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1 Introduction

This paper deals with the existence of solutions for the boundary value prob-
lems (BVP for short) for fractional order differential equations of the form

Dαy(t) = f(t, y(t)), for each t ∈ J = [0,∞), 1 < α ≤ 2, (1)

y(0) = 0, y bounded on [0,∞), (2)

where Dα is the Riemann-Liouville fractional derivative, f : J × IR → IR is
a given function.

Differential equations of fractional order have recently been proved to
be valuable tools in the modeling of many phenomena in various fields of
science and engineering. Indeed, we can find numerous applications in vis-
coelasticity, electrochemistry, control, porous media, electromagnetic, etc.
(see [10, 11, 12, 15, 19, 20] and the references therein). There has been a
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significant development in fractional differential and partial differential equa-
tions in recent years; we refer to the monographs by Kilbas et al [17], Lak-
shmikantham et al. [18], Podlubny [21], Samko et al [23] and the papers by
Agarwal et al [1], Delbosco and Rodino [9], Diethelm et al [10], Kilbas and
Marzan [16], Mainardi [19], Zhang [24] and the references therein. In [7, 8]
the authors studied the existence and uniqueness of solutions of classes of
initial value problems for functional differential equations with infinite delay
and fractional order, and in [6] a class of perturbed functional differential
equations involving the Caputo fractional derivative has been considered.
For more details on the geometric and physical interpretation for fractional
derivatives of both the Riemann-Liouville and Caputo types see [14, 22].

In this paper, we present existence results for the BVP (1)-(2). We use
the nonlinear alternative of Leray-Schauder type [13] combined with the di-
agonalization process used widely for integer order differential equations; see
for instance [2, 3, 4].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper. Let C(J, IR) be the Banach space
of all continuous functions from J into IR with the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ T},
and let L1(J, IR) denote the Banach space of functions y : J −→ IR that are
Lebesgue integrable with norm

‖y‖L1 =
∫ T

0

|y(t)|dt.

Definition 2.1 The fractional (arbitrary) order integral of the function h ∈
L1([a, b], IR+) of order α ∈ IR+ is defined by

Iα
a h(t) =

1
Γ(α)

∫ t

a

(t− s)α−1h(s)ds,

where Γ is the Gamma function. When a = 0, we write Iαh(t) = [h ∗ϕα](t),

where ϕα(t) =
tα−1

Γ(α)
for t > 0, ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0,

where δ is the Delta function.

Definition 2.2 For a function h defined on the interval [a, b], the αth Riemann-
Liouville fractional-order derivative of h is given by

(Dα
a+h)(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1h(s)ds.

Here and hereafter n = [α] + 1 and [α] denotes the integer part of α.
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More details on fractional derivatives and integrals and their properties can
be found in [17, 21].

3 Existence of solutions

Let us start by defining what we mean by a solution of BVP (1)–(2).

Definition 3.1 A function y ∈ C(J, IR) is said to be a solution of BVP
(1)–(2), if y satisfies the equation

Dαy(t) = f(t, y(t)), for each t ∈ J, 1 < α ≤ 2,

and the condition (2).

For the existence of solutions for BVP (1)–(2), we need the following
auxiliary lemma:

Lemma 3.2 [9] Let α > 0. If we assume h ∈ C((0, T ), IR)
⋂

L((0, T ), IR),
then the fractional differential equation

Dαh(t) = 0

has solutions

h(t) = c1t
α−1 + c2t

α−2 + .... + cntn−1, for ci ∈ IR, i = 1, 2, ...., n.

Lemma 3.3 [9] Assume h ∈ C((0, T ), IR)
⋂

L((0, T ), IR) with a fractional
derivative of order α > 0. Then

IαDαh(t) = h(t) + c1t
α−1 + c2t

α−2 + .... + cntn−1

for some constants ci, i = 1, 2, ...., n.

As a consequence of Lemmas 3.2 and 3.3, we have the following result
which provides the integral formulation for BVP (1)-(2).

Lemma 3.4 Let 1 < α ≤ 2 and let σ : [0, T ] → IR be continuous. A function
y is a solution of the fractional integral equation

y(t) =
∫ T

0

G(t, s)σ(s)ds, (3)

where

G(t, s) =





(t− s)α−1

Γ(α)
− tα−1(T − s)α−2

Tα−2Γ(α)
, 0 ≤ s ≤ t

− tα−1(T − s)α−2

Tα−2Γ(α)
, t ≤ s < T

(4)
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if and only if y is a solution of the fractional BVP

Dαy(t) = σ(t), t ∈ [0, T ], (5)

y(0) = 0, y′(T ) = 0. (6)

Proof: Assume that y satisfies (5); then Lemma 3.3 implies that

y(t) = c1t
α−1 + c2t

α−2 +
1

Γ(α)

∫ t

0

(t− s)α−1σ(s)ds.

From (6), a simple calculation yields c2 = 0 and

c1 =
−1

(α− 1)Tα−2Γ(α− 1)

∫ T

0

(T − s)α−2σ(s)ds,

whence, equation (3). Conversely, it is clear that if y satisfies equation (3),
then equations (5)-(6) hold.

Remark 3.5 For each T > 0, the function t 7→ ∫ T

0
|G(t, s)|ds is continuous

on [0, T ], and hence is bounded.

In this section we assume that there exists Tn ∈ J, n ∈ IN, with

0 < T1 < T2 < ... < Tn < ... with Tn →∞ as n →∞.

In the sequel we set Jn := [0, Tn].

Theorem 3.6 Assume the following hypotheses hold:

(H1) f : J × IR → IR is jointly continuous,

(H2) there exist p ∈ C(J, IR+) and ψ : [0,∞) → (0,∞) continuous and
nondecreasing such that

|f(t, u)| ≤ p(t)ψ(|u|) for t ∈ J and each u ∈ IR;

(H3)
sup

c∈(0,∞)

c

p∗nψ(c)G̃n

> 1, (7)

where

G̃n = sup

{∫ Tn

0

|Gn(t, s)|ds, t ∈ Jn

}
,

p∗n = sup{p(s), s ∈ Jn},
and

Gn(t, s) =





(t− s)α−1

Γ(α)
− tα−1(Tn − s)α−2

Tα−2
n Γ(α)

, 0 ≤ s ≤ t

− tα−1(Tn − s)α−2

Tα−2
n Γ(α)

, t ≤ s < Tn.
(8)
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Then BVP (1)-(2) has at least one solution on J .

Proof. Fix n ∈ IN and consider the boundary value problem

Dαy(t) = f(t, y(t)), t ∈ Jn, 1 < α ≤ 2, (9)

y(0) = 0, y′(Tn) = 0. (10)

We begin by showing that (9)-(10) has a solution yn ∈ C(Jn, IR) with

|yn(t)| ≤ M for each t ∈ Jn,

for some constant M > 0. Here C(Jn, IR) is the Banach space of all contin-
uous functions from Jn into IR with the norm

‖y‖n = sup{|y(t)| : t ∈ Jn}.

Consider the operator N : C(Jn, IR) −→ C(Jn, IR) defined by

(Ny)(t) =
∫ Tn

0

Gn(t, s)f(s, y(s))ds,

where the Green’s function Gn(t, s) is given by (8). Clearly, from Lemma
3.4, the fixed points of N are solutions to (9)–(10). We shall show that N
satisfies the assumptions of the nonlinear alternative of Leray-Schauder [13].
The proof will be given in several steps.

Step 1: N is continuous.

Let {yq} be a sequence such that yq → y in C(Jn, IR). Then for each
t ∈ Jn.

|(Nyq)(t)− (Ny)(t)| ≤
∫ Tn

0

|Gn(t, s)f(s, yq(s))− f(s, y(s))|ds.

Let ρ > 0 be such that
‖yq‖n ≤ ρ, ‖y‖n ≤ ρ.

By (H2) we have

|G(·, s)‖f(s, yq(s))− f(s, y(s))‖ ≤ 2ψ(ρ)|G(·, s)|p(s) ∈ L1(J, IR+).

Since f is continuous, the Lebesgue dominated convergence theorem im-
plies that

‖Nyq −Ny‖n → 0 as q →∞.

Step 2: N maps bounded sets into bounded sets in C(Jn, IR).



240 R.P. Agarwal, M. Benchohra, S. Hamani and S. Pinelas

Let Bη∗ = {y ∈ C(Jn, IR) : ‖y‖n ≤ η∗} be a bounded set in C(Jn, IR)
and y ∈ Bη∗ . Then for each t ∈ Jn, we have by (H2)

|(Ny)(t)| ≤
∫ Tn

0

|Gn(t, s)||f(s, y(s))|ds

≤ ψ(‖y‖n)p∗n

∫ Tn

0

|Gn(t, s)|ds.

Thus
‖Ny‖n ≤ ψ(η∗)p∗nG̃n := `.

Step 3: N maps bounded sets into equicontinuous sets of C(Jn, IR).

Let τ1, τ2 ∈ Jn, τ1 < τ2, Bη∗ be a bounded set of C(Jn, IR) as in Step 2,
y ∈ Bη∗ then

|(Ny)(τ2)− (Ny)(τ1)| ≤
∫ Tn

0

|G(τ2, s)−G(τ1, s)|f(s, y(s))|ds

≤ p∗nψ(η∗)
∫ Tn

0

|G(τ2, s)−G(τ1, s)|ds.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3 together with the Arzelà-Ascoli theorem, we
conclude that N is completely continuous.

Step 4: A priori bounds on solutions.

Choose M > 0 with
M

p∗nψ(M)G̃n

> 1. (11)

This constant exists by (7).
Let y be such that y = λ(Ny) for λ ∈ [0, 1]. Then, for each t ∈ Jn,

|y(t)| ≤
∫ Tn

0

Gn(t, s)p(s)ψ(|y(s)|)ds

≤ p∗nψ(‖y‖n)
∫ Tn

0

|Gn(t, s)|ds

≤ p∗nψ(‖y‖n)G̃n.

Thus ‖y‖n

p∗nG̃nψ(‖y‖n)
≤ 1. (12)

Conditions (11) and (12) imply that ‖y‖n 6= M. Let

U = {y ∈ C(Jn, IR) : ‖y‖n < M}.
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From the choice of U , there is no y ∈ ∂U such that y = λ(Ny) for some λ ∈
(0, 1). Moreover, the operator N : U → C(Jn, IR) is completely continuous.
Therefore, we deduce that N has a fixed point yn in U, a solution of BVP
(9)–(10) with

|yn(t)| ≤ M for each t ∈ Jn.

Step 5: Diagonalization process

We will use diagonalization process. For k ∈ IN, let

uk(t) =
{

yk(t), t ∈ [0, Tk],
yk(Tk) t ∈ [Tk,∞). (13)

Let S = {uk}∞k=1. Notice that

|uk(t)| ≤ M for t ∈ [0, T1], k ∈ IN.

Also for k ∈ IN and t ∈ [0, T1] we have

uk(t) =
∫ T1

0

G1(t, s)f(s, uk(s))ds.

Thus, for k ∈ IN and t, x ∈ [0, T1] we have

uk(t)− uk(x) =
∫ T1

0

[G1(t, s)−G1(x, s)]f(s, uk(s))ds

and by (H2), we have

|uk(t)− uk(x)| ≤ p∗1ψ(M)
∫ T1

0

|G1(t, s)−G1(x, s)|ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
1 of IN

and a function z1 ∈ C([0, T1], IR) with uk → z1 in C([0, T1], IR) as k → ∞
through N∗

1 . Let N1 = N∗
1 \{1}. Notice that

|uk(t)| ≤ M for t ∈ [0, T2], k ∈ IN2.

Also for k ∈ IN1 and t, x ∈ [0, T2] we have

|uk(t)− uk(x)| ≤ p∗2ψ(M)
∫ T2

0

|G2(t, s)−G2(x, s)|ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
2 of N1

and a function z2 ∈ C([0, T2], IR) with uk → z2 in C([0, T2], IR) as k → ∞
through N∗

2 . Note that z1 = z2 on [0, T1] since N∗
2 ⊆ N1. Let N2 = N∗

2 \{2}.
Proceed inductively to obtain for m ∈ {3, 4, ...} a subsequence N∗

m of Nm−1

and a function zm ∈ C([0, Tm], IR) with uk → zm in C([0, Tm], IR) as k →∞
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through N∗
m. Let Nm = N∗

m\{m}.
Define a function y as follows. Fix t ∈ (0,∞) and let m ∈ IN with s ≤ Tm.
Then define y(t) = zm(t). Then y ∈ C([0,∞), IR), y(0) = 0 and |y(t)| ≤ M
for t ∈ [0,∞). Again fix t ∈ [0,∞) and let m ∈ IN with s ≤ Tm. Then for
n ∈ Nm we have

un(t) =
∫ Tm

0

Gm(t, s)f(s, un(s))ds,

Let n →∞ through Nm to obtain

zm(t) =
∫ Tm

0

Gm(x, s)f(s, zm(s))ds,

i.e

y(t) =
∫ Tm

0

Gm(t, s)f(s, y(s))ds.

We can use this method for each x ∈ [0, Tm], and for each m ∈ IN. Thus

Dαy(t) = f(t, y(t)), for t ∈ [0, Tm]

for each m ∈ IN and α ∈ (1, 2]. This completes the proof of the theorem.

4 An example

Consider the boundary value problem

Dαy(t) =
1

et + 1
|y(t)|δ, for t ∈ J = [0,∞), 1 < α ≤ 2, (14)

y(0) = 0, y is bounded on [0,∞), (15)

where Dα is the Riemann-Liouville fractional derivative, and δ ∈ (0, 1). Set

f(t, u) =
1

et + 1
uδ, for each (t, u) ∈ J × [0,∞).

It is clear that conditions (H1) and (H2) are satisfied with

p(t) =
1

et + 1
, for each t ∈ J,

and
ψ(u) = uδ, for each u ∈ [0,∞).

From (8) we have for s ≤ t

∫ t

0

Gn(t, s)ds =
tα

Γ(α + 1)
+

tα−1(Tn − t)α−1 − tα−1Tα−1
n

(α− 1)Tα−2
n Γ(α)
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and for t ≤ s ∫ Tn

t

Gn(t, s)ds =
−tα−1(Tn − t)α−1

(α− 1)Tα−2
n Γ(α)

.

Also
sup

c∈(0,∞)

c

p∗nψ(c)G̃n

= sup
c∈(0,∞)

c

ψ(c)
= sup

c∈(0,∞)

c

cδ
= ∞,

hence (H3) is satisfied. Then by Theorem 3.6, BVP (14)-(15) has a bounded
solution on [0,∞).
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