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New Inequalities in Fractional Integrals
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Abstract: In this paper, we use the Riemann-Liouville fractional integral to present recent results on frac-
tional integral inequalities. By considering the extended Chebyshev functional in the case of synchronous
functions, we establish two main results. The first one deals with some inequalities using one fractional pa-
rameter. The second result concerns others inequalities using two fractional parameters.
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1 Introduction

Let us consider the functional

b b b b
T(f.9,p.4) = / 4(z)dz / p(@)f () g () dz + / p(z)de / 4(@)f () g (z) dz
a a a a (])

(I} a@)f @) de) ([, p(@)g @) dw) = ([ p()f (@) d) ([, al@)g (@) dz) |

where f and g are two integrable functions on [a, b] and p, ¢ are positive integrable functions on [a, b]. If f and g are
synchronous on [a, b] (i.e. (f(z) — f(y))(g9(x) — g(y)) > 0, for any x,y € [a,b] ), then T'(f, g,p,q) > 0 (see [6, 8]).
The sign of this inequality is reversed if f and g are asynchronous on [a,b] (i.e. (f(z) — f(y))(g(z) — g(y)) < 0, for
any x,y € [a,b] ). For p(z) = ¢q(x),z € [a,b], we get the Chebyshev inequality [3]. In [9], Ostrowski established the
following generalization of the Chebyshev inequality:

If f and g are two differentiable functions, synchronous on [a,b], p is a positive integrable function on [a, ] and
|f'(z)| = m, |¢'(x)| > r, for z € [a,b], then

T(f,9,p) =T(f,9,p,p) > mrT(x —a,z —a;p) > 0. (2)

If f and g are asynchronous on [a, b], then
T(f,9,p) <mrT(x —a,b—x;p) <O0.

If f and g are two differentiable functions on [a, ], p is a positive integrable function on [a,b] and |f'(z)| < M,
lg'(z)] < R, for x € [a, b], then

IT(f,9,p) < MRT(xz — a,z — a;p) < 0. 3)

Many researchers have given considerable attention to the functional T'(f, g, p) and a number of extensions, general-
izations and variants have appeared in the literature, see [1, 2, 4, 7] and the references given therein.

The main purpose of this paper is to use the Riemann-Liouville fractional integral to establish some new fractional
integral inequalities using the extended Chebyshev functional (1).
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2 Description of the Fractional Calculus

In the following, we will give the necessary notation and basic definitions. More details, one can consult [5,10].

Definition 1 A real valued function f(t),t > 0 is said to be in the space C,,, i € R if there exists a real number p >
such that f(t) = t? f1(t), where f1(t) € C([0,00)).
Definition 2 A function f(t),t > 0 is said to be in the space C™,n € R, if f) € C,,.

wo

Definition 3 The Riemann-Liouville fractional integral operator of order o > 0, for a function f € C,,(n > —1) is
defined as

JOF() = sy Jo (=)o f(n)drs >0, 1> 0,0 () = f(1), (4)
where (@) := [ e “u*"'du.

For the convenience of establishing the results, we give the semigroup property:
JOTPf(t) = TP f(); a 20, 820, ®)
which implies the commutative property

JOJPf(t) = JPTf(t). (6)

For the expression (4), when f(t) = t* we get another expression that will be used later:

F(,U, + 1) ta-l-ﬂ.

JAtH = ;a>0, p>-—1, t>0. 7
Tla+pt1) “ K ™

Remark 1 In what follows we shall consider the real valued functions defined on the space C,,, (n > —1).

3 Main Results

Theorem 2 Let f and g be two synchronous functions on [0,00) and let r,p,q : [0,00) — [0,00). Then for all t >
0, > 0, we have:

2% (6)[JUp(5) T (af9) () + T2a(£)T* (Fg) (1) +21p(8).1 (a) () (rf9)(¢) >
Jor () [T () E) T (ag)(8) + I (@) ()T (pg) (8)] + T*p(0) 7 (r ) ()T (ag) () + (®)

T (@O (rg)(B)] + Ta(t) [J2 (1)) I(g) () + T (pF) (1) I (rg) (1)

Lemma 3 Let f and g be two synchronous functions on [0, 00) and let v,w : [0,00) — [0, 00). Then for allt > 0, > 0,
we have:

J(t) T (wfg)(t) + T w(t) I (vfg)(t) = J*(vf) ()] (wg)(t) + J* (wf)(£)J* (vg)(t). ©)

Proof. Since the functions f and g are synchronous on [0, 00), then for all 7 > 0, p > 0, we have

(1) = 1) (9(7) = 9(0)) = 0. (10)
Therefore
f(T)g(r) + f(p)g(p) = f(T)g(p) + f(p)g(T). (11
Multiplying both sides of (11) by ="k =) 7 & (0, 1), we get
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(t—r)ot (t—met
WU(T)f(T)g(T) + Wv(r)f(p)g(p) >

D 0(n) £(7)g(p) + Lo () F(p)g (7).

Integrating (12) over (0, t), we obtain:

t

L —7)* to(r T L — ) l(r T
o (= o) ote ) + i / (t ) (M) ((p)dr >
w7 Jo (t = 1) u(n) f(T)g(p)dr + w5 Jo (¢ to(r) £(p)g(7)dr.
Consequently
T (9)0)+ £ (0 (0) 75 )/0< N u(r)dr >
Lol 26— 1) o) f (1) dr o+ L8 [ (2 — )" u(r)g () dr.
So we have

S (vfg)(t) + [ (p) g (p) J*(0)(t) = g (p) J* (W) () + [ (p) J*(vg)(?).

Now multiplying both sides of (15) by (t}p&:)_l w(p), p € (0,t), we obtain:

(7 (050 0) + () (03 ()7 0)0) >

0 w(p)g (p) J*(0f) (1) + L7E5—w(p) f () J* (v9)(2).

Integrating (16) over (0, t), we get:

7 wfa)e) [ “F(’Z; i+ S0 | w(mf(p)g(p)(tfp)aﬂdpz
200 T4 — gy ulp)g(p)dp+ 8D [ - e (o) (o).

Therefore

JHw)($)J* (vfg)(t) + J*(0)()J* (wfg)(t) = J* (vf)(#) T (wg)(t) + J* (wf) () (vg)(t),

and this ends the proof of Lemma 3. m
Proof of Theorem 2:
Proof. Putting v = p, w = ¢ and using Lemma 3, we can write:

J¥(p)(t)J*(af9)(t) + T (@) (1) T*(pfg)(t) = T*(pf) ()T (q9)(t) + J*(af)(t)J* (pg)(t).
Multiplying both sides of (19) by J(r)(¢), we obtain:

I )(0) [ 1 ()T (af9) ) + T (@) ()T (0 f9)(8)| >
T ()0 [T NI (a9)(t) + T (af) (1)1 (g) (1)
Putting v = r, w = ¢ and using again Lemma 3, we get:
()T (afg)(t) + T* (@) (BT (rfg) () = T*(rf) ()T (a9)() + J*(af) (1) T* (rg) (t).

Multiplying both sides of (21) by J(p)(t), we get:

I )01 ) ()T (af9) (&) + I (@) (I () (8)] =
T2 (E)O)][ N0 (ag) (1) + I () ()T (rg) (1)
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With the same arguments as before, we can obtain:
JH@) B[ 0)1(pFg) (1) + T (P)(0)I (r) (8)] >
T (@)(®) [T ()T pg) (1) + T (pf) ()T (rg) ()]

The required inequality (8) follows on adding the inequalities (20,22,23). m
Our second result is:

(23)

Theorem 4 Let f and g be two synchronous functions on [0,00) and let r,p,q : [0,00) — [0,00). Then for all t >
0, @ >0, 8 >0, we have:

()77 (pf9) (1) + 20 p(t )Jff(qu)
[72p(6)77 ()(1)) + T°p(t) T (a) (1)] (

Jor(t)|J*(pf) ()T (ag)(t )+ T2 (af)(t) T (pg)(t)| +

JEp() [T 1) ()7 (ag) (1) + T (af) (6)1* (rg) (1) +

J2q(O)] )07 (pg) (1) + T () ()T (rg) (1)

)+ ()7 (pf9) ()| +
Jrfg)(t) =

~—

(
)

(24)

Remark 5 Applying Lemma 3 for « = 3, we obtain Theorem 2 and for « = 8 = 1,p(z) = q(z) = r(x) = 1, for any
x € [0, 00|, we obtain the Chebyshev inequality on [0,t], (see [3]).

To prove Theorem 4, we need the following lemma:

Lemma 6 Ler f and g be two synchronous functions on [0, o] and let v, w : [0, 00] — [0, 00]. Then for all t > 0, > 0,
we have:

Ju()J7 (wfg)(t) + JPw(t) T (vfg)(t) = T (vf)()J" (wg)(t) + J° (wf)(t)J* (vg)(t) (25)
Proof of Lemma 6:
Proof. Multiplying both sides of (15) by ‘= F(B) w(p), p € (0,t), we obtain:
(t — p)ﬂ_l «a @ (t — p)ﬂ_l
WIW(P)J (vfg) () +J* (v (t)ww([’)f (P g(p) = 26)
CE—w(p)g (p) Jo(vf) (t) + 55— w(p) f (p) J*(vg) (1)
Integrating (26) over (0, t), we obtain
B—1 ay, t 1
I (wfa)lt >/ i ’) wipddp+ 5 [ 0ol (0o o) =) dp > o
LB [0 = )" w(p)g (p) dp + 550D [7 (t = p)" " w(p) f (p) dp.
Lemma 6 is thus proved. m
Proof of Theorem 4:
Proof. Using Lemma 6 with v = p, w = ¢, we can write:
T () () (afg)(t) + TP (@) ()T (pfg) (1) = T (pf)() I (ag)(t) + T7(af) ()T (pg) (1) (28)
Multiplying both sides of (28) by J(r)(t), we obtain:
N7 @01 (af9)®) + I (@O (pf9) ()] > o)
< )60 ag) (1) + I () ()T (bg) ()]
Using Lemma 6 with v = r, w = ¢ and then multiplying both sides of (29)by J“(p)(t), we obtain:
I )0 [7° 00 @l ) 1) + T (@) ()T (rf9) (1)] = 0
()8 [1° () (1) (ag)(t) + ﬂ(qf)( 17 (rg)(1)].
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With the same arguments, we can get:

JH@O[7 )OI (0f9) () + T @) () (rfg) ()] = an
T (@)(®) [T (NI (pg) (1) + T (0f)(6)1° (rg)(1)].

The inequality (24) follows on adding the inequalities (29,30,31). m

Remark 7 The inequalities (8) and (24) are reversed in the following cases:

a. The functions f and g asynchronous on [0, 00).

b. The functions r, p, q are negative on [0, 00).

c. Two of the functions r, p, q are positive and the third one is negative on [0, 00).
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