliquant la méthode de la constante indéterminé à l'équation (2.4), on obtient

$$y(x) = y_0(x) c + \int_{x_0}^x y_0(x) y_0^{-1}(qt) b(t) d_q t, \qquad (2.15)$$

ou

$$y(x) = y_0(x) c + (1 - q) x \sum_{i=0}^{\infty} q^i y_0(x) y_0^{-1} (q^{i+1}x) b(q^i x).$$
 (2.16)

Pour $x_0 = 0$.

Pour chercher une solution sous la forme d'une série, on discute les cas suivantes.

2.1.1 Equation de la forme $D_q y(x) = ay(x)$

Soit l'équation

$$D_{a}y\left(x\right) =ay\left(x\right) , \tag{2.17}$$

avec a = cte. Pour résoudre une telle équation, nous le récrivons comme

$$y(qx) = [1 + (q - 1)xa]y(x)$$
 (2.18)

et on cherche la solution sous la forme

$$y(x) = \sum_{n=0}^{\infty} c_n x^n. \tag{2.19}$$

En remplaçant (2.19) dans (2.18), on obtient

$$c_{n+1}q^{n+1} = c_{n+1} + (q-1)ac_n$$

ce qui implique

$$c_{n+1} = c_n \left(\frac{q-1}{q^{n+1}-1} \right) a$$

alors

$$c_n = c_0 \left(\prod_{k=1}^n \frac{1-q}{1-q^k} \right) a^n. \tag{2.20}$$

On sait que $[k]_q = \frac{1-q^k}{1-q} \to k, q \to 1$, donc (2.20) devient

$$c_n = c_0 \frac{a^n}{[n]_a!},\tag{2.21}$$

d'où la solution dans (2.19) est le q-analogue de la fonction exponentielle $c_0 \exp(ax)$:

$$y_q(x) = c_0 \sum_{n=0}^{\infty} \frac{a^n}{[n]_q!} x^n = c_0 e_q^{ax}.$$
 (2.22)

2.1.2 Equation de la forme $D_q y(x) = ay(qx)$

De la même façon, une équation de la forme

$$D_{q}y\left(x\right) =ay\left(qx\right) , \tag{2.23}$$

est équivalent à

$$y(x) = [1 + (1 - q)xa]y(qx),$$
 (2.24)

à une solution de la forme

$$y_{q^{-1}}(x) = c_0 e_{q^{-1}}^{ax} = c_0 \sum_{n=0}^{\infty} \frac{a^n}{[n]_{q^{-1}}!} x^n,$$
 (2.25)

où $[n]_{q^{-1}}!$ est obtenu de $[n]_q!$ si en remplaçant q par $q^{-1}.$

2.1.3 Equations de la forme $D_q y(x) = ay(x) + b$

D'après le cas (1) et la méthode des coéfficients indéterminés, avec $x_0 = 0$

$$y(x) = y_0(x) c + \int_0^x y_0(x) y_0^{-1}(qt) b(t) d_q t$$

Donc

$$y(x) = e_q^{ax} \left[y(0) + b \int_0^x e_{q^{-1}}^{-aqt} d_q t \right]$$

$$= e_q^{ax} \left[y(0) - \frac{b}{a} e_{q^{-1}}^{-ax} + \frac{b}{a} \right],$$
(2.26)

οù

$$y_{q}(x) = c_{0}e_{q}^{ax}$$
 et $c = y_{0}^{-1}(0) y(0)$.

En utilisant $e_q^{ax}e_{q^{-1}}^{-ax}=1$, on obtient

$$y(x) = e_q^{ax} y(0) - \frac{b}{a} + \frac{b}{a} e_q^{ax}.$$
 (2.27)

2.1.4 Equations de la forme $D_q y(x) = ay(qx) + b$

D'après le cas (2) et la méthode des coefficients indéterminés avec $x_0 = 0$, sa solution est

$$y(x) = e_{q^{-1}}^{ax} \left[y(0) + b \int_{0}^{x} e_{q}^{-at} d_{q} t \right]$$

$$= e_{q^{-1}}^{ax} \left[y(0) - \frac{b}{a} e_{q}^{-ax} + \frac{b}{a} \right].$$
(2.28)

Alors,

$$y(x) = e_{q-1}^{ax} y(0) - \frac{b}{a} + \frac{b}{a} e_{q-1}^{ax}.$$
(2.29)

2.1.5 Equations de la forme $D_q y(x) = \alpha x y(x)$

On cherche une solution sous la forme

$$y(x) = \sum_{n=0}^{\infty} c_n x^n. \tag{2.30}$$

On obtient

$$c_{2n} = \alpha \frac{c_{2n-2}}{\frac{1-q^{2n}}{1-q}}$$

$$= \alpha^n \frac{c_0}{\frac{1-q^{2n}}{1-q} \frac{1-q^{2n-2}}{1-q} \dots \frac{1-q^2}{1-q}} \dots$$

$$= \alpha^n \frac{c_0}{[2n]_q!!}; n \in \mathbb{N}^*,$$
(2.31)

οù

$$[2n]_q!! = \frac{1 - q^{2n}}{1 - q} \frac{1 - q^{2n-2}}{1 - q} \dots \frac{1 - q^2}{1 - q} . 1$$
 (2.32)

et $c_{2n+1} = 0$, $n \in \mathbb{N}$. On remarque que

$$[2n]_q!! = [n]_q! (2)_q^n$$

οù

$$(2)_q^n = (1+q)(1+q^2)\dots(1+q^n),$$

 et

$$\lim_{q \to 1} [2n]_q!! = (2n)!! = 2^n n! = \lim_{q \to 1} [n]_q! (2)_q^n.$$

D'où la solution de (2.30) est

$$y\left(x\right) = c_0 \varepsilon_q^{\frac{\alpha x^2}{2}},\tag{2.33}$$

οù

$$\varepsilon_q^{\frac{\alpha x^2}{2}} = \sum_{n=0}^{\infty} \frac{\alpha^n x^{2n}}{[n]_q! (2)_q^n},$$
 (2.34)

est la q-version de la fonction $e^{\frac{\alpha x^2}{2}}$.

2.2 Transformation des équations aux q-différences non linéaire à des équations linéaires

Maintenant, on considère des équations aux q-différences non linéaire de type (2.1) ou (2.2) qui sont transformable à des équations linéaires.

2.2.1 Equations de Riccati

$$D_{q}y(x) = a(x)y(qx) + b(x)y(x)y(qx). (2.35)$$

Pour résoudre cette équation, on pose

$$y\left(x\right) = \frac{1}{z\left(x\right)},$$

alors

$$D_{q} \frac{1}{z(x)} = \left(a(x) + b(x) \frac{1}{z(x)}\right) \frac{1}{z(qx)}$$

D'après (1.18), on obtient

$$\frac{-D_q(z(x))}{z(x)z(qx)} = \left(a(x) + b(x)\frac{1}{z(x)}\right)\frac{1}{z(qx)}$$

ce qui imlique

$$D_{q}z(x) = -[a(x)z(x) + b(x)]. (2.36)$$

Exemple 2.1 Soit

$$y(qx)y(x) - y(qx) + y(x) = 0.$$
 (2.37)

On pose

$$y\left(x\right) = \frac{1}{z\left(x\right)},$$

on obtient

$$z\left(x\right) =z\left(qx\right) +1,$$

ce qui implique

$$D_q z(x) = -\frac{1}{(q-1)x}$$

alors,

$$z(x) = -\int \frac{1}{(q-1)x} d_q x = -\frac{\ln x}{\ln q}.$$

Donc

$$y\left(x\right) = -\frac{\ln q}{\ln x}.$$

2.2.2 Equations homogènes de la forme $f\left(\frac{D_q y(x)}{y(x)}, x\right) = 0$

Ils peuvent être transformés à des équations linéaires $z\left(x\right)$ avec

$$z\left(x\right) = \frac{D_{q}y\left(x\right)}{y\left(x\right)}.$$

Exemple 2.2 Soit

$$[D_q y(x)]^2 - 2y(x) D_q y(x) - 3[y(x)]^2 = 0. (2.38)$$

On a

$$\left[\frac{D_q y(x)}{y(x)}\right]^2 - 2\left[\frac{D_q y(x)}{y(x)}\right] - 3 = 0, \tag{2.39}$$

ou

$$z^{2}(x) - 2z(x) - 3 = 0.$$

On obtient

$$z(x) = 3$$
,

 et

$$z(x) = 1$$
,

ou

$$y\left(x\right) = ce_{q}^{3x},$$

 et

$$y\left(x\right) = ce_{q}^{x},$$

respectivement.

2.2.3 Equations de la forme $[y(qx)]^{c_1}[y(x)]^{c_2} = g(x)$

Soient c_1 et c_2 des constantes. Dans ce cas en appliquant la fonction ln, on obtient

$$c_1 \ln(y(qx)) + c_2 \ln(y(x)) = \ln(g(x)),$$
 (2.40)

on pose

$$z\left(x\right) = \ln\left(y\left(x\right)\right)$$

alors (2.40) devient

$$c_1 z(qx) + c_2 z(x) = \ln(g(x))$$
 (2.41)

Exemple 2.3 Soit l'équation

$$\frac{\left[y\left(x\right)^{2}\right]}{\left[y\left(qx\right)\right]} = e^{x^{2}}.$$
(2.42)

En appliquant la fonction ln, on obtient

$$2z(x) - z(qx) = x^{2}, z(x) = \ln(g(x)). \tag{2.43}$$

On a

$$2z\left(x\right) -z\left(qx\right) =0$$

alors

$$\ln \frac{z\left(qx\right)}{z\left(x\right)} = \ln 2,$$

ce qui implique

$$\frac{\ln z\left(qx\right)-\ln z\left(x\right)}{\left(q-1\right)x}=D_{q}\left(\ln z\left(x\right)\right)=\frac{\ln 2}{\left(q-1\right)x}.$$

Alors

$$\int D_q (\ln z (x)) d_q x = \int \frac{\ln 2}{(q-1) x} d_q x$$

donc la solution de l'équation homogène est

$$z\left(x\right) = cx^{\frac{\ln 2}{\ln q}}.$$

la solution particulière peut être trouvée si en inversant l'opérateur $1-\frac{1}{2}E_q,$ on obtient

$$z(x) = \left(1 - \frac{1}{2}E_q\right)^{-1} \frac{x^2}{2}$$

$$= \frac{x^2}{2} \sum_{i=0}^{\infty} 2^{-i}q^{2i}$$

$$= \frac{x^2}{2 - q^2}.$$
(2.44)

Où $E_{q}(z(x)) = z(qx)$.

D'où la solution de (2.43) est

$$z(x) = cx^{\frac{\ln 2}{\ln q}} + \frac{x^2}{2 - q^2}.$$

Alors

$$y(x) = \exp\left(cx^{\frac{\ln 2}{\ln q}} + \frac{x^2}{2 - q^2}\right)$$

$$= \exp\left(c2^{\frac{x}{\ln q}} + \frac{x^2}{2 - q^2}\right).$$
(2.45)

Conclusion

Dans ce mémoire notre objectif a été d'introduire la notion q-analogue et on s'intéresse aux q-analogue de certaines fonctions spéciales et on a utlisé cette étude dans la résoulution des équations aux q- difference de premier ordre.

Bibliographie

- [1] S. Oney, The Jackson Integral.May 19, 2007.
- [2] A. Shabani, Generalization of some inequalities for the q-gamma function, Department de Mathematics, University de Prishtina, Submitted 25 May 2008; Accepted 5 Septembre 2008.
- [3] **D. FLORIN SOFONEA**, Some properties from q-Calculus, University Lucian Blaga, Department of Mathematics, I. Ratiu Street, No. 5-7, Sibiu, ROMANIA.
- [4] **G. Bangerezako,** An Introduction to q-Difference Equations, University of Burundi, Faculty of Sciences, Department of Mathematics, Bujumbura, 2008.
- [5] **N. Bahri**, q-transformation de Mellin, Mémoir de master, Université de Tunis, Faculté des Sciences de Tunis.
- [6] M. SELLAMI, New inequalities for some special and q-special functions, Université de Tunis EL-MANAR, Faculté des Sciences de Tunis.
- [7] **T. ERNST,** A Method for q-Calculus, Journal of Nonlinear Mathematical Physics, Volume 10, Number 4 (2003), 487–525.