		$\overline{0}$
Malaya Journal of	$\mathcal{M J S}$ an international journal of mathematical sciences with	
Matematik	computer applications...	
www.malayajournal.org		ISSN : 2319-3786

On a class of fractional q-Integral inequalities

Z. Dahmani ${ }^{a, *}$ and A. Benzidane ${ }^{b}$
${ }^{a, b}$ Laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, Algeria.

Abstract

In the present paper, we use the fractional q-calculus to generate some new integral inequalities for some monotonic functions. Other fractional q-integral results, using convex functions, are also presented.

Keywords: Convex function, fractional q-calculus, q-Integral inequalities.
2010 MSC: 26D15.
(C) 2012 MJM. All rights reserved.

1 Introduction

The study of the q-integral inequalities play a fundamental role in the theory of differential equations. We refer the reader to [3, 8, 9, 14] for further information and applications. To motivate our work, we shall introduce some important results. The first one is given in [13], where Ngo et al. proved that for any positive continuous function f on $[0,1]$ satisfying $\int_{x}^{1} f(\tau) d \tau \geq \int_{x}^{1} \tau d \tau, x \in[0,1]$, and for $\delta>0$, the inequalities

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau^{\delta} f(\tau) d \tau \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau f^{\delta}(\tau) d \tau \tag{1.2}
\end{equation*}
$$

are valid.
In [11, W.J. Liu, G.S. Cheng and C.C. Li proved that

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(\tau) d \tau \geq \int_{a}^{b}(\tau-a)^{\alpha} f^{\beta}(\tau) d \tau \tag{1.3}
\end{equation*}
$$

for any $\alpha>0, \beta>0$ and for any positive continuous function f on $[a, b]$, such that

$$
\int_{x}^{b} f^{\gamma}(\tau) d \tau \geq \int_{x}^{b}(\tau-a)^{\gamma} d \tau ; \gamma:=\min (1, \beta), x \in[a, b]
$$

Recently, Liu et al. 12 proved another interesting form of integral result, and the following inequality

$$
\begin{equation*}
\frac{\int_{a}^{b} f^{\beta}(\tau) d \tau}{\int_{a}^{b} f^{\gamma}(\tau) d \tau} \geq \frac{\int_{a}^{b}(\tau-a)^{\delta} f^{\beta}(\tau) d \tau}{\int_{a}^{b}(\tau-a)^{\delta} f^{\gamma}(\tau) d \tau}, \beta \geq \gamma>0, \delta>0 \tag{1.4}
\end{equation*}
$$

(where f is a positive continuous and decreasing function on $[a, b]$), was proved in this paper. Several interesting inequalities can be found in [12.

Many researchers have given considerable attention to (1),(3) and (4) and a number of extensions and generalizations appeared in the literature (e.g. [4, 5, 6, 7, 10, 11, 15, 16]).

The main purpose of this paper is to establish some new fractional q-integral inequalities on the specific time scales $T_{t_{0}}=\left\{t: t=t_{0} q^{n}, n \in N\right\} \cup\{0\}$, where $t_{0} \in R$, and $0<q<1$. Other fractional q-integral results, involving convex functions, are also presented. Our results have some relationships with those obtained in [12].

2 Notations and Preliminaries

In this section, we provide a summary of the mathematical notations and definitions used in this paper. For more details, one can consult [1,2].
Let $t_{0} \in R$. We define

$$
\begin{equation*}
T_{t_{0}}:=\left\{t: t=t_{0} q^{n}, n \in N\right\} \cup\{0\}, 0<q<1 . \tag{2.5}
\end{equation*}
$$

For a function $f: T_{t_{0}} \rightarrow R$, the $\nabla \mathrm{q}$-derivative of f is:

$$
\begin{equation*}
\nabla_{q} f(t)=\frac{f(q t)-f(t)}{(q-1) t} \tag{2.6}
\end{equation*}
$$

for all $t \in T \backslash\{0\}$ and its ∇q-integral is defined by:

$$
\begin{equation*}
\int_{0}^{t} f(\tau) \nabla \tau=(1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}\right) \tag{2.7}
\end{equation*}
$$

The fundamental theorem of calculus applies to the q-derivative and q-integral. In particular, we have:

$$
\begin{equation*}
\nabla_{q} \int_{0}^{t} f(\tau) \nabla \tau=f(t) \tag{2.8}
\end{equation*}
$$

If f is continuous at 0 , then

$$
\begin{equation*}
\int_{0}^{t} \nabla_{q} f(\tau) \nabla \tau=f(t)-f(0) \tag{2.9}
\end{equation*}
$$

Let $T_{t_{1}}, T_{t_{2}}$ denote two time scales. Let $f: T_{t_{1}} \rightarrow R$ be continuous let $g: T_{t_{1}} \rightarrow T_{t_{2}}$ be q-differentiable, strictly increasing, and $g(0)=0$. Then for $b \in T_{t_{1}}$, we have:

$$
\begin{equation*}
\int_{0}^{b} f(t) \nabla_{q} g(t) \nabla t=\int_{0}^{g(b)}\left(f \circ g^{-1}\right)(s) \nabla s \tag{2.10}
\end{equation*}
$$

The q-factorial function is defined as follows:
If n is a positive integer, then

$$
\begin{equation*}
(t-s) \underline{(n)}=(t-s)(t-q s)\left(t-q^{2} s\right) \ldots\left(t-q^{n-1} s\right) . \tag{2.11}
\end{equation*}
$$

If n is not a positive integer, then

$$
\begin{equation*}
(t-s) \underline{(n)}=t^{n} \prod_{k=0}^{\infty} \frac{1-\left(\frac{s}{t}\right) q^{k}}{1-\left(\frac{s}{t}\right) q^{n+k}} . \tag{2.12}
\end{equation*}
$$

The q-derivative of the q-factorial function with respect to t is

$$
\begin{equation*}
\nabla_{q}(t-s) \underline{(n)}=\frac{1-q^{n}}{1-q}(t-s) \underline{(n-1)}, \tag{2.13}
\end{equation*}
$$

and the q-derivative of the q-factorial function with respect to s is

$$
\begin{equation*}
\nabla_{q}(t-s) \underline{(n)}=-\frac{1-q^{n}}{1-q}(t-q s) \underline{(n-1)} \tag{2.14}
\end{equation*}
$$

The q-exponential function is defined as

$$
\begin{equation*}
e_{q}(t)=\prod_{k=0}^{\infty}\left(1-q^{k} t\right), e_{q}(0)=1 \tag{2.15}
\end{equation*}
$$

The fractional q-integral operator of order $\alpha \geq 0$, for a function f is defined as

$$
\begin{equation*}
\nabla_{q}^{-\alpha} f(t)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q \tau) \frac{\alpha-1}{} f(\tau) \nabla \tau ; \quad \alpha>0, t>0 \tag{2.16}
\end{equation*}
$$

where $\Gamma_{q}(\alpha):=\frac{1}{1-q} \int_{0}^{1}\left(\frac{u}{1-q}\right)^{\alpha-1} e_{q}(q u) \nabla u$.

3 Main Results

Theorem 3.1. Let f and g be two positive and continuous functions on $T_{t_{0}}$ such that f is decreasing and g is increasing on $T_{t_{0}}$. Then for all $\alpha>0, \beta \geq \gamma>0, \delta>0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right]} \geq \frac{\nabla_{q}^{-\alpha}\left[g^{\delta} f^{\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[g^{\delta} f^{\gamma}(t)\right]}, t>0 \tag{3.17}
\end{equation*}
$$

Proof. Let us consider

$$
\begin{equation*}
H(\tau, \rho):=\left(g^{\delta}(\rho)-g^{\delta}(\tau)\right)\left(f^{\beta}(\tau) f^{\gamma}(\rho)-f^{\gamma}(\tau) f^{\beta}(\rho)\right), \tau, \rho \in(0, t), t>0 \tag{3.18}
\end{equation*}
$$

We have

$$
\begin{equation*}
H(\tau, \rho) \geq 0 \tag{3.19}
\end{equation*}
$$

Hence, we get

$$
\begin{gather*}
\int_{0}^{t} \frac{(t-q \tau) \stackrel{(\alpha-1)}{\underline{\Gamma_{q}}(\alpha)} H(\tau, \rho) \nabla \tau=g^{\delta}(\rho) f^{\gamma}(\rho) \nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right]+f^{\beta}(\rho) \nabla_{q}^{-\alpha}\left[g^{\delta}(t) f^{\gamma}(t)\right]}{} \begin{array}{c}
-f^{\gamma}(\rho) \nabla_{q}^{-\alpha}\left[g^{\delta}(t) f^{\beta}(t)\right]-g^{\delta}(\rho) f^{\beta}(\rho) \nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right] \geq 0
\end{array} . \tag{3.20}
\end{gather*}
$$

Consequently,

$$
\begin{gather*}
2^{-1} \int_{0}^{t} \int_{0}^{t} \frac{(t-q \rho) \frac{(\alpha-1)}{(t-q \tau) \stackrel{(\alpha-1)}{2}}}{\Gamma_{q}^{2}(\alpha)} H(\tau, \rho) \nabla \tau \nabla \rho=\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta}(t) f^{\gamma}(t)\right] \tag{3.21}\\
-\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta}(t) f^{\beta}(t)\right) \geq 0
\end{gather*}
$$

Theorem 3.1 is thus proved.

Another result which generalizes Theorem 3.1 is described in the following theorem:
Theorem 3.2. Suppose that f and g are two positive and continuous functions on $T_{t_{0}}$, such that f is decreasing and g is increasing on $T_{t_{0}}$. Then for all $\alpha>0, \omega>0, \beta \geq \gamma>0, \delta>0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\gamma}(t)\right]+\nabla_{q}^{-\omega}\left[f^{\beta}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\gamma}(t)\right]}{\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\beta}(t)\right]+\nabla_{q}^{-\omega}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\beta}(t)\right]} \geq 1 ; t>0 \tag{3.22}
\end{equation*}
$$

Proof. The relation (3.20) allows us to obtain

$$
\begin{gather*}
\int_{0}^{t} \int_{0}^{t} \frac{(t-q \rho) \stackrel{(\omega-1)}{ }(t-q \tau) \stackrel{(\alpha-1)}{\Gamma_{q}(\omega) \Gamma_{q}(\alpha)} H(\tau, \rho) \nabla \tau \nabla \rho=\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\gamma}(t)\right]}{+\nabla_{q}^{-\omega}\left[f^{\beta}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\gamma}(t)\right]-\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\beta}(t)\right)-\nabla_{q}^{-\omega}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\beta}(t)\right] \geq 0,} \tag{3.23}
\end{gather*}
$$

for any $\omega>0$.
Hence, we have 3.22.

Remark 3.1. It is clear that Theorem 3.1 would follow as a special case of Theorem 3.2 for $\alpha=\omega$.
The third result is given by the following theorem:
Theorem 3.3. Let f and g be two positive continuous functions on $T_{t_{0}}$, such that

$$
\begin{equation*}
\left(f^{\delta}(\tau) g^{\delta}(\rho)-f^{\delta}(\rho) g^{\delta}(\tau)\right)\left(f^{\beta-\gamma}(\tau)-f^{\beta-\gamma}(\rho)\right) \geq 0 ; \tau, \rho \in(0, t), t>0 \tag{3.24}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left[f^{\delta+\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[f^{\delta+\gamma}(t)\right]} \geq \frac{\nabla_{q}^{-\alpha}\left[g^{\delta} f^{\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[g^{\delta} f^{\gamma}(t)\right]}, \tag{3.25}
\end{equation*}
$$

for any $\alpha>0, \beta \geq \gamma>0, \delta>0$.
Proof. We consider the quantity:

$$
K(\tau, \rho):=\left(f^{\delta}(\tau) g^{\delta}(\rho)-f^{\delta}(\rho) g^{\delta}(\tau)\right)\left(f^{\gamma}(\rho) f^{\beta}(\tau)-f^{\gamma}(\tau) f^{\beta}(\rho)\right) ; \tau, \rho \in(0, t), t>0
$$

and we use the same arguments as in the proof of Theorem 3.1.
Using two fractional parameters, we obtain the following generalization of Theorem 3.3:
Theorem 3.4. Let f and g be two positive continuous functions on $T_{t_{0}}$, such that

$$
\begin{equation*}
\left(f^{\delta}(\tau) g^{\delta}(\rho)-f^{\delta}(\rho) g^{\delta}(\tau)\right)\left(f^{\beta-\gamma}(\tau)-f^{\beta-\gamma}(\rho)\right) \geq 0 ; \tau, \rho \in(0, t), t>0 \tag{3.26}
\end{equation*}
$$

Then for all $\alpha>0, \omega>0, \beta \geq \gamma>0, \delta>0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left[f^{\delta+\beta}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\gamma}(t)\right]+\nabla_{q}^{-\omega}\left[f^{\delta+\beta}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\gamma}(t)\right]}{\nabla_{q}^{-\alpha}\left[f^{\gamma+\delta}(t)\right] \nabla_{q}^{-\omega}\left[g^{\delta} f^{\beta}(t)\right]+\nabla_{q}^{-\omega}\left[f^{\gamma+\delta}(t)\right] \nabla_{q}^{-\alpha}\left[g^{\delta} f^{\beta}(t)\right]} \geq 1 \tag{3.27}
\end{equation*}
$$

Remark 3.2. Applying Theorem 3.4, for $\alpha=\omega$, we obtain Theorem 3.3].
Involving convex functions, we have the following result:
Theorem 3.5. Let f and h be two positive continuous functions on $T_{t_{0}}$ and $f \leq h$ on $T_{t_{0}}$. If $\frac{f}{h}$ is decreasing and f is increasing on $[0, \infty[$, then for any convex function $\phi ; \phi(0)=0$, the inequality

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t))}{\nabla_{q}^{-\alpha}(h(t))} \geq \frac{\nabla_{q}^{-\alpha}(\phi(f(t)))}{\nabla_{q}^{-\alpha}(\phi(h(t)))}, t>0, \alpha>0 \tag{3.28}
\end{equation*}
$$

is valid.
Proof. Using the fact that on $T_{t_{0}}, \frac{\phi(f(.))}{f(.)}$ is an increasing function and $\frac{f}{h}$ is a decreasing function, we can write

$$
\begin{equation*}
L(\tau, \rho) \geq 0, \tau, \rho \in(0, t), t>0 \tag{3.29}
\end{equation*}
$$

where

$$
\begin{gather*}
L(\tau, \rho):=\frac{\phi(f(\tau))}{f(\tau)} f(\rho) h(\tau)+\frac{\phi(f(\rho))}{f(\rho)} f(\tau) h(\rho) \tag{3.30}\\
-\frac{\phi(f(\rho))}{f(\rho)} f(\rho) h(\tau)-\frac{\phi(f(\tau))}{f(\tau)} f(\tau) h(\rho), \tau, \rho \in(0, t), t>0
\end{gather*}
$$

Multiplying both sides of 3.29 by $\frac{(t-q \tau)(\alpha-1)}{\Gamma_{q}(\alpha)}$, then integrating the resulting inequality with respect to τ over $(0, t)$, yields

$$
\begin{gather*}
f(\rho) \nabla_{q}^{-\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right]+\frac{\phi(f(\rho))}{f(\rho)} h(\rho) \nabla_{q}^{-\alpha} f(t) \tag{3.31}\\
-\frac{\phi(f(\rho))}{f(\rho)} f(\rho) \nabla_{q}^{-\alpha} h(t)-h(\rho) \nabla_{q}^{-\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0 .
\end{gather*}
$$

With the same arguments as before, we obtain

$$
\begin{equation*}
\nabla_{q}^{-\alpha} f(t)\left[\frac{\phi(f(t))}{f(t)} h(t)\right]-\nabla_{q}^{-\alpha} h(t) \nabla_{q}^{-\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0 \tag{3.32}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\frac{\phi(f(\tau))}{f(\tau)} \leq \frac{\phi(h(\tau))}{h(\tau)}, \tau \in(0, t), t>0 . \tag{3.33}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{(t-q \tau) \stackrel{(\alpha-1)}{\Gamma_{q}(\alpha)}}{\text { (}} h(\tau) \frac{\phi(f(\tau))}{f(\tau)} \leq \frac{(t-q \tau) \stackrel{(\alpha-1)}{ }}{\Gamma_{q}(\alpha)} h(\tau) \frac{\phi(h(\tau))}{h(\tau)}, \tau \in(0, t), t>0 . \tag{3.34}
\end{equation*}
$$

The inequality (3.34) implies that

$$
\begin{equation*}
\nabla_{q}^{-\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] \leq \nabla_{q}^{-\alpha}\left[\frac{\phi(h(t))}{h(t)} h(t)\right] . \tag{3.35}
\end{equation*}
$$

Combining (3.32) and (3.35), we obtain (3.28).
To finish, we present to the reader the following result which generalizes the previous theorem:
Theorem 3.6. Let f and h be two positive continuous functions on on $T_{t_{0}}$ and $f \leq h$ on $T_{t_{0}}$. If $\frac{f}{h}$ is decreasing and f is increasing on $T_{t_{0}}$, then for any convex function $\phi ; \phi(0)=0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t)) \nabla_{q}^{-\omega}(\phi(h(t)))+\nabla_{q}^{-\omega}(f(t)) \nabla_{q}^{-\alpha}(\phi(h(t)))}{\nabla_{q}^{-\alpha}(h(t)) \nabla_{q}^{-\omega}(\phi(f(t)))+\nabla_{q}^{-\omega}(h(t)) \nabla_{q}^{-\alpha}(\phi(f(t)))} \geq 1, \alpha>0, \omega>0, t>0 . \tag{3.36}
\end{equation*}
$$

Proof. The relation 3.31 allows us to obtain

$$
\begin{gather*}
\nabla_{q}^{-\omega} f(t) J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right]+\nabla_{q}^{-\omega}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] \nabla_{q}^{-\alpha} f(t) \tag{3.37}\\
-\nabla_{q}^{-\omega}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \nabla_{q}^{-\alpha} h(t)-\nabla_{q}^{-\omega} h(t) \nabla_{q}^{-\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0 .
\end{gather*}
$$

On the other hand, we have:

$$
\begin{equation*}
\frac{(t-q \tau) \stackrel{(\omega-1)}{\Gamma_{q}(\omega)}}{\Gamma^{(\omega)}} h(\tau) \frac{\phi(f(\tau))}{f(\tau)} \leq \frac{(t-q \tau) \stackrel{(\alpha-1)}{ }}{\Gamma_{q}(\omega)} h(\tau) \frac{\phi(h(\tau))}{h(\tau)}, \tau \in[0, t], t>0 \tag{3.38}
\end{equation*}
$$

Integrating both sides of 3.38 with respect to τ over $(0, t)$, yields

$$
\begin{equation*}
\nabla_{q}^{-\omega}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] \leq \nabla_{q}^{-\omega}\left[\frac{\phi(h(t))}{h(t)} h(t)\right] . \tag{3.39}
\end{equation*}
$$

By (3.35), 3.37) and (3.39), we get (3.36).
Remark 3.3. Applying Theorem 3.6, for $\alpha=\omega$, we obtain Theorem 3.5.

References

[1] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proceedings of the Cambridge Philosophical Society, 66(1969), 365-370.
[2] F.M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14(3)(2007), 341-352.
[3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, Mass, USA, 2001.
[4] L. Bougoufa, An integral inequality similar to Qi's inequality, JIPAM. J. Inequal. Pure Appl. Math., 6(1)2005, 1-3.
[5] Z. Dahmani, A note on some fractional inequalities involving convex functions, Acta Math. Univ. Comenianae, Vol. LXXXI, 2, 2012, 241-246.
[6] Z. Dahmani, N. Bedjaoui, Some generalized integral inequalities, Journal of Advanced Research in Applied Mathematics 3(4)(2011), 58-66.
[7] Z. Dahmani, H. Metakkel El Ard, Generalizations of some integral inequalities using RiemannLiouville operator, IJOPCM, International Journal of Open Problems in Computer Science and Mathematics, 4(4)(2011),
[8] Rui A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electronic Journal of Qualitative Theory of Differential Equations, 70(2010), 1-10.
[9] Rui A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional qdifferences, Comput. Math. Appl., 61(2)(2011), 367-373.
[10] W.J. Liu, C.C. Li and J.W. Dong, On an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 8(3)(2007), 1-5.
[11] W.J. Liu, G.S. Cheng and C.C. Li, Further development of an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 9(1)(2008), 1-10.
[12] W.J. Liu, Q.A. Ngo and V.N. Huy, Several interesting integral inequalities, Journal of Math. Inequal., $3(2)(2009), 201-212$.
[13] Q.A. Ngo, D.D. Thang, T.T. Dat, and D.A. Tuan, Notes on an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 7(4)(2006), 1-6.
[14] H. Ogunmez and U.M. Ozkan, Fractional Quantum Integral Inequalities, J. Inequal. Appl., 2011, Art. ID 787939, 7 pp.
[15] T.K. Pogany, On an open problem of F. Qi, JIPAM. J. Inequal. Pure Appl. Math., 3(4)(2002), 1-12.
[16] F. Qi, Several integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 1(2)(2000), 1-7.

Received: March 2, 2013; Accepted: April 17, 2013

