On the k-Riemann-Liouville fractional integral and applications

Mehmet Zeki Sarikaya and Aysel Karaca

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
Email: sarikayamz@gmail.com

Abstract

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary noninteger order. The subject is as old as differential calculus and goes back to times when G.W. Leibniz and I. Newton invented differential calculus. Fractional integrals and derivatives arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium. Very recently, Mubeen and Habibullah have introduced the k-Riemann-Liouville fractional integral defined by using the -Gamma function, which is a generalization of the classical Gamma function. In this paper, we presents a new fractional integration is called k-Riemann-Liouville fractional integral, which generalizes the k-Riemann-Liouville fractional integral. Then, we prove the commutativity and the semi-group properties of the k-Riemann-Liouville fractional integral and we give Chebyshev inequalities for k-Riemann-Liouville fractional integral. Later, using k -Riemann-Liouville fractional integral, we establish some new integral inequalities.

Keywords: Riemann-liouville fractional integral, convex function, hermite-hadamard inequality and hölder's inequality.
Mathematics Subject Classification: 26A33;26A51;26D15.

INTRODUCTION

Fractional integration and fractional differentiation are generalizations of notions of integer-order integration and differentiation, and include nth derivatives and n-fold integrals (n denotes an integer number) as particular cases. Because of this, it would be ideal to have such physical and geometric interpretations of fractional-order operators, which will provide also a link to known classical interpretations of integer-order differentiation and integration.

Obviously, there is still a lack of geometric and physical interpretation of fractional integration and differentiation, which is comparable with the simple interpretations of their integer-order counterparts.

During the last two decades several authors have applied the fractional calculus in the field of sciences, engineering and mathematics (see,Atanackovic et. al (2009)-Atanackovic et. al (2010), Gorenflo and Mainardi (1997), Malinowska and Torres (2011)-Miller and Ross (1993),El-Nabulsi(2005)-Odzijewicz et. al (2012), Samko et. al (1993)). Mathematician Liouville, Riemann, and Caputo have done major work on fractional calculus, thus Fractional Calculus is a useful mathematical tool for applied sciences. Podlubny suggested a solution of more than 300 years old problem of geometric and physical interpretation of fractional integration and differentiation in 2002, for left-sided and right-sided of RiemannLiouville fractional integrals (see, Anastassiou (2009), Belarbi and Dahmani (2009)-Dahmani et. al (2010), Katugopola
(2011), Latif and Hussain (2012), Sarikaya and Ogunmez (2012)-Sarikaya and Yaldiz (2013)).

The first is the Riemann-Liouville fractional integral of $\alpha \geq 0$ for a continuous function f on $[a, b]$ which is defined by

$$
J_{a}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad \alpha \geq 0, a<x \leq b
$$

motivated by the Cauchy integral formula

$$
\int_{a}^{x} d t_{1} \int_{a}^{t_{1}} d t_{2} \cdots \int_{a}^{t_{n-1}} f\left(t_{n}\right) d t_{n}=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{n-1} f(t) d t
$$

well-defined for $n \in \mathrm{~N}^{*}$. The second is the Hadamard fractional integral introduced by Hadamard (1892), and given by

$$
J_{a}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\log \frac{x}{t}\right)^{\alpha-1} f(t) \frac{d t}{t}, \quad \alpha>0, x>a
$$

This is based on the generalization of the integral

$$
\int_{a}^{x} \frac{d t_{1}}{t_{1}} \int_{a}^{t_{1}} \frac{d t_{2}}{t_{2}} \ldots \int_{a}^{t_{n-1}} \frac{f\left(t_{n}\right)}{t_{n}} d t_{n}=\frac{1}{\Gamma(\alpha)} \frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left(\log \frac{x}{t}\right)^{n-1} f(t) \frac{d t}{t}
$$

for $n \in \mathrm{~N}^{*}$.
Recently, Diaz and Pariguan (2007) have defined new functions called k-gamma and k-beta functions and the Pochhammer k-symbol that is generalization of the classical gamma and beta functions and the classical Pochhammer symbol.

$$
\Gamma_{k}(x)=\lim _{n \rightarrow \infty} \frac{n!k^{n}(n k)^{\frac{x}{k}-1}}{(x)_{n, k}}, k>0
$$

Where $(x)_{n, k}$ is the Pochhammer k-symbol for factorial function. It has been shown that the Mellin transform of the exponential function $e^{-\frac{-^{k}}{k}}$ is the k-gamma function, explicitly given by

$$
\Gamma_{k}(x)=\int_{0}^{\infty} t^{x-1} e^{-\frac{k^{k}}{k}} d t
$$

Clearly, $\Gamma(x)=\lim _{k \rightarrow 1} \Gamma_{k}(x), \Gamma_{k}(x)=k^{\frac{x}{k}-1} \Gamma\left(\frac{x}{k}\right)$ and $\Gamma_{k}(x+k)=x \Gamma_{k}(x)$. Furthermore, k-beta function defined as follows

$$
B_{k}(x, y)=\frac{1}{k} \int_{0}^{1} t^{\frac{x}{k}-1}(1-t)^{\frac{y}{k}-1} d t
$$

So that $B_{k}(x, y)=\frac{1}{k} B\left(\frac{x}{k}, \frac{y}{k}\right)$ and $B_{k}(x, y)=\frac{\Gamma_{k}(x) \Gamma_{k}(y)}{\Gamma_{k}(x+y)}$.Later, under these definitions, Mubeen and Habibullah (2012) have introduced the k-fractional intregral of the Riemann-Liouville type as follows:

$$
{ }_{k} J^{\alpha} f(x)=\frac{1}{k \Gamma_{k}(\alpha)} \int_{0}^{x}(x-t)^{\frac{\alpha}{k}-1} f(t) d t, \quad \alpha>0, x>0, k>0 .
$$

Note that when $k \rightarrow 1$, then it reduces to the classical Riemann-liouville fractional integrals.

k-Riemann-Liouville fractional integral

Here we want to present the fractional integration which generalizes all of the above Rimann-Liouville fractional integrals as follows (see Romero (2013)): Let α be a real non negative number. Let f be piece wise continuous on $I^{\prime}=(0, \infty)$ and integrable on any finite subinterval of $I=[0, \infty]$. Then for $t>0$, we consider k-Riemann-Liouville fractional integral of f of order α

$$
{ }_{k} J_{a}^{\alpha} f(x)=\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1} f(t) d t, \quad x>a, k>0 .
$$

Theorem 1.Let $f \in L_{1}[a, b], a>0$. Then, ${ }_{k} J_{a}^{\alpha} f(x)$ exists almost everywhere on $[a, b]$ and ${ }_{k} J_{a}^{\alpha} f(x) \in L_{1}[a, b]$.
Proof Define $P: \Delta:=[a, b] \times[a, b] \rightarrow \mathrm{R}$ by $P(x, t)=\left\lfloor(x-t)^{\frac{\alpha}{k}-1}\right]_{+}$, that is,

$$
P(x, t)=\left\{\begin{array}{cl}
(x-t)^{\frac{\alpha}{k}-1} & , a \leq t \leq x \leq b \\
0 & , a \leq x \leq t \leq b .
\end{array}\right.
$$

Thus, since P is measurable on Δ, we obtain

$$
\begin{aligned}
& \int_{a}^{b} P(x, t) d t=\int_{a}^{x} P(x, t) d t+\int_{x}^{b} P(x, t) d t=\int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1} d t=\frac{k}{\alpha}(x-a)^{\frac{\alpha}{k}} . \\
& \int_{a}^{b}\left(\int_{a}^{b} P(x, t)|f(x)| d t\right) d x=\int_{a}^{b}|f(x)|\left(\int_{a}^{b} P(x, t) d t\right) d x \quad \begin{array}{l}
\text { By using the repeated } \\
\text { integral, we obtain }
\end{array} \\
&=\frac{k}{\alpha} \int_{a}^{b}(x-a)^{\frac{\alpha}{k}}|f(x)| d x \\
& \leq \frac{k}{\alpha}(b-a)^{\frac{\alpha}{k}} \int_{a}^{b}|f(x)| d x \\
&=\frac{k}{\alpha}(b-a)^{\frac{\alpha}{k}}\|f(x)\|_{L_{1}[a, b]}<\infty .
\end{aligned}
$$

Therefore, the function $Q: \Delta \rightarrow \mathrm{R}$ such that $Q(x, t):=P(x, t) f(x)$ is integrable over Δ by Tonelli's theorem. Hence, by Fubini's theorem $\int_{a}^{b} P(x, t) f(x) d x$ is an integrable function on $[a, b]$, as a function of $t \in[a, b]$. That is, ${ }_{k} J_{a}^{\alpha} f(x)$ is integrable on $[a, b]$.

Theorem 2. Let $\alpha \geq 1, k>0$ and $f \in L_{1}[a, b]$. Then, ${ }_{k} J_{a}^{\alpha} f \in C[a, b]$.
Proof For $\frac{\alpha}{k}=1$ is trivial, thus we assume $\frac{\alpha}{k} \neq 1$. Let $x, y \in[a, b], x \leq y$ and $x \rightarrow y$. Then we write

$$
\begin{aligned}
& \left|{ }_{k} J_{a}^{\alpha} f(x)-{ }_{k} J_{a}^{\alpha} f(y)\right| \\
= & \frac{1}{k \Gamma_{k}(\alpha)}\left|\int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1} f(t) d t-\int_{a}^{y}(y-t)^{\frac{\alpha}{k}-1} f(t) d t\right| \\
= & \frac{1}{k \Gamma_{k}(\alpha)}\left|\int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1} f(t) d t-\int_{x}^{y}(y-t)^{\frac{\alpha}{k}-1} f(t) d t-\int_{a}^{x}(y-t)^{\frac{\alpha}{k}-1} f(t) d t\right| \\
\leq & \frac{1}{k \Gamma_{k}(\alpha)}\left\{\int_{a}^{x}\left|(x-t)^{\frac{\alpha}{k}-1}-(y-t)^{\frac{\alpha}{k}-1}\right||f(t)| d t+\int_{x}^{y}(y-t)^{\frac{\alpha}{k}-1}|f(t)| d t\right\} \\
\leq & \frac{1}{k \Gamma_{k}(\alpha)}\left\{\int_{a}^{x}\left|(x-t)^{\frac{\alpha}{k}-1}-(y-t)^{\frac{\alpha}{k}-1}\right||f(t)| d t+(y-x)^{\frac{\alpha}{k}-1}\|f(t)\|_{L_{1}[a, b]}\right\}
\end{aligned}
$$

Since weget $(x-t)^{\frac{\alpha}{k}-1} \rightarrow(y-t)^{\frac{\alpha}{k}-1}$ as $x \rightarrow y$, then

$$
\left|(x-t)^{\frac{\alpha}{k}-1}-(y-t)^{\frac{\alpha}{k}-1}\right| \rightarrow 0
$$

and also we have

$$
\left|(x-t)^{\frac{\alpha}{k}-1}-(y-t)^{\frac{\alpha}{k}-1}\right| \leq 2(b-a)^{\frac{\alpha}{k}-1}
$$

Therefore, by dominated convergence theorem we obtain $\left|{ }_{k} J_{a}^{\alpha} f(x)-{ }_{k} J_{a}^{\alpha} f(y)\right| \rightarrow 0$ as $x \rightarrow y$, that is, ${ }_{k} J_{a}^{\alpha} f \in C[a, b]$.
Now, we give semi group properties of the k-Riemann-Liouville fractional integral:
Theorem 3.Let f be continuous on I and let $\alpha, \beta>0, a>0$. Then for all x,

$$
{ }_{k} J_{a}^{\alpha}\left[{ }_{k} J_{a}^{\beta} f(x)\right]={ }_{k} J_{a}^{\alpha+\beta} f(x)={ }_{k} J_{a}^{\beta}\left[{ }_{k} J_{a}^{\alpha} f(x)\right], k>0 .
$$

Proof By definition of the k-fractional integral and by using Dirichlet's formula, we have

$$
\begin{align*}
{ }_{k} J_{a}^{\alpha}\left[{ }_{k} J_{a}^{\beta} f(x)\right] & =\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1}{ }_{k} J_{a}^{\beta} f(t) d t \\
& =\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1}\left[\frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-\tau)^{\frac{\beta}{k}-1} f(\tau) d \tau\right] d t \\
& =\frac{1}{k^{2} \Gamma_{k}(\alpha) \Gamma_{k}(\beta)} \int_{a}^{x} f(\tau)\left[\int_{\tau}^{x}(x-t)^{\frac{\alpha}{k}-1}(t-\tau)^{\frac{\beta}{k}-1} d t\right] d \tau . \tag{1}
\end{align*}
$$

The inner integral is evaluated by the change of variable $y=(t-\tau) /(x-\tau)$;

$$
\begin{align*}
\int_{\tau}^{x}(x-t)^{\frac{\alpha}{k}-1}(t-\tau)^{\frac{\beta}{k}-1} d t & =(x-\tau)^{\frac{\alpha+\beta}{k}-1} \int_{0}^{1}(1-y)^{\frac{\alpha}{k}-1} y^{\frac{\beta}{k}-1} d y \\
& =(x-\tau)^{\frac{\alpha+\beta}{k}-1} k B_{k}(\alpha, \beta) \tag{2}
\end{align*}
$$

According to the k-beta function and by (1) and (2), we obtain

$$
\begin{aligned}
{ }_{k} J_{a}^{\alpha}\left[{ }_{k} J_{a}^{\beta} f(x)\right] & =\frac{1}{{ }_{k} \Gamma_{k}(\alpha+\beta)} \int_{a}^{x}(x-\tau)^{\frac{\alpha+\beta}{k}-1} f(\tau) d \tau \\
& ={ }_{k} J_{a}^{\alpha+\beta} f(x) .
\end{aligned}
$$

This completes the proof of the Theorem 3.
Theorem 4.Let $\alpha, \beta>0, a>0$. Then there holds the formula,

$$
\begin{equation*}
{ }_{k} J_{a}^{\alpha}\left((x-a)^{\frac{\beta}{k}-1}\right)=\frac{\Gamma_{k}(\beta)}{\Gamma_{k}(\alpha+\beta)}(x-a)^{\frac{\alpha+\beta}{k}-1}, \quad k>0 \tag{3}
\end{equation*}
$$

where Γ_{k} denotes the k-gamma function.
Proof By definition of the k-fractional integral and by the change of variable $y=(x-t) /(x-a)$, we get

$$
\begin{aligned}
{ }_{k} J_{a}^{\alpha}\left((x-a)^{\frac{\beta}{k}-1}\right) & =\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1}(t-a)^{\frac{\beta}{k}-1} d t \\
& =\frac{(x-a)^{\frac{\alpha+\beta}{k}-1}}{k \Gamma_{k}(\alpha)} \int_{0}^{1}(1-y)^{\frac{\alpha}{k}-1} y^{\frac{\beta}{k}-1} d y \\
& =\frac{(x-a)^{\frac{\alpha+\beta}{k}-1}}{\Gamma_{k}(\alpha)} B_{k}(\alpha, \beta),
\end{aligned}
$$

which this completes the proof of the Theorem 4.
Remark 1. Fork $=1$ in (3), we arrive the formula

$$
\begin{equation*}
J_{a}^{\alpha}\left((x-a)^{\beta-1}\right)=\frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}(x-a)^{\alpha+\beta-1} . \tag{4}
\end{equation*}
$$

Corollary 1. Let $\alpha, \beta>0$. Then, there holds the formula

$$
\begin{equation*}
{ }_{k} J_{a}^{\alpha}(1)=\frac{1}{\Gamma_{k}(\alpha+k)}(x-a)^{\frac{\alpha}{k}-2} . \tag{5}
\end{equation*}
$$

Remark 2. Fork $=1$ in (5), we get the formula

$$
J_{a}^{\alpha}(1)=\frac{1}{\Gamma(\alpha+1)}(x-a)^{\alpha-2} .
$$

Some new k-Riemann-Liouville fractional integral inequalities

Chebyshev inequalities can be represented in k-fractional integral forms as follows:
Theorem 5. Let f, g be two synchronous on [$0, \infty$), then for allt $>a \geq 0, \alpha>0, \beta>0$, the following inequalities for k-fractional integrals hold:

$$
\begin{gather*}
{ }_{k} J_{a}^{\alpha} f g(t) \geq \frac{1}{J_{a}^{\alpha}(1)}{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\alpha} g(t) \tag{6}\\
{ }_{k} J_{a}^{\alpha} f g(t){ }_{k} J_{a}^{\beta}(1)+{ }_{k} J_{a}^{\beta} f g(t){ }_{k} J_{a}^{\alpha}(1) \geq_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\beta} g(t)+{ }_{k} J_{a}^{\alpha} g(t){ }_{k} J_{a}^{\beta} f(t) . \tag{7}
\end{gather*}
$$

Proof Since the functions f and g are synchronous on $[0, \infty)$, then for all $x, y \geq 0$, we have

$$
(f(x)-f(y))(g(x)-g(y)) \geq 0
$$

Therefore

$$
\begin{equation*}
f(x) g(x)+f(y) g(y) \geq f(x) g(y)+f(y) g(x) \tag{8}
\end{equation*}
$$

Multiplying both sides of (8) by $\frac{1}{k \Gamma_{k}(\alpha)}(t-x)^{\frac{\alpha}{k}-1}$, then integrating the resulting inequality wit hrespest to x over (a, t), we obtain

$$
\begin{aligned}
& \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) g(x) d x+\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(y) g(y) d x \\
\geq & \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) g(y) d x+\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(y) g(x) d x
\end{aligned}
$$

i.e.

$$
\begin{equation*}
{ }_{k} J_{a}^{\alpha} f g(t)+f(y) g(y)_{k} J_{a}^{\alpha}(1) \geq g(y)_{k} J_{a}^{\alpha} f(t)+f(y)_{k} J_{a}^{\alpha} g(t) \tag{9}
\end{equation*}
$$

Multiplying both sides of (9) by $\frac{1}{k \Gamma_{k}(\alpha)}(t-y)^{\frac{\alpha}{k}-1}$, then integrating the resulting inequality with respect to y over (a, t), we obtain

$$
\begin{aligned}
& { }_{k} J_{a}^{\alpha} f g(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\alpha}{k}-1} d y+{ }_{k} J_{a}^{\alpha}(1) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\alpha}{k}-1} f(y) g(y) d y \\
\geq & { }_{k} J_{a}^{\alpha} f(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\alpha}{k}-1} g(y) d y+{ }_{k} J_{a}^{\alpha} g(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\alpha}{k}-1} f(y) d y
\end{aligned}
$$

that is,

$$
{ }_{k} J_{a}^{\alpha} f g(t) \geq \frac{1}{J_{a}^{\alpha}(1)}{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\alpha} g(t)
$$

and the first inequality is proved.
Multiplying both sides of (9) by $\frac{1}{k \Gamma_{k}(\alpha)}(t-y)^{\frac{\beta}{k}-1}$, then integrating the resulting inequality with respect to y over (a, t), we obtain

$$
\begin{aligned}
& { }_{k} J_{a}^{\alpha} f g(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} d y+{ }_{k} J_{a}^{\alpha}(1) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) g(y) d y \\
\geq & { }_{k} J_{a}^{\alpha} f(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} g(y) d y+{ }_{k} J_{a}^{\alpha} g(t) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) d y
\end{aligned}
$$

that is

$$
{ }_{k} J_{a}^{\alpha} f g(t)_{k} J_{a}^{\beta}(1)+_{k} J_{a}^{\beta} f g(t)_{k} J_{a}^{\alpha}(1) \geq_{k} J_{a}^{\alpha} f(t)_{k} J_{a}^{\beta} g(t)+{ }_{k} J_{a}^{\alpha} g(t)_{k} J_{a}^{\beta} f(t)
$$

and the second inequality is proved. The proof is completed.

Theorem 6.Let f, g be two synchronous on $[0, \infty), h \geq 0$, then for allt $>a \geq 0, \alpha>0, \beta>0$, the following in equalities fork -fractional integrals hold:

$$
\begin{aligned}
& \frac{1}{\Gamma_{k}(\beta+k)}(t-a)^{\frac{\beta}{k}-2}{ }_{k} J_{a}^{\alpha} f g h(t)+\frac{1}{\Gamma_{k}(\alpha+k)}(t-a)^{\frac{\alpha}{k}-2}{ }_{k} J_{a}^{\beta} f g h(t) \\
& \geq{ }_{k} J_{a}^{\alpha} f h(t){ }_{k} J_{a}^{\beta} g(t)+{ }_{k} J_{a}^{\alpha} g h(t){ }_{k} J_{a}^{\beta} f(t)-{ }_{k} J_{a}^{\alpha} h(t){ }_{k} J_{a}^{\beta} f g(t)-{ }_{k} J_{a}^{\alpha} f g(t){ }_{k} J_{a}^{\beta} h(t) \\
& \\
& +{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\beta} g h(t)+{ }_{k} J_{a}^{\alpha} g(t){ }_{k} J_{a}^{\beta} f h(t) .
\end{aligned}
$$

Proof: Since the functions f and g are synchronous on $[0, \infty)$ and $h \geq 0$, then for all $x, y \geq 0$, we have

$$
(f(x)-f(y))(g(x)-g(y))(h(x)+h(y)) \geq 0
$$

By opening the above, we get

$$
\begin{align*}
& f(x) g(x) h(x)+f(y) g(y) h(y) \\
& \geq f(x) g(y) h(x)+f(y) g(x) h(x)-f(y) g(y) h(x) \\
& \quad-f(x) g(x) h(y)+f(x) g(y) h(y)+f(y) g(x) h(y) \tag{10}
\end{align*}
$$

Multiplying both sides of (10) by $\frac{1}{k \Gamma_{k}(\alpha)}(t-x)^{\frac{\alpha}{k}-1}$, then integrating the resulting inequality with respect to x over (a, t), we obtain

$$
\begin{aligned}
& \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) g(x) h(x) d x+f(y) g(y) h(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} d x \\
\geq & g(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) h(x) d x+f(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} g(x) h(x) d x \\
& -f(y) g(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} h(x) d x-h(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) g(x) d x \\
& +g(y) h(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) d x+f(y) h(y) \frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{t}(t-x)^{\frac{\alpha}{k}-1} g(x) d x .
\end{aligned}
$$

i.e,

$$
\begin{align*}
& { }_{k} J_{a}^{\alpha} f g h(t)+f(y) g(y) h(y)_{k} J_{a}^{\alpha}(1) \\
\geq & g(y)_{k} J_{a}^{\alpha} f h(t)+f(y)_{k} J_{a}^{\alpha} g h(t)-f(y) g(y)_{k} J_{a}^{\alpha} h(t)-h(y)_{k} J_{a}^{\alpha} f g(t) \\
+ & g(y) h(y)_{k} J_{a}^{\alpha} f(t)+f(y) h(y)_{k} J_{a}^{\alpha} g(t) . \tag{11}
\end{align*}
$$

Multiplying both sides of (11) by $\frac{1}{k \Gamma_{k}(\beta)}(t-y)^{\frac{\beta}{k}-1}$, then integrating the resulting inequality with respect to y over (a, t), we obtain

$$
\begin{aligned}
& \quad{ }_{k} J_{a}^{\alpha} f g h(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} d y+{ }_{k} J_{a}^{\alpha}(1) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) g(y) h(y) d y \\
& \geq \\
& { }_{k} J_{a}^{\alpha} f h(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} g(y) d y+{ }_{k} J_{a}^{\alpha} g h(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) d y \\
& -{ }_{k} J_{a}^{\alpha} h(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) g(y) d y-{ }_{k} J_{a}^{\alpha} f g(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} h(y) d y \\
& \\
& +{ }_{k} J_{a}^{\alpha} f(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} g(y) h(y) d y+{ }_{k} J_{a}^{\alpha} g(t) \frac{1}{k \Gamma_{k}(\beta)} \int_{a}^{t}(t-y)^{\frac{\beta}{k}-1} f(y) h(y) d y
\end{aligned}
$$

that is

$$
\begin{aligned}
{ }_{k} J_{a}^{\alpha} f g h(t)_{k} J_{a}^{\beta}(1)+{ }_{k} J_{a}^{\alpha}(1)_{k} J_{a}^{\beta} f g h(t) & \geq{ }_{k} J_{a}^{\alpha} f h(t){ }_{k} J_{a}^{\beta} g(t)+{ }_{k} J_{a}^{\alpha} g h(t){ }_{k} J_{a}^{\beta} f(t) \\
& -{ }_{k} J_{a}^{\alpha} h(t){ }_{k} J_{a}^{\beta} f g(t)-{ }_{k} J_{a}^{\alpha} f g(t){ }_{k} J_{a}^{\beta} h(t) \\
& +{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\beta} g h(t)+{ }_{k} J_{a}^{\alpha} g(t){ }_{k} J_{a}^{\beta} f h(t)
\end{aligned}
$$

which this completes the proof.
Corollary 2. Let f, g be two synchronous on $[0, \infty), h \geq 0$, then for allt $>a \geq 0, \alpha>0$, the following inequalities fork fractional integrals hold:

$$
\begin{aligned}
& \frac{1}{\Gamma_{k}(\alpha+k)}(t-a)^{\frac{\alpha}{k}-2}{ }_{k} J_{a}^{\alpha} f g h(t) \\
\geq & { }_{k} J_{a}^{\alpha} f h(t){ }_{k} J_{a}^{\alpha} g(t)+{ }_{k} J_{a}^{\alpha} g h(t){ }_{k} J_{a}^{\alpha} f(t)-{ }_{k} J_{a}^{\alpha} h(t){ }_{k} J_{a}^{\alpha} f g(t) .
\end{aligned}
$$

Theorem 7. Let f, g and h be three monotonic functions defined on $[0, \infty)$ satisfying the following

$$
(f(x)-f(y))(g(x)-g(y))(h(x)-h(y)) \geq 0
$$

For all $x, y \in[a, t]$, then for all $t>a \geq 0, \alpha>0, \beta>0$, the following inequalities fork -fractional integrals holds:

$$
\begin{aligned}
& \frac{1}{\Gamma_{k}(\beta+k)}(t-a)^{\frac{\beta}{k}-2}{ }_{k} J_{a}^{\alpha} f g h(t)-\frac{1}{\Gamma_{k}(\alpha+k)}(t-a)^{\frac{\alpha}{k}-2}{ }_{k} J_{a}^{\beta} f g h(t) \\
\geq & { }_{k} J_{a}^{\alpha} f h(t){ }_{k} J_{a}^{\beta} g(t)+{ }_{k} J_{a}^{\alpha} g h(t){ }_{k} J_{a}^{\beta} f(t)-{ }_{k} J_{a}^{\alpha} h(t){ }_{k} J_{a}^{\beta} f g(t)+{ }_{k} J_{a}^{\alpha} f g(t){ }_{k} J_{a}^{\beta} h(t) \\
& -{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\beta} g h(t)-{ }_{k} J_{a}^{\alpha} g(t){ }_{k} J_{a}^{\beta} f h(t) .
\end{aligned}
$$

Proof: The proof is similar to that given in Theorem 6.
Theorem 8. Let f and g be two functions on $[0, \infty)$, then for all $t>a \geq 0, \alpha>0, \beta>0$, the following inequalities fork fractional integrals hold:

$$
\begin{align*}
& \frac{1}{\Gamma_{k}(\beta+k)}(t-a)^{\frac{\beta}{k}-2}{ }_{k} J_{a}^{\alpha} f^{2}(t) \\
& \quad+\frac{1}{\Gamma_{k}(\alpha+k)}(t-a)^{)^{\frac{\alpha}{k}}-2}{ }_{k} J_{a}^{\beta} g^{2}(t) \\
& \geq 2_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\beta} g(t) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
{ }_{k} J_{a}^{\alpha} f^{2}(t)_{k} J_{a}^{\beta} g^{2}(t)+{ }_{k} J_{a}^{\beta} f^{2}(t){ }_{k} J_{a}^{\alpha} g^{2}(t) \geq 2{ }_{k} J_{a}^{\alpha} f g(t)_{k} J_{a}^{\beta} f g(t) . \tag{13}
\end{equation*}
$$

Proof Since,

$$
(f(x)-g(y))^{2} \geq 0
$$

then we have

$$
\begin{equation*}
f^{2}(x)+g^{2}(y) \geq 2 f(x) g(y) . \tag{14}
\end{equation*}
$$

Multiplying both sides of (14) by $\frac{1}{k \Gamma_{k}(\alpha)}(t-x)^{\frac{\alpha}{k^{-}}-1}$ and $\frac{1}{k \Gamma_{k}(\beta)}(t-y)^{\frac{\beta}{k}-1}$, then integrating the resulting inequality with respect to x and y over (a, t) respectively, we obtain (12).
On the other hand, since

$$
(f(x) g(y)-f(y) g(x))^{2} \geq 0
$$

then under procedures similar to the above we obtain (13).

Corollary 3.Let f and g be two functions on $[0, \infty)$, then for all $t>a \geq 0, \alpha>0$, the following inequalities fork fractional integrals hold:

$$
\begin{aligned}
& \frac{1}{\Gamma_{k}(\alpha+k)}(t-a)^{\frac{\alpha}{k}-2}\left[{ }_{k} J_{a}^{\alpha} f^{2}(t)+{ }_{k} J_{a}^{\beta} g^{2}(t)\right] \\
\geq & 2{ }_{k} J_{a}^{\alpha} f(t){ }_{k} J_{a}^{\alpha} g(t),
\end{aligned}
$$

and

$$
{ }_{k} J_{a}^{\alpha} f^{2}(t){ }_{k} J_{a}^{\alpha} g^{2}(t) \geq\left[{ }_{k} J_{a}^{\alpha} f g(t)\right]^{2} .
$$

Theorem 9.Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and defined by

$$
\bar{f}(x)=\int_{a}^{x} f(t) d t, \quad x>a \geq 0
$$

Then for $\alpha \geq k>0$

$$
{ }_{k} J_{a}^{\alpha} f(x)=\frac{1}{k}{ }_{k} J_{a}^{\alpha-k} \bar{f}(x)
$$

Proof By definition of the k-fractional integral and by using Dirichlet's formula, we have

$$
\begin{aligned}
{ }_{k} J_{a}^{\alpha} \bar{f}(x) & =\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1} \int_{a}^{t} f(u) d u d t \\
& =\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x} f(u) \int_{u}^{x}(x-t)^{\frac{\alpha}{k}-1} d t d u \\
& =\frac{1}{\Gamma_{k}(\alpha+k)} \int_{a}^{x}(x-u)^{\frac{\alpha}{k}} f(u) d u \\
& =k_{k} J_{a}^{\alpha+k} f(x)
\end{aligned}
$$

This completes the proof of Theorem 9.
We give the generalized Cauchy-Bunyakovsky-Schwarz inequality as follows:
Lemma 1.Let $f, g, h:[a, b] \rightarrow[0, \infty)$ be continuous functions $0 \leq a<b$. Then

$$
\begin{equation*}
\left(\int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t\right)\left(\int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t\right) \geq\left(\int_{a}^{b} g^{\frac{m+n}{2}}(t) h^{\frac{r+s}{2}}(t) f(t) d t\right)^{2} \tag{15}
\end{equation*}
$$

where m, n, x, y arbitrary real numbers.
Proof It is obvious that

$$
\int_{a}^{b}\left[\sqrt{g^{m}(t) h^{r}(t) f(t)} \sqrt{\int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t}-\sqrt{g^{n}(t) h^{s}(t) f(t)} \sqrt{\int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t}\right]^{2} d t \geq 0
$$

Then, it follows that

$$
\begin{aligned}
& \int_{a}^{b}\left[g^{m}(t) h^{r}(t) f(t) \int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t+g^{n}(t) h^{s}(t) f(t) \int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t\right. \\
& \left.-2 g^{\frac{m+n}{2}}(t) h^{\frac{r+y}{s}}(t) f(t) \sqrt{\int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t} \sqrt{\int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t}\right] d t \geq 0
\end{aligned}
$$

and also

$$
\begin{aligned}
& 2\left(\int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t\right)\left(\int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t\right) \\
\geq & 2\left(\int_{a}^{b} g^{\frac{m+n}{2}}(t) h^{\frac{r+s}{2}}(t) f(t) d t\right) \sqrt{\int_{a}^{b} g^{m}(t) h^{r}(t) f(t) d t} \sqrt{\int_{a}^{b} g^{n}(t) h^{s}(t) f(t) d t}
\end{aligned}
$$

which this give the required inequality.
Theorem 10.Let $f \in L_{1}[a, b]$. Then

$$
\begin{equation*}
\left({ }_{k} J_{a}^{m\left(\frac{\alpha}{k}-1\right)+1} f^{r}(x)\right)\left({ }_{k} J_{a}^{n\left(\frac{\alpha}{k}-1\right)+1} f^{s}(x)\right) \geq\left({ }_{k} J_{a}^{\frac{m+n}{2}\left(\frac{\alpha}{k}-1\right)+1} f^{\frac{r+s}{2}}(x)\right)^{2} \tag{16}
\end{equation*}
$$

For $k, m, n, r, s>0$ and $\alpha>1$.
Proof By taking $g(t)=(x-t)^{\frac{\alpha}{k}-1}, f(t)=\frac{1}{k \Gamma_{k}(\alpha)}$ and $h(t)=f(t)$ in (15), we obtain

$$
\begin{aligned}
& \left(\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{m\left(\frac{\alpha}{k}-1\right)} f^{r}(t) d t\right)\left(\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{n\left(\frac{\alpha}{k}-1\right)} f^{s}(t) d t\right) \\
& \geq\left(\frac{1}{k \Gamma_{k}(\alpha)} \int_{a}^{x}(x-t)^{\frac{m+n}{2}\left(\frac{\alpha}{k}-1\right)} f^{\frac{r+s}{2}}(t) d t\right)^{2}
\end{aligned}
$$

which can be written as (16).
Remark 3.For $k=1$ in (16), we get the following inequality

$$
\left(J_{a}^{m(\alpha-1)+1} f^{r}(x)\right)\left({ }_{k} J_{a}^{n(\alpha-1)+1} f^{s}(x)\right) \geq\left({ }_{k} J_{a}^{\frac{m+n}{2}(\alpha-1)+1} f^{\frac{r+s}{2}}(x)\right)^{2} .
$$

REFERENCES

Anastassiou GA (2009). On right fractional calculus, Chaos, Solitons and Fractals 42, 365-376.
Atanacković TM, Konjik S, PilipovićS, SimićS (2009).Variational problems with fractional derivatives: Invariance conditions and Noether's theorem, Nonlinear Anal. Theory, Methods Appl. 71, 1504-1517.
Atanacković TM, Konjik S, Pilipović S (2008). Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A41(9), 095201-095213.

Atanackovic TM, Konjik S, Oparnica L, Pilipovic S(2010). Generalized Hamilton's principle with fractional derivatives, J. Phys. A43, No. 25, 255203-255215.
Belarbi S, Dahmani Z (2009). On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3), Art. 86.
Dahmani Z (2010). New inequalities in fractional integrals, International Journal of Nonlinear Scinece, 9(4), 493-497.
Dahmani Z (2010).On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1), 51-58.
Dahmani Z, Tabharit L, Taf S, (2010).Some fractional integral inequalities, Nonl. Sci. Lett. A, 1(2), 155-160.
Dahmani Z,Tabharit L, Taf S (2010).New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3), 93-99.
Diaz R, Pariguan E(2007). On hypergeometric functions and Pochhammerk - symbol, Divulg.Math, 15.,179-192.
Gorenflo R, Mainardi F (1997). Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, 223-276.
Hadamard J (1892).Essai sur l'étude des fonctions données par leur développement de Taylor,Jour.PureandAppl.Math4(8),101-186.
Katugompola UN (2011).New Approach Generalized Fractional Integral, Applied Math and Comp. 218,860-865.
Klimek M (2001).Fractional sequential mechanics-models with symmetric fractional derivative, Czechoslovak J. Phys., 51(12), 1348-1354.
Latif MA, Hussain S (2012). New inequalities of Ostrowski type for co-ordineted convex functions via fractional integrals, Journal of Fractional Calculus and Applications,Vol. 2, No. 9, pp. 1-15.
Malinowska AB, Torres DFM (2011).Fractional calculus of variations for a combined Caputo derivative, Fract. Calc. Appl. Anal. 14(4), 523-537.
Malinowska AB, Ammi MRS, Torres DFM (2010).Composition Functionals in Fractional Calculus of Variations, Commun. Frac. Calc. 1, 32-40.
Malinowska AB, Torres DFM (2011).Fractional calculus of variations for a combined Caputo derivative, Fract. Calc. Appl. Anal. 14, No. 4, 523-537.
Malinowska AB, Torres DFM, (2012).Multiobjective fractional variational calculus interms of a combined Caputo derivative, Appl. Math. Comput. 218, No. 9, 5099-5111.
Miller S, Ross B (1993).An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, USA, p.2.
Mubeen S, Habibullah GM (2012) k - fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2), 89-94.
EI-Nabulsi RA (2005). A fractional approach to nonconservative Lagrangian dynamicalsystems, Fiz. A14(4), 289-298.
El-Nabulsi RA (2013). Non-standard fractional Lagrangians, Nonlinear Dyn. 74, 381-394.
El-Nabulsi RA (2014). Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent, Comp. Appl. Math. 33, 163-179.
El-Nabulsi RA, Torres DFM (2007).Necessary optimality conditions for fractional action-like integrals of variational
calculus with Riemann- Liouville derivatives of order (alfa,beta), Math. Methods Appl. Sci. 30, No 15, 1931-1939.
EI-Nabulsi RA, Torres DFM(2008). Fractional action like variational problems, J. Math. Phys. 49, No 5, 053521-053528.
Podlubny I (2002).Geometric and physical interpretation of fractional integration and fractional differentiation, Frac. Calc. Appl. Anal. 5(4), 367-386.
Podlubny I (1997). Numerical solution of ordinary fractional differential equations by 183 the fractional difference method, Amsterdam, 507-516
Odzijewicz T, Malinowska AB, Torres DFM (2012). Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. 75(3), 1507-1515.
Romero LG, Luque LL, Dorrego GA, Cerutti RA (2013).On thek-Riemann-LiouvilleFractionalDerivative, Int. J. Contemp. Math. Sciences, 8(1), 41-51.
Sarikaya MZ, Ogunmez H (2012). On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.
Sarikaya MZ, Set E, Yaldiz H, Basak N (2013).Hermite -Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57, 2403--2407.
Sarikaya MZ (2014). On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms and Special Functions, Volume 25, Issue 2, pp:134-147.
Sarikaya MZ (2012).Ostrowski type inequalities involving the right Caputo fractionalderivativesbelongto L_{p}, FactaUniversitatis, Series Mathematics and Informatics, Vol. 27, No 2, 191-197.
Sarikaya MZ, Yaldiz H (2013). On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, Volume 1 No. 1 pp. 48-53.
Sarikaya MZ, Yaldiz H (2013).On the Hadamard's typeinequalitiesfor L-Lipschitzianmapping, Konuralp Journal of Mathematics, 1(2), pp:33-40.
Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York.

Accepted 30 August, 2014.
Citation: Sarikaya MZ, Karaca A (2014). On the k-Riemann-Liouvillefractional integral and applications. International Journal of Statistics and Mathematics 1(2): 033-043.

Copyright: © 2014 Sarikaya and Karaca. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

