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EXISTENCE RESULTS FOR BOUNDARY - VALUE PROBLEMS
WITH NONLINEAR FRACTIONAL DIFFERENTIAL
INCLUSIONS AND INTEGRAL CONDITIONS
SAMIRA HAMANI , MOUFFAK BENCHOHRA , JOHN R . GRAEF
ABSTRACT . In this article , the authors establish sufficient conditions for the
existence of solutions for a class of boundary value problem for fractional

differential inclusions involving the Caputo fractional derivative and nonlinear

integral conditions . Both cases of convex and nonconvex valued right hand
sides are considered . The topological structure of the set of solutions also
examined .
1. INTRODUCTION

This article concerns the existence and uniqueness of solutions of the boundary
value problem  ( BVP for short )  with fractional order differential inclusions and
nonlinear integral conditions of the form

cpay(t) € F(t,y), fora.e.teJ=[0,T], 1<a<2 (L1)

T

y(0) — o/ (0) = / o(s,v)ds, (1.2)
T

y(T) +y/(T) = / h(s, y)ds, (1.3)

where ¢D® is the Caputo fractional derivative , F': J x R — P(R) is a multivalued
map , (P(R) is the family of all nonempty subsets of R), andg, h : Jx
R — R are given continuous functions .  Differential equations of fractional order
have recently proved to be valuable tools in the modelling of many phenomena in various
fields of science and engineering .  There are numerous applications to problems in
viscoelasticity , electro chemistry , control , porous media , electromagnetics ,
etc .

(see [20, 30, 31, 34,40,41,45]). There has been a significant
development in ordinary and partial differential equations involving both Riemann -
Liouville and Caputo fractional derivatives in recent years ; see the monographs of
Kilbas e t al .

[38], Miller and Ross [ 42 ], Samko e ¢ al . [ 50 ] and the papers of Agarwal e ¢ al .
[2], Benchohra e ¢ al . [ 8 ], Benchohra and Hamani [ 9 | , Daftardar - Gejji and
Jafari

[17], Delbosco and Rodino [ 19|, Diethelm et al. [20,21,22], El- Sayed |
23,24 ,25],
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Furati and Tatar [ 28 , 29 | , Kaufmann and Mboumi [ 36 | , Kilbas and Marzan [ 37 | ,

Mainardi [ 40 | , Momani and Hadid [ 43 ] , Momani e t al . [ 44 ], Ouahab [ 46 ],
Podlubny
etal. [49], Yuand Gao [52] and the references therein. In [7, 12

] the authors studied the existence and uniqueness of solutions of classes of initial value
problems for functional differential equations with infinite delay and fractional order ,
and in [ 6 | a class of perturbed functional differential equations involving the Caputo
fractional derivative has been considered . Related problemsto (1.1)— (1. 3 ) have
been considered by means of different methods by Belarbi e ¢ al . [ 5 | and Benchohra
etal. in[10,11]in the case of a = 2.

Applied problems require definitions of fractional derivatives allowing the utiliza -
tion of physically interpretable initial conditions that contain y(0),y(0), etc . , and
the same is true for boundary conditions .  Caputo ’ s fractional derivative satisfies
these demands .  For more details on the geometric and physical interpretation for
fractional derivatives of both Riemann - Liouville and Caputo types see [ 33 , 48] . The
web site http : / / people . tuke . sk / igor . podlubny / authored by Igor Podlubny
contains more information on fractional calculus and its applications , and hence it is
very useful for those interested in this field .

Boundary value problems with integral boundary conditions constitute a very in -
teresting and important class of problems . They include two , three , multipoint , and
nonlocal boundary value problems as special cases . Integral boundary conditions
appear in population dynamics [ 1 3 ] and cellular systems [ 1] .

This paper is organized as follows . In Section 2 , we introduce some preliminary
results needed in the following sections . In Section 3 , we present an existence result
for the problem (1. 1)~ (1. 3) when the right hand side is convex valued by using
the nonlinear alternative of Leray - Schauder type . In Section 4, two results are
given for nonconvex valued right hand sides . The first one is based upon a fixed
point theorem for contraction multivalued maps due to Covitz and Nadler [16],
and the second one on the nonlinear alternative of Leray Schauder type [ 32 ] for single
- valued maps , combined with a selection theorem due to Bressan - Colombo [ 14 ] (
also see [ 27 | ) for lower semicontinuous multivalued maps with decomposable
values . The topological structure of the solutions set is considered in Section 5 . An
example is presented in the last section . These results extend to the multivalued
case some results from the above cited literature , and constitute a new contribution to
this emerging field of research .

2. PRELIMINARIES

In this section , we introduce notation , definitions, and preliminary facts that
will be used in the remainder of this paper . Let C(J,R) be the Banach space of all
continuous functions from J to R with the norm

|y [l oo =supf{| y(t) 0 <t <T},

and let L'(J,R) denote the Banach space of functions y : J — R that are Lebesgue
integrable with norm

T
I\yIIL1:/0 () | dt.

We let L°(J,R) be the Banach space of bounded measurable functions y : J — R
equipped with the norm
lyl| Loo=inf{c>0:]yt)|<ec, a.e.teJ}
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Also , AC(J,R) will denote the space of functions y : J — R that are absolutely
continuous and whose first derivative ,y’, is absolutely continuous .  Let (X[ - ||)
be a Banach space and let Py(X) = {Y € P(X) :Y isclosed },P(X) = {Y €
P(X) :Yisbounded },P.,(X)={Y € P(X) :Y iscompact },and P, .(X) =
{Y ¢ P(X) :Y is compact and convex } . A multivalued map G : X — P(X) is
conver ( ¢ los ed ) valued if G(x) is convex ( closed ) for all z € X. We say that G
is bounded on bounded s e ts if G(B) = UgzepG(z) is bounded in X for all B € P, (X) (
i.e. sup,cp{sup{|ly| :ye€G(x)}} <oo0). The mapping G is called upper s emi
- continuous (u.s. c. ) on X if for each 29 € X, the set G(x¢) is a nonempty
closed subset of X, and if for each open set N of X containing G(z¢), there exists an
open neighborhood Ny of zy such that G(Ny) € N. We say that G is completely
continuous if G(B) is relatively compact for every B € P,(X). If the multivalued
map G is completely continuous with nonempty compact values , then Gisu. s . ¢
. if and only if G has a closed graph (i . e .z, — Z., yn — yx, yn € G(x,)
imply y* € G(z4)). The mapping G has a fized point if there is x € X such that
x € G(z). The set of fixed points of the multivalued operator G will be denoted by
FizG. A multivalued map G : J — P, (R) is said to be measurable if for every y € R,
the

function

t—d(y,G(t)) =inf{|ly—z |z € G(t)}

is measurable .  For more details on multivalued maps see the books of Aubin and
Cellina [ 3], Aubin and Frankowska [ 4 | , Deimling [ 1 8 | , and Hu and Papageorgiou

[35).

Definition 2 . 1. A multivalued map F : J x R — P(R) is Carath é odory if ( i
)t~ F(t,u) is measurable for each u € R, and
(ii) ww~— F(t,u) is upper semicontinuous for almost all t € J.
For each y € C(J,R), define the set of s e lections for F by

Spy={ve L' (J,R):v(t) € F(t,y(t))aet € J}.

Let (X, d) be a metric space induced from the normed space (X, | - |). Consider

Hy:P(X)xP(X)— Ry U{oo}givenby
Hy(A, B) = max{sup d(a, B),supd(A4,b)},
acA beB

where d(A,b) = inf,e 4 d(a,b) and d(a, B) = infye g d(a,b). Then (Py,o(X), Hy) is
a metric space and (Py(X), Hy) is a generalized metric space ( see [39] ) .
Definition 2 . 2. A multivalued operator N : X — P, (X) is called :

(a) ~— Lipschitz if there exists v > 0 such that

Ha(N(z), N(y)) < ~vd(z,y), forallz,y € X;

(b) a contraction if it is y— Lipschitz with v < 1.
The following lemma will be used in the sequel . Lemma 2 . 3 ([16]). Let
(X,d) be a complete metric space . If N:X — Py(X) is
a contraction , th en FixN # &. Definition 2 . 4 ([38,47]). The fractional
( arbitrary ) order integral of the function
h € L*([a,b],Ry) of order o € R is defined by
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where I' is the gamma function . When a = 0, we write I*h(t) = h(t) * pa(t), where
wa(t) = % for t > 0,a(t) =0 for t <0, and pa — §(t) as o — 0, where J is

the delta function .

Definition 2. 5 ([38,47]).  For a function h given on the interval [a, b], the

a— th Riemann - Liouville fractional - order derivative of h is defined by

ot
Do) = gy (G [ = o hss

Here n = [a] + 1 and [a] denotes the integer part of o. Definition 2 . 6  ([38]).
For a function h given on the interval [a, b], the Caputo
fractional - order derivative of h is defined by

(DEM) = oy [ = ),

wheren = [a] + 1.

3. THE CONVEX CASE
In this section , we are concerned with the existence of solutions for the problem (
1.1)-(1.3) when the right hand side has convex values .  Initially , we assume
that F'is a compact and convex valued multivalued map .
Definition 3 . 1. A function y € AC'(J,R) is said to be a solution of (1. 1) - (1
.3),if
there exists a function v € L'(J,R) with v(t) € F(t,y(t)), for a . e .t € J, such that

cpoy(t) =v(t), ae teldJ 1<a<2

and the function y satisfies conditions (1.2 )and (1. 3).
For the existence of solutions for the problem (1.1 )—- (1. 3), we need the
following

auxiliary lemmas . Lemma 3 . 2 ([53]). Let « > 05 then the differential
equation

cpap(t) =0
has the s 0 lutions h(t) = co+cit+cat?+---+cp 1t" L, where

¢ € R, ©+ =

0,1,2,...,n—1,andn = [a] + 1.

Lemma 3.3 ([53]). Let o > 0; then

I DYh(t) = h(t) 4+ co + crt + cot? + - -+ cp_1t" 1

for s ome ¢; €R,i=0,1,2,....,n— 1, where n=[a]+1.

As a consequence of Lemmas 3 . 2 and 3 . 3, we have the following result which
will
be useful in the remainder of the paper . Lemma 3 . 4 . Let 1<a<2andlet
o,pl,p2:J — R be continuous . A function y
s a s o lution of the fractional integral equation

y(t) = P(t) +/0 G(t, s)o(s)ds, (3.1)



where

TH+1-t

T+2

/0 " pi(s)a

t+1 (T
syttt
T+2)/,
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and

_ s)e—1 _ S)afz
(k=9 T° ([ p@—sot T (TR, pr—se?

G(t,s) = braceleftmid — bracele ftbt — 0t t)((TJr T () T+ t)((T+2) T(a—1) +2)I'(a—1)

(

T'(a) +-2)I'(a)
(3.3)
if and only if vy is a s o lution of the fra ctional BVP
cpay(t) =o(t), teJ, (3.4)
T
y0) =y = [ pr(s)ds, (3.5)
0
T
uT) 4y (@) = [ pns)ds (36)
0
Proof . Assume that y satisfies (3. 4 ) ; then Lemma 3 . 3 implies
ot .
y(t) = co + ert + —/ (t — $)*1o(s)ds. (3.7)
P @) o
From (3.5 ) and (3.6 ), we obtain
T
co—C1 :/ pl(s)ds (3.8)
0
and
I L
co+er(T+1 +—/ (T — 5)°=Lo(s)ds
o@D
1 T a—2
T
= / p2(s)ds
0
Solving (3.8)—(3.9), we have
T 1 T
=5 ; p2(s)ds — T+2 ), pl(s)ds
1 r L
—_— T—s5)*" 1
T /0 (T — )L (s)ds (3.10)

1 T o
T+l 1) /0 (T = o ole)es

and



_T+1 7 I

=75 ; pl(s)ds + T+3), p2(s)ds
T

1 T o
_(T+2)F(a—1)/o (@ - o) ale)ds

From (3.7),(3.10),(3. 11),andthefactthatfOT:fg—I—j;T,Weobtain(3
1)
Conversely , if y satisfies equation (3. 1), then clearly (3.4 ) - (3.6 ) hold
O
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It is clear that the function ¢ — fOT | G(t, s) | ds is continuous on J,
and hence is bounded . Thus , we let

T
G = sup{/ | G(t,s) | ds,t € J}.
0

Our first result is based on the nonlinear alternative of Leray - Schauder type for
multivalued maps [ 32 ] .
Theorem 3 . 6 . Assume that the following hypotheses hold :
(H1) F:JXxR—=Py(R)is a Carath é odory multi - valued map ;
(H2) There exist p€ L®°(J,RT) and a continuous nondecreasing function

G

[0, 00) — (0, 00)suchthat

| F(t,u) | P=sup {|]v v € F(t,u)} <pt)(ul|) forall teJueR;(H3)
There exist ¢4 € L*(J,RT)  and a continuous nondecreasing function * :

T heproo fwillbegivenin

several steps .
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convez for each y € C(J,R). Indeed , if hy and hs belong to
N(y), then there exist vy, vy € Sy such that , for all ¢t € J, we have

hi(t) = Py(t) + /OT G(t, s)vi(s)ds, i=1,2.

Let 0 < d < 1. Then , for each t € J, we have

T
(dhi 4+ (1 — d)ha)(t) = Py(t) + /0 G(t, s)[dvi(s) + (1 — d)va(s)]ds.

Since Sg, is convex ( because F' has convex values ) , we have dhq + (1 — d)ha € N(y).

Step 2: N maps bounded s e ts into bounded s e ts in C(J,R). Let B,- =
{y e C(J,R) : ||y oo <n*} be abounded set in C(J,R) and let y € B,~. Then
for each h € N(y) and t € J, from (H2 ) - ( H4 ), we have

T+1 T+1
| ()I_TJF2 Ig( ())Ids+TJr2 lh(s,y(smds
+/ G(t,s) | v(s)) | ds
T+1
STl [ os + 2Ll [ onts
+0( y lloo) | 2 || LooG.
Therefore ,
T+1 ., . (" T+1 , [T i} -
thlm_T—Jr2 (n)/o ¢g(s)ds+m4/1(n)/0 dh(s)ds + 1 (n*) || p || LooG := ¢.

Step 3: N maps bounded s e ts into equicontinuous s e ts of C(J,R). Let t1,t3 € J
with ¢, < t, let By« be a bounded set in C'(J,R) as in Step 2 , and let y € B,« and

h € N(y).Then
ta — 11

r to—t, [T
e | atsaon s+ 2o [ syt as
s [ 160~ Gt ] 066) | s

< Z—tl / ¢g d8+ T+2 w(”]/ qﬁh

+5(7) || p || Loo /O | Gltas) — Gltr, 5) | ds.

| h(t2) = h(t1) |=

As t; — ta, the right - hand side of the above inequality tends to zero .  As a conse
- quence of Steps 1 to 3 together with the Arzel 4— Ascoli theorem , we can conclude
that N : C(J,R) — P(C(J,R)) is completely continuous .

Step 4: N has a clos ed graph . Let yn — y*, h, € N(yn), and h,, — h.
We
need to show that h, € N(yx). Now ,h, € N(yn) implies there exists v, € Spyn
such that , for each t € J,

T
hi(t) = Pyn(t) —i—/o G(t, s)vn(s)ds.
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there exists v. € Spy« such that for each t € J,

T
hy(t) = Pys(t) +/O G(t, s)vs(s)ds.

Since F'(t,-) is upper semicontinuous , for every £ > 0, there exist ng(e) > 0 such that
for every n > ng, we have

v (t) € F(t,yn(t)) C F(t,y = (t)) +eB(0,1) a.e.t € J

Since F'(-,-) has compact values , there exists a subsequence vy, (-) such that

Un,, (*) = v(-) asm — oo,
ve(t) € F(t,y*(t)) aete
For every w € F(t,y * (t)), we have

| Vn, () = 0 (8) <] 0, (B) — w0 [ + [0 = vi(2) |,

and so

| Vn,, (8) = va(t) | < d(vn,, (1), F(E,y + (2)))-
By an analogous relation obtained by interchanging the roles of v,, and v,, it

follows that

| Un,, (8) = va(t) < Ha(F(t,yn(t)), F(t,y = (1) < 1(t) [ yn — y* oo -
Therefore ,

T
| o () — ha(£) |< / | 9(5, yrm(s)) — g5,y * () | ds
+ / | b5,y (s)) — B(s,y * (5)) | ds
T
—|—/0 G(t,s) | vn,, () —vi(s) | ds.

Since
T T
/ G(t,8) | vn,,(8) —v«(s) | ds < / G(t,8)l(8)ds || ynm — y* |loo
0 0
<G| 1] Loo || ynm — yx || oo,
and g and h are continuous , || hy,, — by |Joo— 0 as m — oo.

Step 5 : A priori bounds on s o lutions . Let y be a possible solution of the
problem
(1.1)-(1.3). Then, there exists v € Sg,, such that , for each t € J,

001 7503 oo s+ 755

+ / G(t, $)p(s)e(| y(s) |)ds

& y(s) Dds

T—|—1
ST Ul [ aatohs + R Lyl [ onts

+9( y o) 1l p || Loo.
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Y lloo

<1.

a*(y lloe) + 00 (Il y lloe) + Gl y o)
Hence , by (3. 12), there exists M such that || y ||cc# M. Let

U={yeCUR):|y < M}.

The operator N : -U — P(C(J,R)) is upper semicontinuous and completely con -
tinuous .  From the choice of U, there is no y € 9U such that y € AN (y) for some
A€ (0,1). As a consequence of the nonlinear alternative of Leray - Schauder type ,

we conclude that N has a fixed point y in U which is a solution of the problem (1. 1
)= (1.3). This completes the proof of the theorem . [
4. 'THE NONCONVEX CASE
This section is devoted to proving the existence of solutions for (1. 1)—-(1.3)

with a nonconvex valued right hand side .  Our first result is based on the fixed point
theorem for contraction multivalued maps given by Covitz and Nadler [16]; the
second one makes use of a selection theorem due to Bressan and Colombo (' see

[14,27]) for lower semicontinuous operators with decomposable values combined
with the nonlinear Leray - Schauder alternative .
Theorem 4 . 1. Assume that (H 5 ) and the following hypotheses hold :

(HT) There exists a constant k* > 0 such that | g(t,u) — g(t, w) |[<E*
u— w| for all teJand u,-u€eR.
(H8) There exists a constant k** > 0 such that | h(t,u) — h(t, u) |<
E** | u— w| for all teJand u,-uecR.
(H9) F:JxR— P,(R) has the property that F(-,u): J — Pp(R) is measur
able , and integrably bounded for each wu € R.
If
T(T+1),, T(T+1) -
* i 1 4.1
[ T+2 T+2 R ARG <, (4.1)
where k= | 1| Loo, then (1.1) - (1.3) has at least one s o lution on J.

Remark 4 . 2. For each y € C(J,R), the set Sg, is nonempty since , by ( H9), F'
has a measurable selection ( see [ 15, Theorem III . 6] ) .
Proof of Theorem 4 . 1. We shall show that N given in ( 3. 1 3 ) satisfies the
assump -
tions of Lemma 2 . 3 . The proof will be given in two steps .

Step 1: N(y) € Py(C(J,R)) forall ye C(J,R). Let (hy), >0¢€ N(y) be
such
that h, — h € C(J,R). Then there exists v,, € Sg, such that , for each ¢t € J,

hn(t) = Py(t) —|—/0 G(t, s)vn(s)ds.

From ( H 5 ) and the fact that ' has compact values , we may pass to a subsequence
if necessary to obtain that v,, converges weakly to v in L. (J,R) ( the space en - dowed
with the weak topology ) . Using a standard argument , we can show that v,
converges strongly to v and hence v € Sg,. Thus , for each ¢t € J,



3 T
hn(t) — h(t) = Py(t) +/0 G(t, s)v(s)ds,
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soh € N(y).

Step 2 :  There exists v < 1 such that

Ha(N (y), N( Y) <Vl Y=yl forally,-y € C(J,R).
Let y,-y € C(J,R) and hy € N(y).  Then , there exists v (t) € F(t,y(t)) such that ,

foreacht € J,
T
hi(t) = Py(t) —l—/ G(t, s)vi(s)ds.
0

From ( H 5 ) it follows that

Ha(F(t,y(t), F(t, ——y (1)) <U(t) | y(t) — ()] -
Hence , there exists w € F(t, (%)) such that
Lor(t) —w 1) | yt) - — ()|, ted
Consider U : J — P(R) given by
Ut) ={w e R:[vi(t) —w [< 1) [ y(t) — y() [}

Since the multivalued operator V(t) = U(¢)NF(t, 4(t)) is measurable ( see Propo
-sition [ 15, IIT . 4] ) , there exists a function va(¢) which is a measurable selection
for V. Thus ,vs(t) € F(t,—,(t)), and for each t € J,

| v1(t) —v2(t) [<1(E) | y(t) —
For each t € J, define

y(@) |-

T
ha(t) = Py(t) —1—/0 G(t, s)va(s)ds,

where
T+1—t [T t+1 [T
Pilt) = g |ty (oDds + 1 [ s (s
Then , for t € J,
T+1 (T
_ <= _
| ha(t) — ha(t) [< T+2 ), | g(s,y(s)) — g(s, y(s)) | ds
T+1 (T
T+2 ), | h(s,y(s)) — h(s, y(s)) | ds
T
+/ G(s,t) | v1(s) —va(s) | ds
0
T(T+1),, T(T+1), ., .
<\ T2 _ il Sl s _ _
T(T+ 1 (T +1 -
< TTHD e TTHD s g — 1l o,

T+2 T+2



Therefore ,

T(T+1),. TC+1)

hi —h <

kG g - | oo.

By an analogous relation , obtained by interchanging the roles of y and -y, it follows
that

T(T+1),.  T(T+1)
2

kG gy - | oo
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Therefore , by (4.1), N is a contraction , and so by Lemma 2.3, N has a fixed point
y that is a solution to (1. 1) — (1.3 ). The proof is now complete . O

Next , we present a result for problem (1. 1)— (1. 3) in the spirit of the
nonlinear
alternative of Leray Schauder type [32] for single - valued maps combined with a
selection theorem due to Bressan and Colombo [ 14 ] for lower semicontinuous multi
- valued maps with decomposable values . Details on multivalued maps with decom -
posable values and their properties can be found in the recent book by Fryszkowski

[27).

Let A be a subset of [0, T] x R. We say that A is £ ® B measurable if A belongs to
the o— algebra generated by all sets of the form J x D where J is Lebesgue
measurable in [0, 7] and D is Borel measurable in R. A subset A of L'([0,7],R) is
decomposable if for all u,v € A and measurable J C [0,T],uxs +vx[0,7] — J € A,
where x stands for the characteristic function .

Let G : X — P(X) be a multivalued operator with nonempty closed values . We
say that G is lower s emi - continuous (1. s. c¢. ) iftheset{z € X :G(z)NB # &}
is open for any open set B in X.

Definition 4 . 3. Let Y be a separable metric space and N : Y — P(L'([0,T],R))
be a multivalued operator . We say N has property ( BC ) if
(1) N is lower semi - continuous (1.s.c.) ;
(2) N has nonempty closed and decomposable values .

Let F: [0,7] x R — P(R) be a multivalued map with nonempty compact values .

Assign to F the multivalued operator F : C([0,T],R) — P(L'([0,T],R)) by
F(y) = {w € LY[0,T],R) : w(t) € F(t,y(t)) for a . e .t € [0,T]}.

The operator F is called the Niemytzki operator associated to F.
Definition 4 . 4. Let F: [0,7] x R — P(R) be a multivalued function with non -
empty compact values . We say F' is of lower semi - continuous type (1. s . ¢

type ) if its associated Niemytzki operator F is lower semi - continuous and has
nonempty closed and decomposable values .

Next , we state a selection theorem due to Bressan and Colombo .
Theorem 4 .5 ([14]). Let 'Y be s eparable metric space and
N:Y — P(LY([0,T],

R)) be a multivalued operator that has property ( BC') . Then N has a continuous s e

lection , i . e . , the re exists a continuous (s ingle - valued ) function §:Y —
([0, 1], R)
such that §(y) € N(y) for every y €Y.
Let us introduce the hypotheses
(H10) F:[0,T] x R— P(R) is a nonempty compact valued multivalued map
such

that :

(a) (t,u)— F(t,u) is L ® B measurable ;
(b) y+— F(t,y) is lower semi - continuous for a . e .t € [0,T;
(H11) foreach ¢ > 0, there exists afunction h, € LY[0,7],R")

such that || F'(t,y) || P < hy(t) for a. e .t € [0,T] and for y € R with | y |[< q.

The following lemma is crucial in the proof of our main theorem .
Lemma4 .6 ([26]). Let F:[0,T] x R = P(R) be a multivalued map with
nonempty compact values . Assume that (H10),(H11) hold . Then F is of
lower s emicontinuous



type .
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We are now ready for our next main result in this section .
Theorem 4 . 7 . Suppose that conditions (H2)-(H4),(H6),(H10),(H
11) are satis -

fied . Then the problem (1.1) - (1.3) has at least one s o lution .
Proof . Conditions (H10) and (H11) imply , by Lemma 4 . 6, that F is of lower
semi - continuous type . By Theorem 4 . 5, there exists a contmuous function f
C([0,T],R) — L'([0,T],R) such that f(y) € .7-"(y) for all y € C([0,T],R). Consider
the problem :

cpoy(t) = f(y)(t), fora.eteJ=[0,T], 1l<a<2, (42

T

y(0) — ¢/(0) = / o(s,y)ds, (4.3)
T

y(0) — o/(0) = / o(s,y)ds. (4.4)

Observe that if y € AC*([0,T],R) is a solution of the problem (4. 2)— (4. 4), then
y is a solution to the problem (1. 1) — ( .3).

We reformulate the problem (4.2)-(4.4) as a fixed point problem for the
operator

1:C([0,T,R) — C(]0,T],R)definedby :
Ni(y)(®) / Gt 5) (y)(s)ds

where the functions P, and G are given by (3. 14 )and (3. 3 ), respectively . Using
(H2)-(H4) and ( H 6 ), we can easily show ( using arguments similar to those in
the
proof of Theorem 3 . 6 ) that the operator N; satisfies all conditions in the Leray -
Schauder alternative . [
5. TOPOLOGICAL STRUCTURE OF THE SOLUTIONS SET
In this section , we present a result on the topological structure of the set of

solutionsof (1.1)-(1.3).
Theorem 5 . 1. Assume that ( H 1) and the following hypotheses hold :

(H12) There exists p€ C(J,RT) such that || F(t,u) || P <p(t)(|u|+1) for
all teJ

andu € R;
(H13) There exists pl € C(J,RT) such that | g(t,u) |<pl(t)(|u|+1) for al
I ted
andu € R;
(H14) There exists p2 € C(J,R") such that | h(t,u) |< p2(¢)(| w | +1) for all
ted
andu € R.
If

T(T +1) M + 1 . T+2
B S 4 1| 2 [|oo +G—"—
g o P e 102 e+ |

pl Loo] <1,



then the s o lution s et of (1.1) - (1.3) isnonempty and compact in C(J,R).

Proof . Let
S={yeC(J,R):yissolutionof (1. 1)—-(1.3)}. From Theorem 3.6, 5 # &.

Now , we prove that S is compact .  Let (yn), € N € S;
then there exists v, € SFy, such that , for t € J,

T
yn(t) = Pyn(t) + /O G(t, 5)vn(3)ds,
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t+1 [T

T
/0 g(s,yn(s))ds+m ; h(s,yn(s))ds

T+1-1
Fonlt) = =5~

and the function G(¢,s) is given by (3. 3) .
From (H12) - ( H14 ) we can prove that there exists a constant M; > 0 such
that

| yn ||o< My foralln > 1.

As in Step 3 of the proof of Theorem 3 . 6 , we can easily show that the set {yn :n > 1}
is equicontinuous in C'(J,R), and so by the Arz é la - Ascoli Theorem , we can conclude
that there exists a subsequence ( denoted again by {yn}) of {yn} converging to y in
C(J,R). We shall show that there exist v(-) € F(-,y(+)) such that

T
y(t) = Py(t) —|—/0 G(t, s)v(s)ds.

Since F(t,-) is upper semicontinuous , for every ¢ > 0, there exists ng(e) > 0 such that
, for every n > ng, we have

v (t) € F(t,yn(t)) C F(t,y(t)) +eB(0,1) a.ete .

Since F'(-,-) has compact values , there exists a subsequence vy, (-) such that

Up,, (1) = v(:) asm — oo,
v(t) € F(t,y(t)) a.eted

It is clear that the subsequence v, (t) is integrally bounded . By the Lebesgue
dominated convergence theorem , we have that v €  L(J,R), which implies that

v € Sgy. Thus,
T
y(t) = P,(t) -|—/ G(t,s)v(s)ds, teJ.
0

Hence , S € P.,(C(J,R)), and this completes the proof of the theorem . O

6. AN EXAMPLE
As an application of the main results , we consider the fractional differential
inclusion
cpay(t) € F(t,y), aeteJ=[0,1, 1l<a<2, (6.1)
1
y0) =5/ () = [ 1+ |yl s, (6:2)
0
1
v 4y (1) = [ y(s) s (63)
0
Set

F(t,y) ={veR: fl(t,y) <v < f2(ty)},
where f1,f2 : J xR — R are measurable in ¢ and Lipschitz continuous in y. We
assume that for each ¢ € J, f1(¢,-) is lower semi - continuous (i. e . , the set {y € R:
f1(t,y) > p} is open for all 4 € R), and assume that for each ¢t € J, f2(¢,-) is upper
semi - continuous (i. e. , the set {y € R: f2(¢t,y) < p} is open for each ) . Assume
that
max (| f1(t,y) |, | f2(t,y) ) < E(1+|y|) forallte JandyeR.
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given by

1__8)(171 —g)a?

(t=9)" I7ay  H-s)*" 1mar H-s)**

—1+8)F, (@) 1+ t)@l:r(a) a—1) 3T (a-1)

G(t, s) = bracele ftmid—bracele ftbt 0, < <s° <=

We have T'= 1, ¢4 (t) = t°,¢h(t) = t5,a =1/9,b=1/9,c = 1/9, and

Yy)=1+y, Y (y)=1+y, Wy =1+y, forallyec|0,00).
Also

/OlG(t,s)ds/OtG(t, s)ds+/t1(;(t’5)ds

t (1+t)(1 _t)a _ (1—|—t> (1+t)(1 _t)a_l
(o +1) 3T (a+1) 3T(a + 1) 3(0)
1+t) A+t)1-1)* Q+t)(1—-t)* !

3M(a) 3l(a+1) 3T(a)
It is easy to see that

~ 3 2
G < <5.
Tlat 1) | T(a)
A simple calculation shows that condition ( 3. 1 2) is satisfied for M > 7/2. It is clear
that F' is compact and convex valued , and it is upper semi - continuous ( see [18]) .
Since all the conditions of Theorem 3 . 6 are satisfied , BVP (6. 1)~ (6. 3 ) has at
least one solution y on J.
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