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SOLUTION TO NONLINEAR GRADIENT DEPENDENT
SYSTEMS WITH A BALANCE LAW

ZOUBIR DAHMANI , SEBTI KERBAL
ABSTRACT . In this paper , we are concerned with the initial boundary value
problem ( IBVP ) and with the Cauchy problem to the reaction - diffusion system

ug — Au = —u" | Vo [P,
vy —dAv =u" | Vo |P,

where 1 < p < 2,d and 7 are positive real numbers . Results on the existence
and large - t ime behavior of the solutions are presented .
1. INTRODUCTION
In the first part of this article , we are interested in the existence of global classical
nonnegative solutions to the reaction - diffusion equations

Vol? = —f(u,
Ut — Avtu - 7und|Avv:L"|V'v f(;i),u), (11)
|

)

posed on Rt x Q with initial data

u(0;z) = up(z), v(0;2) =wvo(z) inQ (1.2)

and boundary conditions ( in the case § is a bounded domain in R")

Ou = 9v =0, onR*" x 90. (1.3)

on  on
Here A is the Laplacian operator ,ug and vy are given bounded nonnegative func -
tions , 2 C R™ is a regular domain ,7 is the outward normal to 9Q2.  The diffusive
coefficient d is a positive real . One of the basic questions for (1. 1)-(1.2)or (
1.1)-
(1. 3) is the existence of global solutions . Motivated by extending known results on
reaction - diffusion systems with conservation of the total mass but with non linear -
ities depending only for the unknowns , Boudiba , Mouley and Pierre succeeded in
obtaining L' solutions only for the case u™ | Vv |P with p < 2. In this article , we
are interested essentially in classical solutions in the case where p = 2(€2 bounded or
) = R™; in the latter case , there are no boundary conditions ) .
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2. ReEsuLts
The existence of a unique classical solution over the whole time interval [0, Tyax|
can be obtained by a known procedure : a local solution is continued globally by
using a priori estimates on || % ||oo, || ¥ |loos ||| VU ||eo, and ||| VU |[|loo - 2. 1.  The
Cauchy problem . Uniform bounds for u and v. First , we consider the auxiliary
problem

Lyw = wy (" a)= = bVwwy ) € tLZ, "z € RY (2.1)
where b= (by(t,),...,bn (¢, )),b;i(t,x)  are continuous on  [0,00) x RN, wisa
classical solutionof (2. 1). Lemma 2. 1. Assume that wy, Vw,wg,z,,1 =1,..., N
are continuous ,

Lyw <0, (>) (0,00) xRN (2.2)
and w(t,x) satisfies (2.1)2 . Then
w(t,r) < C:= supwy(z), (0,00) x RV,
r e RN
w(t,z) > C:= inf wo(z), (0,00) x RV,
zERN
The proof of the above lemma is elementary and hence is omitted . Now , we

consider the problem (1. 1)-(1.2). It follows by the maximun principle that

u,v >0, nRt xRV,

Uniform bounds of u. We have

u < Ch :=supup(x),
RN

thanks to the maximum principle . Uniform bounds of v. Next , we derive an upper
estimate for v.  Assume that 1 <
p < 2. We transform ( 1. 1) 2 by the substitution w = e** — 1 into

wi — Mw = Xe (v, — dAv — dX | Vo ) = XM (u™ | Vo [P —d) | Vo [2).
Let
p(z) = CaP —drz?;, C >0,z >0.
By elementary computations ,

)
¢(x) >0 whenx < (% 1/(2—p).

But in lhlS case
v )\d '

In the case z > (&)Y (2~P),



and hence w < M where

Then we have v < Cs.

(ﬁ)pﬂfp
2d\

2—p

(2.3)

(2.4)



EJDE-207/158 NONLINEAR GRADIENT DEPENDENT SYSTEMS 3 2. 1. 1.  Uniform
bounds for | Vu| and | Vv |. At first , we present the uniform bounds
for | Vo | . We write (1. 1) 2 in the form

Lyv+kv=Fkv+u"|Vu|P (2.5)
and transform it by the substitutions w = e**v to obtain

Law = " (Lgv + kv) = " (kv +u™ | Vv |P), t> 0,2 € RY
w(0,x) = vo(x).
Now let
1 e ( | L= g ‘2 )
Xp
[ArA(t— 7)) 5 ANt — 1)

be the fundamental solution related to the operator Ly. Then , with Qt = (0,¢)x
RY, we have

Gy=G\t—T1;2-¢) =

w=eMy ="t a)+ | Galt — 72— E)er (kv +u™ | Vo |P)dédr
Qt
or

v=e k0 4 / e FEIG Yt — i — &) (kv +u™ | Vo |P)dédr, (2.6)
Qt

where v°(t, z) is the solution of the homogeneous problem

Ly’ =0, 2°(0,2) = vo(x).

From ( 2. 6 ) we have

Vo =e MVl + / e RNV, Gyt — 72 — &) (kv 4+ u™ | Vv |P)dédr. (2.7)
Qt

Now we set v1 = sup | Vv | and 1% = sup | Vo° |, in Qt. From ( 2. 6 ) , and using
v < Cy, we have

t
vy =19 4+ (kCy + CTP) / e_k(t_")(/ | VoGy(t — 2 — &) | d€)dT

0 RN
We also have

/|V$Gd(t— &) | de = / |Gd(t—7-,,q; £) | de
RN

which is transformed by the substitution p = 2 d(t - 7')1/ into

V,Gqld N/ e dy = —X
/R| + 190 = x s At —7)

where y = line — slashy, NV2I'(8H) = Fl(,g) It follows that
2 .

t—T

v1 =19 4 (kCy + CTP f/ e k=T (2.8)



Recall that

/t p—k(t—r) 4T _
0 \/t—T
If we set s = vk in (2.

t
N
/ e Fdz<
0

<

8 ) then we have

ct T
v1 <19+ (sCy + Sll/f)x\/;

)

o
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of (2. 9) with respect to s to obtain

2x/m
d

v <19+ (C2C7'pu,)1/p. (2.10)

Notethat1? = Cy.

We have two cases : Case (1)1 < p < 2. In this case (2. 10 ) implies

[V <wmn<___ ,(p)=D, inQt, (2.11)

where D is a positive constant .
Case (11 )p = 2. In this case ( 2. 1 0 ) holds under the additional condition

0,07 < (2.12)

4
ATy

Similarly we obtain from (1. 1)1 ,

2
Uy :=sup | Vu |[<C; + Clﬂlﬁ/2 < Constant. (2.13)
QT Vd

The estimates (2. 10 ) and (2. 1 3) are independent of ¢, hence Tipax = +00.
Finally , we have the main result .

Theorem 2. 2. Let p= 2 and (ug,vo) be bounded such that (2 .12 ) holds

, then

system (1.1)- (1.2) admits a glo bal s o lution .

2. 2. The Neumann Problem . In this section , we are concerned with the

Neu - mann problem

[Vov|?
Uy —— Agagu == —uulyel . (2.14)

where © be a bounded domain in RY, with the homogeneous Neumann boundary con-
dition

ou Ov i
% = % = O, onR™ x 9N (215)
subject to the initial conditions
u(0;x) = up(z); v(0;2) =wve(x) in. (2.16)

The initial nonnegative functions wug, vy are assumed to belong to the Holder space

2 (Q).

Uniform bounds for w and wv. In this section a priori estimates on || % ||oo and || v ||oo
are presented . Lemma 2 . 3 . For each 0 <t < Tyax we have

0<u(t,z) <M, 0<o(t,z)<M, (2.17)
foranyx € Q.



Proof . Since ug(r) > 0 and f(0,v) = 0, we first obtain v > 0 and then v > 0 as
vo(z) > 0. Using the maximum principle , we conclude that

0<u(t,z) <M, onQT

where

M > M, = rafleag(uo(x).
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with dA > M7, from (2. 14 ), we obtain

wi —dAw = X | Vo |2 (u" —d\)e, onQT

ou
9 = 0 ondSrt.

Consequently as d\ > maxq u”, we deduce from the maximum principle that
0 <w(t,z) <exp(A| vy |oo) — 1.

Hence

1
v(x,t) < Xln(\ W |oo +1) < Constant < oo.

O

Uniform bounds for | Vv | and | Vu | . To obtain uniform a priori estimates for
| Vv |, we make use of some techniques already used by Tomi [ 8 | and von Wahl [ 9 ]
Lemma 2 . 4 . Let (u,v) beasolutionto (2.10)- (2.12) inits
mazximal interval of existence [0, Tmax[-  Then there exist a constant C such that

| w || Loo([0,T[,W?,¢(Q) <C and | v | Loo([0,T],W?,¢(Q)) < C.
Proof . Let us introduce the function

e+ | Vo |2

foulty . Vo) = " (b T T

It is clear that | f,.(t,2,u, Vv) |< C(14 | Vv |?) and a global solution v, . differen -
tiable in ¢ for the equation

vy — dAv = f, (t,z,u, Vo)

exists . Moreover ,v, ¢ — v as 0 — 1 and € — 0, uniformly on every compact of
[07 Tmax[~
The function w, := % satisfies
e+ | Vo, |? (e 9 —1)Vu,. Ve,
8twa- - dAwg S Un(t,x)m - QUUH7(1+E‘VUU‘2)2 (218)

Hereafter , we derive uniform estimates in o and €.  Using Solonnikov ’ s estimates for
parabolic equation [ 5 ] we have

| wo || Loo([0, T'(uo, vo)[, W2, p(2)) < O[]l Vo [I70) + | Voo Vo [17,0)]-
The Gagliardo - Nirenberg inequality [ 5 | in the in the form

1/2 1/2
| W 2p(Q) < C [lu 20y C 1l 3 e

and the d— Young inequality ( where 6 > 0)



2

(50&2 + 7)3

<
af < 5

N | =

allows one to obtain the estimate

Il w || Loo([0, T'(uo, vo)[, W2, p(2)) < C(1+ || wo || W2, p(82))

But w, = %”; hence by Gronwall ’ s inequality we have

| v || Loo([0, T[, W2, p(2)) < Ce®°.
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|'v || Loo([0, T, W2, p(2)) < C.

On the other hand , the Sobolev inj ection theorem allows to assert that u € C1* ().
Hence in particular | Vu |€ C%®(Q).  Since | Vv | is uniformly bounded , it is easy
then to bound | Vu | in L>(£2).  As a consequence , one can affirm that the solution
(u,v) to problem (2. 14)-(2.16) is global ; that is Tipax = 00. O

2. 3. Larg e—hyphen t ime behavior . In this section , the large time
behavior of the global solutions to (2. 14 )- (2. 16 ) is briefly presented .

Theorem 2 . 5 . Let (ug,vp) € C*¢(Q) x C*¢(Q) for s ome 0<e<1. The
system (2. 14 )- (2. 16 ) has a glo bal classical s o lution . Moreover ,  as

t—o00, u—k and v— ko uniformly in x, and
1
k1 + k= —— [ [uo(z) + vo(z)]dx.
|2 Ja

Proof . The proof of the first part of the Theorem is presented above .  Concerning
the large time behavior , observe first that for any ¢ > 0,

/Q (ult, ) + vt 2)|dz — / [0 () + v ()] d.

Q

Then , the function ¢t — fQ u(z)dz is bounded ; as it is decreasing , we have

/ u(x)dr — k1 ast — oo;
Q

the function t — [, v(x)dz is increasing and bounded , hence admits a finite limit &y
as t — 00. As ;s u(t), v(t))} is relatively compact in C( Q) x O ),

u(ry) = u, v(r,) = v inC( ),

through a sequence 7,, — co. It is not difficult to show that in fact (v parenright — tildewide — v
is the stationary solutionto (2.14)-(2.16) (see[3]).
As the stationary solution (us,vs) to (2. 14)- (2. 16 ) satisfies

—Aug = —ul | Vg \2, in{2
Ous Oy
v~ v

)

—dAvg = u” | Vo, |2, inQ,

=0, ondf),

we have

1 2
— | Aus.ugdr = —/ ult | Vg |? dx
Q Q

which in the light of the Green formula can be written

/|VuS |2da::—/u?+1|Vvs|2dw
) Q

hence | Vus |=| Vv, |= 0 implies us = k1 and vy = koo O
Remarks . (1) It is very interesting to address the question of existence global
solutions of the system (2. 14 )- (2. 16 ) with a genuine nonlinearity of the form
u™ | Vo |P with p > 2.

(2 ) It is possible to extend the results presented here for systems with nonlinear
boundary conditions satisfying reasonable growth restrictions .
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