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NEW APPLICATIONS OF FRACTIONAL CALCULUS

ON PROBABILISTIC RANDOM VARIABLES

Z. DAHMANI

Abstract. New results and new applications of fractional calculus for continuous

random variables are presented. Some classical integral results are also generalized.
On the other hand, some results (corollaries) on the paper [Fractional integral in-

equalities for continuous random variables, Malaya J. Mat. 2(2014), 172–179] are

corrected.

1. Introduction

The inequality theory plays an important role in differential equations, probability
theory and applied sciences. For more details, we refer the reader to [3, 14,
15, 16, 17] and the references therein. Moreover, the integral inequalities using
fractional integration are also of great importance. For some applications, one can
see [4, 5, 6, 7, 10, 12].

The idea to develop the present paper is motivated by the following published
results: The first one is the paper [11], where P. Kumar proposed some results
related to random variables with probability density functions (in short: p.d.f.)
defined on some finite real lines. The second work is [8], where for the first time
the author introduced new fractional random variable concepts with some results
that generalize some theorems of [2]. Other research papers deal with random
inequalities motivating this work can be found in [1, 13].

The aim of this paper is to present new results and new applications of fractional
calculus for continuous random variables. Some classical integral results can be
deduced as some special cases. On the other hand, some corollaries on the paper
[8] are corrected.
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2. Preliminaries

Definition 2.1 ([9]). The Riemann-Liouville fractional integral operator of
order α ≥ 0 for a continuous function h on [a, b], is defined as

(1)
Jα[h(t)] =

1

Γ(α)

∫ t

a

(t− τ)α−1h(τ)dτ ; α > 0, a < t ≤ b,

J0[h(t)] = h(t),

where Γ(α) :=
∫∞
0

e−u uα−1du.

For t = b, we put

Jα[h(b)] =
1

Γ(α)

∫ b

a

(b− τ)α−1h(τ)dτ.

We give the following property

(2) JαJβ [h(t)] = Jα+β [h(t)], α ≥ 0, β ≥ 0,

and

(3) JαJβ [h(t)] = JβJα[h(t)].

In the particular case where h(t) = t on [a, b], we have

(4) Jα[b] =
(b− a)α+1

Γ(α+ 2)
+
a(b− a)α

Γ(α+ 1)

and for h(t) = t2, we have

(5) Jα[b2] =
2(b− a)α+2

Γ(α+ 3)
+ 2aJα[b]− a2(b− a)α

Γ(α+ 1)
.

We recall also the following concepts and definitions [8],

Definition 2.2. The fractional expectation, of order α > 0, for a random
variable X with a positive p.d.f. f defined on [a, b], is defined as

(6) EX,α =
1

Γ(α)

∫ b

a

(b− τ)α−1τf(τ)dτ.

Definition 2.3. The fractional moment of order (r, α); r > 0, α > 0, for a
random variable X with a positive p.d.f. f defined on [a, b], is defined as

(7) EXr,α =
1

Γ(α)

∫ b

a

(b− τ)α−1τ rf(τ)dτ.

For the fractional variance of X, we recall next definition

Definition 2.4. The fractional variance of order α > 0 for a random variable
X with a p.d.f. f : [a, b]→ R+, is defined as

(8) σ2
X,α =

1

Γ(α)

∫ b

a

(b− τ)α−1(τ − E(X))2f(τ)dτ.
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Remark 2.5.
(r1∗) If we take α = 1 in Definition 2.2, we obtain the classical expectation

EX,1 = E(X).

(r2∗) If we take α = 1 in Definition 2.4, we obtain the classical variance σ2
X,1 =

σ2(X) :=
∫ b
a

(τ − E(X))2f(τ)dτ.

3. Main Results

We begin by proving the following generalized property of the p.d.f. of X.

Theorem 3.1. LetX be a continuous random variable having a p.d.f. f :
[a, b]→ R+. Then we have

(9) Jα+1[f(b)] =
Γ(α− n+ 1)

Γ(α+ 1)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n+1

]
,

where α ≥ 0, n = [α].

Proof. For any α ≥ 0, we can write α = n+ s; n = [α], s ∈ (0, 1). And then,

(10) Jα+1[f(b)] =
1

Γ(α+ 1)

∫ b

a

(b− τ)αf(τ)dτ =
1

Γ(α+ 1)

∫ b

a

(b− τ)n+sf(τ)dτ.

Hence,

(11) Jα+1[f(b)] =
1

Γ(α+ 1)

n∑
i=0

[
(−1)iCinb

n−i
∫ b

a

(b− τ)sτ if(τ)dτ
]
.

Thanks to Definition 2.3, we obtain

(12) Jα+1[f(b)] =
Γ(α− n+ 1)

Γ(α+ 1)

n∑
i=0

[
(−1)iCinb

n−iEXi,s+1

]
,

Theorem 3.1 is thus proved. �

Remark 3.2.
1. In the above theorem, if we take α = 0, we obtain the well known property

of a p.d.f. of X, that is
∫ b
a
f(u)du = 1.

2. The above theorem implies, in particular, that the property (P3*) in the
paper [8] is not correct.

3. Thanks to the above theorem, we confirm that of [8, Corollary 3.1] is not
correct.

In what follows, we will generalise a well know classical variance property. We have

Theorem 3.3. Let X be a continuous random variable having a p.d.f. f :
[a, b]→ R+. Then, for any δ ≥ 1, we have

(13) σ2
X,δ = EX2,δ − 2E(X)EX,δ + E2(X)

Γ(δ − n)

Γ(δ)

n∑
i=0

[
(−1)iCinb

n−iEXi,δ−n

]
where n = [δ − 1].
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Proof. By Definition 2.4, we can write

(14) σ2
X,δ =

1

Γ(δ)

∫ b

a

(b− τ)δ−1(τ − E(X))2f(τ)dτ.

Hence,

(15) σ2
X,δ = EX2,δ − 2E(X)EX,δ + E2(X)Jδf(b),

Using Theorem 3.1 with α = δ− 1, we obtain the desired formula in Theorem 3.3.
�

Remark 3.4. In Theorem 3.3, if we take δ = 1, we obtain the well know property
σ2(X) = E(X2)− E2(X).

In what follows, we propose a result for some estimations of the fractional
moments. At the same time, we impose this result as a correction of [8, Corollary
3.1]. So, we prove next statement

Theorem 3.5. Let X be a continuous random variable with a p.d.f. f : [a, b]→
R+ and α ≥ 1; n = [α− 1].
(i*) If f ∈ L∞[a, b], then
(16) (Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(
EX2,α−2E(X)EX,α+

Γ(α−n)E2(X)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
≤ (EX−E(X),α)2 + ||f ||2∞

[ (b− a)α

Γ(α+ 1)

(2(b− a)α+2

Γ(α+ 3)
+ 2aJα[b]− a2(b− a)α

Γ(α+ 1)

)
−
( (b− a)α+1

Γ(α+ 2)
+
a(b− a)α

Γ(α+ 1)

)2]
.

(ii*) We have also

(17)

Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

]
σ2
X,α − (EX−E(X),α)2

≤
(Γ(α− n)(b− a)√

2Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])2
.

Proof. In [8], it was proved that

(18)

1

Γ2(α)

∫ b

a

∫ b

a

(b− τ)α−1(b− ρ)α−1f(τ)f(ρ)(τ − ρ)2dτdρ

= 2Jα[f(b)]Jα[f(b)(b− E(X))2]− 2
(
Jα[f(b)(b− E(X))]

)2
.
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On the other hand, we can observe that

(19)

1

Γ2(α)

∫ b

a

∫ b

a

(b− τ)α−1(b− ρ)α−1f(τ)f(ρ)(τ − ρ)2dτdρ

≤ ‖f‖2∞
1

Γ2(α)

∫ b

a

∫ b

a

(b− τ)α−1(b− ρ)α−1(τ − ρ)2dτdρ

≤ 2‖f‖2∞
[ (b− a)α

Γ(α+ 1)
Jα[b2]− (Jα[b])2

]
.

Therefore, using (4), (5), (18), and (19), we obtain (16).
For the second part of Theorem 3.5, we remark that

(20)

1

Γ2(α)

∫ b

a

∫ b

a

(b− τ)α−1(b− ρ)α−1f(τ)f(ρ)(τ − ρ)2dτdρ

≤ (b− a)2(Jα[f(b)])2.

Then, taking into account the expression in Theorem 3.1 and thanks to (18), we
get (17). �

Remark 3.6. Taking α = 1 in (i∗) of the above theorem, we obtain the first
inequality of Theorem 1 in [3], and taking α = 1 in (ii∗) of the same theorem, we
obtain the last part of Theorem 1 in [3].

We shall generalize Theorem 3.5 by proving the following result. We have

Theorem 3.7. Let X be a continuous random variable having a p.d.f. f :
[a, b]→ R+. Then we have
(1*) For all α ≥ 1, β ≥ 1
(21)(Γ(β −m)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
×
(
EX2,α − 2E(X)EX,α +

Γ(α− n)E2(X)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
+
(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(
EX2,β − 2E(X)EX,β +

Γ(β −m)E2(X)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
≤ 2(EX−E(X),α)(EX−E(X),β)+‖f |2∞

[ (b−a)α

Γ(α+1)

(2(b−a)β+2

Γ(β+3)
+2aJβ [b]− a

2(b−a)β

Γ(β+1)

)
+

(b− a)β

Γ(β + 1)

(2(b− a)α+2

Γ(α+ 3)
+ 2aJα[b]− a2(b− a)α

Γ(α+ 1)

)
− 2
( (b− a)α+1

Γ(α+ 2)
+
a(b− a)α

Γ(α+ 1)

)( (b− a)β+1

Γ(β + 2)
+
a(b− a)β

Γ(β + 1)

)]
,

where f ∈ L∞[a, b],m = [β − 1], n = [α− 1].
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(2*) For any α ≥ 1, β ≥ 1, the inequality

(22)

(Γ(β −m)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
×
(
EX2,α − 2E(X)EX,α +

Γ(α− n)E2(X)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
+
(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(
EX2,β − 2E(X)EX,β +

Γ(β −m)E2(X)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
≤ 2(EX−E(X),α)(EX−E(X),β) + (b− a)2

(Γ(β −m)

Γ(β)

×
m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
hold with m = [β − 1], n = [α− 1].

Proof. We have

(23)

1

Γ(α)Γ(β)

∫ b

0

∫ b

0

(b− τ)α−1(b− ρ)β−1f(τ)f(ρ)(τ − ρ)2dτdρ

= Jα[f(b)]Jβ [f(b)(b− E(X))2] + Jβ [f(b)]Jα[f(b)(b− E(X))2]

− 2Jα[f(b)(b− E(X))]Jβ [f(b)(b− E(X))].

We also have

(24)

1

Γ(α)Γ(β)

∫ b

0

∫ b

0

(b− τ)α−1(b− ρ)β−1f(τ)f(ρ)(τ − ρ)2dτdρ

≤ ||f ||2∞
1

Γ(α)Γ(β)

∫ b

a

∫ b

a

(b− τ)α−1(b− ρ)β−1(τ − ρ)2dτdρ

≤ ||f ||2∞
[ (b− a)α

Γ(α+ 1)
Jβ [b2] +

(b− a)β

Γ(β + 1)
Jα[b2]− 2Jα[b]Jβ [b]

]
.

Thanks to (23) and (24), we obtain (21).
To obtain (22), we remark that

(25)

1

Γ(α)Γ(β)

∫ b

0

∫ b

0

(b− τ)α−1(b− ρ)β−1f(τ)f(ρ)(τ − ρ)2dτdρ

≤ (b− a)2Jα[f(b)]Jβ [f(b)].

Then, thanks to Theorem 3.1 and using (23), we end the proof of this theorem. �

We also prove the following estimation for the fractional variance. This result
implies, in particular, that [8, Corollary 3.2] is not correct.
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Theorem 3.8. Let f be the p.d.f. of X on [a, b]. Then for any α ≥ 1, we have

(26)

(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(
EX2,α − 2E(X)EX,α +

Γ(α− n)E2(X)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
≤ (EX−E(X),α)2 +

(b− a)2

4

(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])2
,

where n = [α− 1].

Proof. Using a fractional Gruss result [6] yields the following inequality

(27) Jα[p(b)]Jα[pg2(b)]− (Jα[pg(b)])2 ≤ 1

4

(
Jα[p(b)]

)2
(M −m)2.

The particular case p(t) = f(t), g(t) = t − E(X), t ∈ [a, b], M = b − E(X),
m = a− E(X) allows us to obtain

(28) Jα[f(b)]σ2
X,α − (EX−E(X),α)2 ≤ 1

4
(Jα[f(b)])2(b− a)2.

Finally, by Theorem 3.1, we obtain (26). �

Remark 3.9. Taking α = 1, we obtain [3, Theorem 2].

At the end of this section, we present the reader another estimation for the
fractional variance in which we use two parameters α ≥ 1 and β ≥ 1.

Theorem 3.10. Let f be the p.d.f. of the random variable X on [a, b]. Then
for all α ≥ 1, β ≥ 1, we have

(29)

(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(
EX2,β − 2E(X)EX,β +

Γ(β −m)E2(X)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
+
(Γ(β −m)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
×
(
EX2,α − 2E(X)EX,α +

Γ(α− n)E2(X)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
+ 2(a− E(X))(b− E(X))

(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
×
(Γ(β −m)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
≤ (a+ b− 2E(X))

[(Γ(α− n)

Γ(α)

n∑
i=0

[
(−1)iCinb

n−iEXi,α−n

])
EX−E(X),β

+
(Γ(β −m)

Γ(β)

m∑
i=0

[
(−1)iCimb

m−iEXi,β−m

])
EX−E(X),α

]
,

where m = [β − 1], n = [α− 1].
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Proof. We use [6, Theorem 3.4] and Theorem 3.1. �

4. Applications

In this section, we present some fractional applications for the uniform random
variable X whose p.d.f. is defined for any x ∈ [a, b] by f(x) = (b− a)−1.

a. Fractional Expectation of Order α
We have

(30) EX,α = (b− a)−1
[ (b− a)α+1

Γ(α+ 2)
+
a(b− a)α

Γ(α+ 1)

]
, α ≥ 1,

Remark that if we take α = 1 in the above formula, then we obtain the well known
expectation of X

EX,1 =
b+ a

2
= E(X).

b. Fractional Moment of Orders (2, α)
We have

(31)

EX2,α =
2(b− a)α+1

Γ(α+ 3)
+ 2a

( (b− a)α

Γ(α+ 2)
+
a(b− a)α−1

Γ(α+ 1)

)
− a2(b− a)α−1

Γ(α+ 1)
, α ≥ 1.

Taking α = 1 in the above formula, we obtain the classical moment of order 2

(32) EX2,1 =
a2 + b2 + ab

3
= E(X2).

c. Fractional Variance of Order α
In this case, the quantity Jαf(b) of Theorem 3.1 is given by

(33) Jαf(b) =
(b− a)α−1

Γ(α+ 1)
, α ≥ 1.

Then, thanks to (15) in the proof of Theorem 3.3, we get
(34)

σ2
X,α =

2(b− a)α+1

Γ(α+ 3)
+ 2a

( (b− a)α

Γ(α+ 2)
+
a(b− a)α−1

Γ(α+ 1)

)
− a2(b− a)α−1

Γ(α+ 1)
, α ≥ 1.

Taking α = 1, we obtain σ2
X,1 = σ2(X), which corresponds to the classical variance

of X.
d. Fractional Moment of Orders (r, α)

In the particular case where the p.d.f. of the uniform random X is defined on
some positive real interval of type [0, b], the fractional moment of X is given by

(35) EXr,α =
Γ(r + 1)

Γ(α+ r + 1)
br+α−1.

Note that if α = 1, we obtain the classical moment of order r for the uniform
distribution of X,

EXr,1 =
Γ(r + 1)

Γ(r + 2)
br = E(Xr).
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