A NOTE ON SOME NEW FRACTIONAL RESULTS INVOLVING CONVEX FUNCTIONS

Z. DAHMANI

Abstract

In this paper, we establish some new integral inequalities for convex functions by using the Riemann-Liouville operator of non integer order. For our results some classical integral inequalities can be deduced as some special cases.

1. Introduction

The integral inequalities play a fundamental role in the theory of differential equations. Much significant development in this area has been established for the last two decades. For details we refer to $[\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 4}, \mathbf{1 5}]$ and the references therein. Moreover, the study of fractional type inequalities is also of a great importance. For further information and applications we refer the reader to $[\mathbf{1 , 1 3}]$. Let us introduce now some results that have inspired our work. We begin by the paper of Ngo et al. [11], in which the authors proved that

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) \mathrm{d} \tau \geq \int_{0}^{1} \tau^{\delta} f(\tau) \mathrm{d} \tau \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) \mathrm{d} \tau \geq \int_{0}^{1} \tau f^{\delta}(\tau) \mathrm{d} \tau \tag{2}
\end{equation*}
$$

where $\delta>0$ and f is a positive continuous function on $[0,1]$ such that

$$
\int_{x}^{1} f(\tau) \mathrm{d} \tau \geq \int_{x}^{1} \tau \mathrm{~d} \tau, x \in[0,1] .
$$

Then, in [8], W. J. Liu, G. S. Cheng and C. C. Li established the following result

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(\tau) \mathrm{d} \tau \geq \int_{a}^{b}(\tau-a)^{\alpha} f^{\beta}(\tau) \mathrm{d} \tau \tag{3}
\end{equation*}
$$

Received February 6, 2012; revised July 19, 2012.
2010 Mathematics Subject Classification. Primary 26D10, 26A33.
Key words and phrases. Convex function; Integral inequalities; Riemann-Liouville operator; Qi inequality.
provided that $\alpha>0, \beta>0$ and f is a positive continuous function on $[a, b]$ satisfying

$$
\int_{x}^{b} f^{\gamma}(\tau) \mathrm{d} \tau \geq \int_{x}^{b}(\tau-a)^{\gamma} \mathrm{d} \tau ; \gamma:=\min (1, \beta), x \in[a, b]
$$

In [9], the following two theorems were proved.
Theorem 1.1. Let f and h be two positive continuous functions on $[a, b]$ with $f \leq h$ on $[a, b]$ such that $\frac{f}{h}$ is decreasing and f is increasing. Assume that ϕ is a convex function $\phi ; \phi(0)=0$. Then the inequality

$$
\begin{equation*}
\frac{\int_{a}^{b} f(\tau) \mathrm{d} \tau}{\int_{a}^{b} h(\tau) \mathrm{d} \tau} \geq \frac{\int_{a}^{b} \phi(f(\tau)) \mathrm{d} \tau}{\int_{a}^{b} \phi(h(\tau)) \mathrm{d} \tau} \tag{4}
\end{equation*}
$$

holds.
And
Theorem 1.2. Let f, g and h be three positive continuous functions on $[a, b]$ with $f \leq h$ on $[a, b]$ such that $\frac{f}{h}$ is decreasing and f and g are increasing. Assume that ϕ is a convex function $\phi ; \phi(0)=0$. Then the inequality

$$
\begin{equation*}
\frac{\int_{a}^{b} f(\tau) \mathrm{d} \tau}{\int_{a}^{b} h(\tau) \mathrm{d} \tau} \geq \frac{\int_{a}^{b} \phi(f(\tau)) g(\tau) \mathrm{d} \tau}{\int_{a}^{b} \phi(h(\tau)) g(\tau) \mathrm{d} \tau} \tag{5}
\end{equation*}
$$

holds.
Many researchers have given considerable attention to (1), (2) and (3) and a number of extensions, generalizations and variants have appeared in the literature, (e.g. $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{1 4}]$).

The purpose of this paper is to generalize some classical integral inequalities of [9] using the Riemann-Liouville integral operator. For our results Theorem 1.1 and Theorem 1.2 can be deduced as some special cases.

2. Preliminaries

Let us introduce some definitions and properties concerning the Riemann-Liouville fractional integral operator.

Definition 1. The Riemann-Liouville fractional integral operator of order $\alpha \geq 0$, for a continuous function f on $[a, b]$, is defined as

$$
\begin{align*}
J^{\alpha}[f(t)] & =\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-\tau)^{\alpha-1} f(\tau) \mathrm{d} \tau ; \quad \alpha>0, \quad a<t \leq b \tag{6}\\
J^{0}[f(t)] & =f(t)
\end{align*}
$$

where $\Gamma(\alpha):=\int_{0}^{\infty} \mathrm{e}^{-u} u^{\alpha-1} \mathrm{~d} u$.
For the convenience of establishing the results we give the semigroup property

$$
\begin{equation*}
J^{\alpha} J^{\beta}[f(t)]=J^{\alpha+\beta}[f(t)], \quad \alpha \geq 0, \quad \beta \geq 0 \tag{7}
\end{equation*}
$$

which implies the commutative property

$$
\begin{equation*}
J^{\alpha} J^{\beta}[f(t)]=J^{\beta} J^{\alpha}[f(t)] \tag{8}
\end{equation*}
$$

For more details one can consult $[\mathbf{6}, \mathbf{1 3}]$.

3. Main Results

Theorem 3.1. Let f and h be two positive continuous functions on $[a, b]$ and $f \leq h$ on $[a, b]$. If $\frac{f}{h}$ is decreasing and f is increasing on $[a, b]$, then for any convex function $\phi ; \phi(0)=0$, the inequality

$$
\begin{equation*}
\frac{J^{\alpha}[f(t)]}{J^{\alpha}[h(t)]} \geq \frac{J^{\alpha}[\phi(f(t))]}{J^{\alpha}[\phi(h(t))]}, \quad a<t \leq b, \quad \alpha>0 \tag{9}
\end{equation*}
$$

is valid.
Proof. The function ϕ is convex with $\phi(0)=0$. Then the function $\frac{\phi(x)}{x}$ is increasing. Since f is increasing, then $\frac{\phi(f(x))}{f(x)}$ is also increasing. This and the fact that $\frac{f(x)}{h(x)}$ is decreasing yield

$$
\begin{equation*}
\frac{\phi(f(\tau))}{f(\tau)} \frac{f(\rho)}{h(\rho)}+\frac{\phi(f(\rho))}{f(\rho)} \frac{f(\tau)}{h(\tau)}-\frac{\phi(f(\rho))}{f(\rho)} \frac{f(\rho)}{h(\rho)}-\frac{\phi(f(\tau))}{f(\tau)} \frac{f(\tau)}{h(\tau)} \geq 0 \tag{10}
\end{equation*}
$$

for all $\tau, \rho \in[a, t], a<t \leq b$.
Hence, we can write

$$
\begin{align*}
\frac{\phi(f(\tau))}{f(\tau)} f(\rho) h(\tau) & +\frac{\phi(f(\rho))}{f(\rho)} f(\tau) h(\rho) \tag{11}\\
& -\frac{\phi(f(\rho))}{f(\rho)} f(\rho) h(\tau)-\frac{\phi(f(\tau))}{f(\tau)} f(\tau) h(\rho) \geq 0
\end{align*}
$$

for all $\tau, \rho \in[a, t], a<t \leq b$.
Now, multiplying both sides of (11) by $\frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)}$, then integrating the resulting inequality with respect to τ over $[a, t], a<t \leq b$, we get

$$
\begin{align*}
f(\rho) J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] & +\frac{\phi(f(\rho))}{f(\rho)} h(\rho) J^{\alpha}[f(t)] \tag{12}\\
& -\frac{\phi(f(\rho))}{f(\rho)} f(\rho) J^{\alpha}[h(t)]-h(\rho) J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0
\end{align*}
$$

With the same argument as before, we obtain

$$
\begin{equation*}
J^{\alpha}[f(t)] J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right]-J^{\alpha}[h(t)] J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0 \tag{13}
\end{equation*}
$$

Since $f \leq h$ on $[a, b]$, then using the fact that the function $\frac{\phi(x)}{x}$ is increasing, we can write

$$
\begin{equation*}
\frac{\phi(f(\tau))}{f(\tau)} \leq \frac{\phi(h(\tau))}{h(\tau)}, \quad \tau \in[a, t], \quad a<t \leq b \tag{14}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} h(\tau) \frac{\phi(f(\tau))}{f(\tau)} \leq \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} h(\tau) \frac{\phi(h(\tau))}{h(\tau)} \tag{15}
\end{equation*}
$$

where $\tau \in[a, t], a<t \leq b$.
Integrating both sides of (15) with respect to τ over $[a, t], a<t \leq b$, yields

$$
\begin{equation*}
J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] \leq J^{\alpha}\left[\frac{\phi(h(t))}{h(t)} h(t)\right] \tag{16}
\end{equation*}
$$

Hence, thanks to (13) and (16), we obtain (9).
Remark 3.2. Applying Theorem 3.1 for $\alpha=1, t=b$, we obtain Theorem 1.1.
We further have the following theorem.
Theorem 3.3. Let f and h be two positive continuous functions on $[a, b]$ and $f \leq h$ on $[a, b]$. If $\frac{f}{h}$ is decreasing and f is increasing on $[a, b]$, then for any convex function $\phi ; \phi(0)=0$, we have

$$
\begin{equation*}
\frac{J^{\alpha}[f(t)] J^{\omega}[\phi(h(t))]+J^{\omega}[f(t)] J^{\alpha}[\phi(h(t))]}{J^{\alpha}[h(t)] J^{\omega}[\phi(f(t))]+J^{\omega}[h(t)] J^{\alpha}[\phi(f(t))]} \geq 1 \tag{17}
\end{equation*}
$$

where $\alpha>0, \omega>0, a<t \leq b$.
Proof. The relation (12) allows us to obtain

$$
\begin{align*}
J^{\omega}[f(t)] J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] & +J^{\omega}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] J^{\alpha}[f(t)] \tag{18}\\
& -J^{\omega}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] J^{\alpha}[h(t)]-J^{\omega}[h(t)] J^{\alpha}\left[\frac{\phi(f(t))}{f(t)} f(t)\right] \geq 0
\end{align*}
$$

Since $f \leq h$ on $[a, b]$ and using the fact that the function $\frac{\phi(x)}{x}$ is increasing, then thanks to (14), we obtain

$$
\begin{equation*}
\frac{(t-\tau)^{\omega-1}}{\Gamma(\omega)} h(\tau) \frac{\phi(f(\tau))}{f(\tau)} \leq \frac{(t-\tau)^{\omega-1}}{\Gamma(\omega)} h(\tau) \frac{\phi(h(\tau))}{h(\tau)} \tag{19}
\end{equation*}
$$

where $\tau \in[a, t], a<t \leq b$. And then,

$$
\begin{equation*}
J^{\omega}\left[\frac{\phi(f(t))}{f(t)} h(t)\right] \leq J^{\omega}\left[\frac{\phi(h(t))}{h(t)} h(t)\right] \tag{20}
\end{equation*}
$$

Hence, thanks to (16), (18) and (20), we get (17).
Remark 3.4. (i) Applying Theorem 3.3 for $\alpha=\omega$, we obtain Theorem 3.1. (ii) Applying Theorem 3.3 for $\alpha=\omega=1, t=b$, we obtain Theorem 1.1.

Another result which generalizes Theorem 1.2 is described in the following theorem.

Theorem 3.5. Let f, h and g be three positive continuous functions and $f \leq h$ on $[a, b]$. Suppose that $\frac{f}{h}$ is decreasing, f and g are increasing on $[a, b]$ and ϕ is a convex function, $\phi(0)=0$. Then, for any $\alpha>0, a<t \leq b$, we have

$$
\begin{equation*}
\frac{J^{\alpha}[f(t)]}{J^{\alpha}[h(t)]} \geq \frac{J^{\alpha}[\phi(f(t)) g(t)]}{J^{\alpha}[\phi(h(t)) g(t)]} . \tag{21}
\end{equation*}
$$

Proof. Let $\tau, \rho \in[a, t], a<t \leq b$. We have

$$
\begin{align*}
\frac{\phi(f(\tau)) g(\tau)}{f(\tau)} f(\rho) h(\tau) & +\frac{\phi(f(\rho)) g(\rho)}{f(\rho)} f(\tau) h(\rho) \tag{22}\\
& -\frac{\phi(f(\rho)) g(\rho)}{f(\rho)} f(\rho) h(\tau)-\frac{\phi(f(\tau)) g(\tau)}{f(\tau)} f(\tau) h(\rho) \geq 0
\end{align*}
$$

Hence we can write

$$
\begin{align*}
f(\rho) J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right] & +\frac{\phi(f(\rho)) g(\rho)}{f(\rho)} h(\rho) J^{\alpha}[f(t)] \tag{23}\\
& -\frac{\phi(f(\rho)) g(\rho)}{f(\rho)} f(\rho) J^{\alpha}[h(t)]-h(\rho) J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} f(t)\right] \geq 0 .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
J^{\alpha}[f(t)] J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right]-J^{\alpha}[h(t)] J^{\alpha}[\phi(f(t)) g(t)] \geq 0 \tag{24}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} h(\tau) \frac{\phi(f(\tau)) g(\tau)}{f(\tau)} \leq \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} h(\tau) \frac{\phi(h(\tau)) g(\tau)}{h(\tau)} \tag{25}
\end{equation*}
$$

where $\tau \in[a, t], a<t \leq b$. Consequently,

$$
\begin{equation*}
J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right] \leq J^{\alpha}[\phi(h(t)) g(t)] \tag{26}
\end{equation*}
$$

and so,

$$
\begin{equation*}
J^{\alpha}[f(t)] J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right] \leq J^{\alpha}[f(t)] J^{\alpha}[\phi(h(t)) g(t)] \tag{27}
\end{equation*}
$$

Hence, thanks to (24) and (27) we obtain (21).
Remark 3.6. It is clear that Theorem 1.2 would follow as a special case of Theorem 3.5 when $\alpha=1$ and $t=b$.

Another result which generalizes Theorem 3.5 is described in the following theorem.

Theorem 3.7. Let f, h and g be three positive continuous functions and $f \leq h$ on $[a, b]$. Suppose that $\frac{f}{h}$ is decreasing, f and g are increasing on $[a, b]$ and ϕ is a convex function, $\phi(0)=0$. Then, for any $\alpha>0, \omega>0, a<t \leq b$, we have

$$
\begin{equation*}
\frac{J^{\alpha}[f(t)] J^{\omega}[\phi(h(t)) g(t)]+J^{\omega}[f(t)] J^{\alpha}[\phi(h(t)) g(t)]}{J^{\alpha}[h(t)] J^{\omega}[\phi(f(t)) g(t)]+J^{\omega}[h(t)] J^{\alpha}[\phi(f(t)) g(t)]} \geq 1 \tag{28}
\end{equation*}
$$

Proof. Using (23), we can write

$$
\begin{align*}
& J^{\omega}[f(t)] J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right]+J^{\omega}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right] J^{\alpha}[f(t)] \\
& -J^{\omega}\left[\frac{\phi(f(t)) g(t)}{f(t)} f(t)\right] J^{\alpha}[h(t)]-J^{\omega}[h(t)] J^{\alpha}\left[\frac{\phi(f(t)) g(t)}{f(t)} f(t)\right] \geq 0 . \tag{29}
\end{align*}
$$

Then, using the fact that the function $\frac{\phi(x) g(x)}{x}$ is increasing and the hypothesis $f \leq h$ on $[a, b]$, we obtain

$$
\begin{equation*}
J^{k}\left[\frac{\phi(f(t)) g(t)}{f(t)} h(t)\right] \leq J^{k}\left[\frac{\phi(h(t)) g(t)}{h(t)} h(t)\right], \quad k=\alpha, \omega . \tag{30}
\end{equation*}
$$

Hence, thanks to (29) and (30), we get (28).
Remark 3.8. It is clear that Theorem 3.5 would follow as a special case of Theorem 3.7 when $\alpha=\beta$.

Acknowledgment. This paper is supported by l'ANDRU, Agence Nationale pour le Developpement de la Recherche Universitaire and UMAB University of Mostaganem; (PNR Project 2011-2013).

References

1. Anastassiou G. A., Fractional differentiation inequalities, Springer, 2009.
2. Bougoufa L., An integral inequality similar to Qi inequality, JIPAM. J. Inequal. Pure Appl. Math., 6(1) (2005), Art. 27.
3. Boukerrioua K. and Guezane Lakoud A., On an open question regarding an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 8(3) (2007), Art. 77.
4. Dahmani Z. and Bedjaoui N., Some generalized integral inequalities, J. Advan. Resea. Appl. Math., 3(4) (2011), 58-66.
5. Dahmani Z., Metakkel Elard H., Generalizations of some integral inequalities using Riemann-Liouville operator, Int. J. Open Problems Compt. Math., 4(4) (2011), 40-46.
6. Gorenflo R. and Mainardi F., Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.
7. Liu W. J., Li C. C. and Dong J. W., On an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 8(3) (2007), Art. 74.
8. Liu W.J., Cheng G. S. and Li C. C., Further development of an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 9(1) (2008), Art. 14.
9. Liu W. J., Ngo Q.A. and Huy V. N., Several interesting integral inequalities, Journal of Math. Inequal., 3(2) (2009), 201-212.
10. Mitrinovic D. S., Pecaric J.E. and Fink A. M., Classical and new inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
11. Ngo Q. A., Thang D. D., Dat T. T., and Tuan D. A., Notes on an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 7(4) (2006), Art. 120.
12. Pachpatte B. G., Mathematical inequalities, North Holland Mathematical Library, Vol. 67 (2005).
13. Podlubný I., Fractional Differential Equations, Academic Press, San Diego, 1999.
14. Qi F., Several integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19.
15. Sarikaya M. Z., Yildirim H. and Saglam A., On Hardy type integral inequality associated with the generalized translation, Int. J. Contemp. Math. Sci., 1(7) (2006), 333-340.
Z. Dahmani, Laboratory LPAM, FSEI, UAMB, University of Mostaganem, Algeria,
e-mail: zzdahmani@yahoo.fr
