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Abstract

In this paper, we prove the existence and uniqueness of solutions for a system for fractional differential
equations with four point boundary conditions. The results are obtained using Banach contraction principle
and Krasnoselkii’s fixed point theorem

Dx(t) + f (t,y (1), D’y () =0,t €],

DFy (t)+ g (t,x(t),Dx(t)) =0,t € ],
( )=y(0) =0,x(1) = Ax (1) =0,y (1) — Ay () =0,
x"(0) =y" (0) = 0,x" (1) = A2x" (§) = 0,y" (1) — Ay (§) =0,

where3 < o, <4,a-2<0<a—-1,B-2<06<B-10<§y <1 and D*,DP, D% and DY, are the
Caputo fractional derivatives, | = [0, 1], A1, A, are real constants with A1 # 1,1, # 1 and f, g continuous
functions on [0,1] x R?.
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1 Introduction

Differential equations of fractional order have been shown to be very useful in the study of models of
many phenomena in various fields of science and engineering, such as electrochemistry, physics, chemistry,
viscoelasticity, control, image and signal processing, biophysics. For more details, we refer the reader to
[4, 16, 9] 11}, 112} 14} 16} [17] and references therein. There has been a significant progress in the investigation of
these equations in recent years, see [5,[7, 8] 14} 15| 26]. More recently, some basic theory for the initial bound-
ary value problems of fractional differential equations has been discussed in [1} [13] [14]. Recently, existence
and uniqueness of solutions to boundary value problems for fractional differential equations had attracted
the attention of many authors, see for example, [4, 5,7, 8} [14, 15,18} 26] and the references therein. The study
of coupled system of fractional order is also important as such systems occur in various problems of applied
science [3} (10, 19, 20} 23 25]]. In the last decade, many authors have established the existence and uniqueness
for solutions of some systems of nonlinear fractional differential equations, one can see [19, 22, 23} 24] and
references cited therein. For example in [2, 20, 25] the authors established sufficient conditions for the exis-
tence of solutions for a two-point and three-point boundary value problem for a coupled system of fractional
differential equations.

In [2} 20} 21}, 25], the existence and uniqueness of solutions was investigated for a nonlinear coupled system
for fractional differential equations with two-point and three-point boundary conditions by using Schauder’s
fixed point theorem.
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Motivated by the above mentioned work, this paper deals with the existence of solution for four point
boundary value problems for a coupled system of fractional differential equations for the following problem

“x(t)+f (ty(t), Dy (t)) =0,t €],
Dﬁy(t)+g( x(t),D%x (t) =0,t €], (L.1)
x(0) =y (0)=0,x(1) —Ax(n) =0,y (1) =AMy () =0, ‘
x"(0) =y" (0) =0,x" (1) = A2x" (§) = 0,y" (1) — A2y" (§) =0,

where3 < 0, <4a-2<c<a-1,-2<6<B-10<§n <1, and D% DF,D? and D7, are
the Caputo fractional derivatives, | = [0,1],A1, Ay are real constants with A1 # 1,45 # 1 and f, g are
continuous functions on [0,1] x R2.

The rest of this paper is organized as follows. In section 2, we present some preliminaries and lemmas.
Section 3 is devoted to existence of solution of problem (1.1). In section 4 examples are treated illustrating our
results.

2 Preliminaries

The following notations, definitions, and preliminary facts will be used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order & > 0, for a continuous function f on
[0, oo] is defined as:

t
JEf(t) = T (1¢x) /0 (t—7)* ' f(1)dt,a >0, (2.2)

If(4) = f(#),

where T () := [5° e “u*du.

Definition 2.2. The fractional derivative of f € C" ([0, 0o[) in the Caputo’s sense is defined as:

D*f (t) = r(l) /Ot (t—7)" 1 (1)ydt,n—1 < a,n € N*. (2.3)

n—uw

For more details about fractional calculus, we refer the reader to [14}[17].
Let us now introduce the spaces

X ={x:xeC([0,1]),D%x € C([0,1])},

and ;
Y = {]/5y € C([O,l}),Doy € C([0,1])},

endowed with the norm

1xllx = llxll + ID7x][, [Ix[| = sup |x (£)], [|Dx[| = sup [D7x (1)),
S

te]

and

4| = sup |y )]

Iylly = llyll + || D% ;
te

, Nyl =suply ()],
te]

Obviously, (X, || . [x) and (Y, | . [ly) is a Banach space. The product space (X x Y, ||(x,¥)| xy) is also Ba-
nach space with norm [|(x, y)[|x .y = Ilxllx + [lyly -
We give the following lemmas [12]:

Lemma 2.1. For « > 0, the general solution of the fractional differential equation D*x (t) = 0 is given by
x(£) = co4cit+ ot + .+ cy_1t" 1, (2.4)

wherec; € R,i=0,1,2,.,n—1,n=[a] + 1.
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Lemma 2.2. Let o > 0. Then
JEDx (t) = x (t) + co + 1t + cot? + ..+ ¢ q 771,
forsomec; € R,i=0,1,2,..,n—1,n=[a] +1.
We need also the following auxiliary result:
Lemma 2.3. Let g € C([0,1]), the solution of the equation
D*x(t)+g(t)=0,te], 3<a<4,

subject to the boundary condition

x(0)=0,x(1)—Ax(y) =0,
x"(0) =0, x" (1) — Ax" (§) =0,
is given by:
t
x(t) = _ﬁ/o (t—s)"1g(s)ds

Aqt U .
T , @ e

t 1 o
_()\1'71)T(04)/0 (1—5)""g(s)ds
(A2 = ApAqP) t+ (Ao — Ag) 2 3 N
6 (M7 —1) (A28 - 1T (a —2) /0 (=9 g (s)ds
(1= t+ (Mg —1) 8 1 .
_6()\117—1)()\2§_1)1"(“_2)/0 (1-5s) 3g(S)ds.

Proof. Forc; € R,i =0,1,2,3, and by Lemmas ((2.1), (2.2)), the general solution of (2.6) is given by

t
_ el P 42 43
x(t) = F(zx)/o (t—s)"""g(s)ds —co—c1t — cat” —cat

Using the boundary condition (2.7), we have ¢y = ¢; = 0, and

A= _(7\177/\1)““)/0” (1—5)""g(s)ds
+W/01(1—s)“g(s>ds
C6(My _Af) %;;EZ?F @=2) /0 5 (§—5)g(s)ds
e 1)(1(/\2§1_ﬂi) T'(a—2) /01 (1—5)" g (s)ds
and
5= gty ), €9 s

1 1 .
(Azg—l)T(a—Z)/O (1-5)"g(s)ds

Substituting the value of ¢; and ¢3 in (2.9), we obtain the desired quantity in Lemma.

*%

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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3 Main Results

Let us the take of convenience, we set:

_ M=+ A gt 41
My = 51D
(JA2 =AM 3 | +1A2 A1 = A2 )82+ 1= Ay |+ A1 — 1\
6]A1y—1[[A25—1|T (a—T)

_ 1 I/\]‘ ‘41
Mz = ey t AT @I =0)
n [A2—AaA P8 24 [1-A1 IUEY. S0 Pl S A e |
6[A1n—=1[[A25-1[T(a~1)T(2—0) " [Ay—1[[A§-1[T(a~1)T(4~0)’
M A =1]+|Aq 7P +1 I ([A2=2AoA 3 |+ A2 A1 —A2 | ) 8P 24| 1Ay p® |+ Ay — 1\
3 (A =1[T(B+T) 6[A17—T[[AZ—1[T(B—1)
_ 1 AP 41
Ms = t=571) T =T (prOIE=0)
n [A2—=2AA 73 |82+ 1A oA y=Aa|8F 2+ (A1 1]

Lo— (|A2=A2A13 | +1A2 A1 =22 ] )8 2+ | 1Ay |+ Ay — 1\
1= 6[A—1[[A8—1[T (a—1)

L= [A2 =223 |8 24 1=y [AaA1n—A 82+ A1y —1]

67 T TT(E-1T2—0) | Ty 11425~ 1T (-1 (0]

= S - IT@-DT2 o) | Ry 11125 1T DIE-—a)”

[ — ([A2=2Ao A3 |+ A2 A1 —A2 ] ) 8P 24| 1=Ay 3| +[ Ay — 1\
3 6[A17—T[[AE—1[T(B—1)

L= [ =201 |82 4 |[1- A1) A2y —Aa |82+ A1y -1]

= S 1A5-TT(E-TT20) | hy—1]Ag 1T (- D8

Now list the following hypotheses for convenience:

33

(3.12)

(H1) : There exist two constants k1 and k; such that for all t € [0,1] and (x1,y1), (x2,¥2) € R?, we have

|f (t,x1,y1) — f(Ex2,y2)| <k ([ —x2| + [y1 —
1§ (t,x1,y1) — & (£, x2,y2)| < ko (|x1 — x| + [y1 —

(H2)) : The functions f , g : [0,1] x R? — R are continuous
(H3) : There exists positive constants Nj and Nj such that

If (t,x,y)] < Ny, |g(t,x,y)] < Npforeacht € Jand all x,y € R.

Our first result is based on Banach contraction principle:

Theorem 3.1. Assume that the hypothesis (H1)holds.
If
ki (Mq+ M) +ky (M3 + My) <1
then the boundary value problem (1.1) has a unique solution.

Proof. Consider the operator ¢ : X x Y — X x Y defined by:

¢ (x,y) () := (dry (£), dax (1)),

where

t
oy (1) =~ | =9 (559), Dy (5)) s

At "
(Mﬂ—DFM)A(
(

t ! a—1
_(MW—DF()A t=s y
()tz — A7 ) t+ (MM — Ap) B /§
6 (A —1)(A§—-1)T (e —2)
(1—M73) t+( )\177—1 )3 /1
6(My—1) (A5 —1)T 0

_|_

1—s"‘3 s

1=5)" f (s(5), D% (s)) ds
) (v (), D (5)) ds

@—@“3f(y<>
0

(3.13)

(3.14)

(3.15)

(3.16)
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and

t
Pl _F(lﬁ)/o (t=)P"1g(5,x(s), D7x (s)) ds (3.17)
At U . i
+(A117—11>F(m/0 (7—5)""" g (5,2 (s), D7x(s)) ds
1
) AURCA RO e O
(/\2 - A2A1173) t+ (AA11 — Ap) £3

6 (M —1)(A28-1)T(f-2)

_ 3 . 3 1
a 6 (():;77 /1117) E;Z—g (_Ai;71" (;)_t 2) /(; (1 - 5)a73g (S,X (S) ,D%x (5)) ds.

We shall prove that ¢ is a contraction mapping :
For (x,y), (x1,11) € X x Y and for each t € ], we have

/O S (=5 g(s,x(s), D7x (s)) ds

91y (5) = ¢ry1 (D) < 5 /O -9 (99, D% ) ~ £ (51 5), D (5)) | ds
+ it | -9 (596, D% (9)) ~ £ (531 (5), Doy (5)) | ds
1 o
+ W/O (1—s)1 ‘f (s,y (s), D% (s)) —f (S,]/l (s), D’y (s)) ’ ds

[Aa=AoAi? |t [ApA = Ao |

+H A T2 /0 R f (576, D°y(5) = £ (5:1(5), Dy (s)) | s

1At =118 [ ,
ey [ -9 (w6, DY) - £ (531 9,0 ) as.

Using the (H1) ,we obtain

k(A =14+ A % 4+1) ([ly=y1 ||+ || D°y—D?
Py () — gays ()] < AR l‘VAw,l(u-y(aﬁH) [0 )

n ke [(|A2— Ao 3 |+ A= A2 ] ) 82+ | 1= Ay [+ A =] (ly—va | +]| D?y—D°w4 || )
6[ A7 —T|[AE—1[T (a—1) :

Consequently,we have

913 (1) =1y (0] < kiMy (ly =yl + | D%y = DOy ). (3.18)

Which implies that

91 (x) = @1 )| < ity (Iy =yl + | D% = D% ), (319)

and

D91y ()= D"y ()] < 1y | (=9 | (550, D% ) ~ £ (5,31 (5, D (5)) |

TR /0 -9 £ (56, D (9) ~ £ (s 1 (5), Doy (5)) | ds

R TEY e /0 N 1 (55(), D% () = £ (5,31 (), D1 (5)) | ds

[A2—AoAgn® |t 3
6[A—1][AE—1T(a—2)L (2—0) _ ya-3 5 _ 5
| TEECITREIE ) [0 |f (56,0 ) = £ (531 (), D ) | ds

T =1 A3 1T («—2)T(a=0)
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[1-Ag®| e 1
+( St M ETeo) ) | =921 (s3(6,0% ) = £ (.31 ), D91 ) s

T T (@=2)T (@)

By (H1), yields

ki(ly=nI+[|Dy=D° ) . kullAsn*+1)(ly—v |+ Dy ~D°ni )
\D‘T(])ly (t) — D”¢1y1 (t)‘ < T(a—o+1) A—1T(a+D(2—0)
ki [| A2 =A2A1 3 |82+ [1-A? || (Ily—ya | + || D°y—Dw1 || )
6[A 7 —T[[A23—1[T (a—1)T (2—0)

ka[[A2An—Aal3* 2+ 1] (ly— y1H+||D"y Dvil])
=TI =TT (=TI (4=0)

Hence,we have

D1y (1) = D7y (O] < ko [y + prgeiniri=ey ) (19 = vl +||P°y = D% )

[A2—=A2A173| 8% 2+ |12 77|

61\ —1[[A2E—1T (a—1)[(2—0) ( _ H 5. e H)
+kl n ‘/\2/\1,7_/\2|§a—2+‘/\1”_1‘ Hy y1||+ Dy Dyl .

[A117=1[[A28—1|T (a—1)I'(4—0)

Therefore,
IDry () = Dy ()] < KMz (Jly =yl + || Dy = DPya ) (3:20)

And consequently,

101 (9) ~ D ()| < Kb (ly — a1 + [ Dy — D% ). 621
By (3.19) and (3.21),we can write

161() 1 )l < ki (1 +7) (Il — | + [ Dy — D). 62

With the same arguments as before, we have
192 (x) = 2 (x1)ly < k2 (M3 + My) ([lx = x1]| + |D7x = D7xp]) - (3:23)
And by,(3.22) and (3.23) we obtain

k1 (M7 + M
19 o) =9 a9l < |1 O ey |1 =200 =9l (3:24)

Consequently by (3.14) , we conclude that ¢ is contraction. As a consequence of Banach fixed point theorem,
we deduce that ¢ has a fixed point which is a solution of the boundary value problem (1.1). O

Now, we use Krasnselskii’s fixed point theorem to prove the following result:

Theorem 3.2. Assume that the hypotheses (H1) — (H2) and (H3) are satisfied,such that

k161 + ko6, < 1, (3.25)
where

g, = M=ttt 1 + A" +1

T It D) " Tla—o+1) T Ay =1T(@+1)T(2-0)”
g, — Mn—1lrlhlnP+1 | n AP 41
27 AT T T(E-o+T) T [ 1T (DI (2-4)”

if there exist y € R such that
N1 (M1 + Mz) + Np (M5 + My) < 4, (3.26)

then, the problem (1.1) has at least a solution.
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Proof. We shall use Krasnselskii’s fixed point theorem to prove that ¢ has at least a fixed point on X x Y.

Suppose that (3.26) holds and let us take

¢ (x,y) (8) =T (x,y) (H) + R(x,y) (1),

where

T(x,y) (t) :== (Twy (t), Tax (t)),

t
Ty () = ~ghy [ (1= f (56, Dy (5)) ds
+ T /0]7 (=)' f (S,y (s),D% (S)) ds

1
- m/o (1—s)*1f (s,y (s), D% (s)) ds,

t
Tox (t) = _%ﬂ)/o (t—5)F1g(s,x(s),D7x(s))ds
n
+<Amf7]1t>r<m/0 (1—5)""1g(s,x(s),Dx(s)) ds

1
~ T /0 (1-9)"""g(s,x(s),D7x(s))ds,

and
R(x,y) (t) == (Ruy (1), Rox (1)),

where

A= AoA )+ (A A —Ag) 2 _
Ray () = CoU RS [ 69 (sy @), DYy ) d

1-A3)t+ (A —1)88 ! -3 5
- 6((/\117—11)()/\2§—i)1"(a—2) /0 (1-s)""f (S/y(s)/Doy(S)) ds,

Ag—AaAy ) e+ (Aadyp—Ag) 2 _
Rax (1) = Uit ol [0 (5 =5 25 (5,x(5), D7 (5) ds

1-An3) (A —1)8 1 _
- 6<(Awf17>()A2§(—117r<ﬁ)—2> /0 (1-9)""g(s,x(s),D7x(s))ds.

The proof will be given in several steps.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Step1: We shall prove that for any (x,y),(x1,y1) € By, then T (x,y) + R(x1,y1) € By, Such that B, =

{(xy) € XXV (%, Y)llxy < #)-
For any (x,y),(x1,y1) € By and for each t € | we have:

t o
Ty )+ Rays (0] =)~y [ (£ =91 (s,9/(5), D' () ds
Ul
o [ =9 (55, DYy ) ds
t ! -1 )
- W/o (1—-9)" f(Sry(S)fD y(S)) ds
A=A )t (Ap Ay —Ag) P

s
+ L1 (LE- DT (a—2) /0 (5—5)“73f(511/(5)/D5]/ (S)> ds

=)+ -1e [ _
_6((/\1;7_1;7)())\2§—11;71"(ﬁ—2) 0 (1-5)" 3f(s,y(s),D‘sy (5)> ds |
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then,

|Ty (t) + Ryyq (£)] < r(l,x) /Ot (t—s)*! ‘f (s,y(s),D5y (s)) ’ ds
st [ =9 |F (s, 0% 9)) | s
1
+ e [ =9 (w0, Dy o) ds

A=A A3 |+ Ap A=Az § _3 5
e [ =9 f (501 9), D (9)) s

1=AyP |+ A =1 ! «-3 b
+ 6|/\|1’7—11H/\‘2§—11\F(a—2) /0 (1—s) ]f (s,yl (s), Dy (S))\ds-

Using the (H3), we obtain

AMn—=1|+|A1 % +1
ITay () + Raya (1)) < Ny | AptE et ]

+N; [WzAzAlﬂxﬁwliig)gi;&“nmsﬂm”]} ,
Consequently,
Tay () + Rayr (B)] < NiMy.
Thus,
IT2 () + Ry (y1) || < NiMy, (3.34)
and

t
DTy (5 + DR ()] < iy | (=9 |F (s.9(6), Dy (5)) |
A g a—1
+ i [ -9 |f (v (6, D ) s

+WW/01 (=9 [f (s5(5), Dy (5)) | ds

[Aa—A2Ai7)

3
+ | TR ATe=) / =9 |f (s:31(5), D1 (5)) | ds
| T T -T2 | 7O

[1-A17

1
+ | TR T2 / (1= (5,31 (), Dy (5)) | ds.
| s e 2rE ) | 70

By (H3),we have

ID7Tyy (£) + D7Ryyy (H)] < Ny [r Ml +1 }

1
@t T 1T rDIE—0)

N [A2a—AaA1 3§24 |1-Ay + [A2A 17 —=Ag| T2+ A1 —1|
L A=A 1T (= DT 2—0) " A—1[IA5— 1T (a— DI (4-0)

Consequently we obtain
D Thy (t) + D Ryys ()] < NiMa.
Hence,
DTy (y) + DRy (y1)]] < NiMa. (3.35)
Combining (3.34) and (3.35) yields
T2 () + Ri (y1)llx < N1 (My + Mp). (3.36)

Analogously, we have
IT2 (x) + Ra (x1)[ly < Na (M3 + My). (3.37)
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Hence, it follows from (3.36) and (3.37) that

IT (x,y) + R(x1,¥1) [l xcy < N1 (My + Ma) + Na (M3 + My) < p.

Step2: We shall prove that R is continuous and compact.
[1%] : The continuity of f and g implies that the operator R is continuous.
[2¥] : Now, we prove that R maps bounded sets into bounded sets of X x Y.
For (x,y) € B, and for each t € ],we have:

Ao—Aa A3+ Aad—AalB3 % ,
Ruy ()] < oo 75— 922 f (9, Dy (5)) |

|- 1 3 5
* 6|‘A117—11H|Az§—ir(a—z) ; (1-s9)" ‘f (Sry(s)/D y(S)NdS-

Using the (H3), we obtain
Ny [(|A2=A2A17® |+ A2 A= A2 ) E* 24 [1- Ay | +] A1y —1]]
IRy (H)] < ST TITAE- 1T 1)

<N (JA2=22 72 |[+1A2A1 = A2] ) E 2+ 1= Ay [+ A =1
= 6117 —1[[A23—1[T (a—T) :

Thus,
[Riy ()| < NiLy, t €],
Therefore,
R (y)|| < N1Ly.
On the other hand,

‘)\2—/\2)\1773“170

- § _
DRy (0] < 1y ( o Mot A ) [ 6= f (s, Dy ) s

[A177—1[[A28-1|T (4-0)

[A1y7—1[[A28-1]T (4-0)

By (H3), we have,

o [Aa—AaAyP |8 24 1M [A2A17 g[8 24 [Ay 1]
D%y ()] < M1 [6|A1171|A2§1|r(a1)r(20> M AE AT DIE-0)

<N [A2=AgA1 73 |8 24 [1-Ay P n [AaA =282 4+[Ay 1|
= oA =TT (a—1)T(2=0) " TAy—1[[A5—1[T(a=T)T(4—0)

Consequently we obtain,
ID“R1y (t)| < NiLp, t € J.

Therefore,
DRy (y)|| < N1La.

Hence, from (3.39) and (3.40), we have

IRt ()llx < N1(Ly+La).

Similarly, it can be shown that,
Rz (x)[ly < Nz2(Ls+ La).

It follows from (3.41) and (3.42) that

IR (x,¥)llxxy < Ni(Ly+L2)+ Nz (Ls+ Lg).

|1_/\11,I3 t177 1
- - -7t _
+ D ( ST s /0 (1= |f (s,9(5), D’ (5))| ds.

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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Consequently
IR (2, )|l xxy < oo

[3*] : In the end we show that R is equicontinuous on J:

Lett,t, € ], such thatt; < t; and (x,y) € By, .Then, we have:

A=A | (ta—ty) Ao A —Ag | (B 13 § _ 5
Ruy (12) = Ray (1) < L2l ) 2 a2 (s,y(0), Dy () ds

1-A73 | (t—tp)+H A =1 (B —13 1 -3 5
+ éml‘niluizg—f\r(a—(z; 2)/0 (=52 [f (536, Dy () | s

Using the (H3),we obtain
Ni|Ap—ApAg i3 882
|R1y (tZ) — Ry (tl)‘ < 6\/\11’7|*21H/\§§1:71|1‘"(1’4*1) (t2 — 1) (3.44)

N1|17/\1;73|
+ ey (- f2)

N1|ApAyy—Ap|§52 343 Ny A1 3_43
- iren \2 7 i)+ anmin-ren (- 2)

and

oA P (1) .

v o 6 A —1[[AE—1|T (a=2)[(2—0)
DRy (1) = DRy (1) < | TTRCTIETIED | |

[A1y—=1[[A25—1[T (a—2)[(4~0)
1—o_ -
|- | (7 —1577) 1

6|A1n7—1][A2§—1|T (a—2)T'(2—0) _ o\a—3 )
| T AT | -9 f (s v (), D ()| s

T 1A -1 T(@=2)T (3—0)

=9 |f (s (), Dy ()| ds

by (H3), we have:

Ni|Ap—ApAq73 8872 1— 1—
|D‘7R1]/ (tZ) - DaRly (t1)| < 6 —T1[[AE—T1T (a—T1)T(2—0) (tZ o _ tl 17) (345)

Ni|1-7Aq%3] 1 1-

+ e e e (-8 )

+ Ni[ApA 7 —Ag|§* 2 (tB—a -~ t3—a)

A —1[[A8—1T(a—1)T(4—0) \"2 1

Ni|Ary—1] 3— 3—

+ \/\17771|\)\2§1711|1"(1x71)1"(47(7) (tl Y-t U) :

Hence by (3.44) and (3.45), we obtain

Ni|Aa—ApA17? |82 Ny |1-A7°]
IRy (82) = Ray (1) x < gy —mz—mr=n (2 — 8 + -t (1~ #2)

Ni[ApAi7—Ap[8* 2 3 43 Np|A—1] 3,3

T 111 <t2‘t1> ey \f R
N1 |Aa—ApA173 |82 1-c -0

Ry e [y v ey ) (tz —h ) (3.46)
Ni1-A1p?| l—o -0
Ry e [ v o ) <t1 — b )
_|_ N1|A2A1777/\2‘§a72 (t3—17 o t3_0>
[AM77=1[[A28-1[T(a=1)T(4—0) \ "2 1

Ny A —1] 3—0 30
t [A1—1[[A28—1|T(xa—1)['(4—0) (tl -t ) .
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Analogously, we can obtain

Ny | A —AgAi 7| 8P 2 Np|[1-Aqn?]
IR2x (£2) = Rox (M) ly < gyt e (2 = B) + et (i~ #2)

Na|AgAy7—Ap|8F~2 ( ) Na Ay —1] (3_ 3)
* et (2~ 8) + et (B~ B

N2|’\2 )\2/\1’7 |§ﬂ 2 1-6 1-6
T 1A 1T (B- DT (2=9) (tz - ) (3.47)

Na[1-Aq7®] 1-0 _ (16
+ T (B—TIT2=3) <t1 - )

I Ny |Ap Ay —Ap|EP2 (tH _ t3*‘5>
[A17=1[[A28-1|T(B-1)T(4-6) \ "2 1

Np|An—1] (375_ 34)
* ey (R )

Thanks to (3.46) and (3.47), can state that ||¢ (x,y) (t2) — ¢ (x,y) (t1)|| — 0 as t; — t. Then, as a conse-
quence of steps ([1*], [2*], [3*]) ; we can conclude that R is continuous

and compact.

Step3: Now, we prove that T is contraction mapping.

Let (x,y), (x1,y1) € X x Y. Then, for each t € |, we have

Lo oet| F(sy(), Dy ()
Tay (#) = Twya (D] < %/OU*S) 1 f(syl(S),D ()) *
) =9 | S oy |

D yl (s))

S,

f
i
f
f

yl
5,1 (s D y1 (s))

(
(
é ) ‘ds.

1
1
+ @ /O (1-s)"

Thanks to (H1), we can write

ITiy ()= Tus (O] < gy (Iy =yl + [ D%y = Do )

+ s (ly = wall + | D%y = Do ) -

Consequently,
ITa () =T () < SRRt (fly =y + || Doy = Dwi ), (3.48)
and
ID"Tyy (t) — D Ty ()] < prs /t (—syot| LEvE.DYE) g
- T o —f (s,y1(5), D’y (s)
|0 "o a| f(sy(s),D(s))
+ W= /0 U= ¥ (5,51 (5), Doy (5)) | %
1 1
- a1 f(sfy(s)/D y(S )
T M @z o) /0 (I=s)") % (s,y1 (s), D%y1 (s)) ds.

By (H1) ,yields
DTy (1) = D Ty (8)] < ety (Ily = vl + ||P°y = D))
+ it (v - i+ D% - D)

+ \Aqul\r(ﬁl)mw) (IIy -l + HD(sy - D‘sylu) -
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Hence,

1
r%mim . ] (Hy*y1||+ HD‘Sny‘SylH). (3.49)

DTy (y) — DTy (y1)l < ku
RV TES Uy RS

By (3.48) and (3.49) we can write

A =1+ |Aq g% +1
[A1n=1]+|Aq |7 +1“(

T~ Tyl <k | T D e (ly = vall + || D%y = D)) -
\/\117—1|1"(vc+1)1"(2—¢7)

Thus,
ITa () =T (v)lx < ka6 (Ily = yall + | Dy = Dwa ). (350)

Analogously, we can get
IT2 (x) = T2 (x1) ly < ka2 ([lx = x1]| + | D7x = D7x1]) - (3.51)
It follows from (3.50) and (3.51) that
IT (x,y) = T (x1,y1) [l xy < kabr +ka2] (Il (x = 21,5 = y1)llxy) -

Using the condition (3.25) we conclude that T is a contraction mapping.
As a consequence of Krasnoselskii’s fixed point theorem we deduce that ¢ has a fixed point which is a

solution of (1.1). O

4 Examples

In this section we give an example to illustrate the usefulness of our main results.

Example 4.1. Let us consider the following system of fractional boundary value problem:

Ve cos(rtt) (y(t)+D%y(t)

7
D2x(t) + +In(1+82) =0,te],
(5v/m+7et) <1+y(t)+D%y(t)> ( )
u e Cos(ﬂt)(x(t)JrD%x(t))
D3y(t

) +In(1+#)=0,te],

;

(5v/m+7et) <1+x(t)+D%x(t)
0 =0x1)-3x(3) =0y©@=0y0 f;y(
X

1) =0
"(3)=0y"(0)=0y" (1) ¢

(3) =

Ve ™ |cos (rtt)| (x| + [y])

flbxy) =gt xy) = (5v/7 +7et)? (1 + x| + [y])

+1n (1+t2) t€[0,1],x,y € [0,00),

Fort e ] =10,1] and xq,y1, x2,y2 € [0, c0) ,we have:

Ve ™ |cos (tt)| x4y x1+ 1
e e N I G AR R CEA AR TR
e cos (t)| (1x = 31| + Iy ~ )
= BV +7e)2 (Lt lxl £ lyl) (1+ [ + [y )
Ve~ cos (1) (1 — 31| + |y — )

< 2
(5v/7 + 7et)
v
< — 5 (k=ul+ly—nl.
(5vmT+7)
Hence the condition (H1) holds with k1 = ky = VT

(5vm+7)"
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Forazg,ﬁ:?,a: —3/\2:4: :%,§:%,wehave:

M; =1,089, M, = 3,503, M3 = 0,909, My = 3,089,

and,
k1 (M1 4+ My) + ko (M3 + My) = 0,0605075.

Therefore,
k1 (Ml + Mz) + kz (M3 —+ M4) < 1.

Hence, the condition (3.14) of Theorem (3.1) is satisfied. Therefore the boundary value problem (1.1) has a unique
solution. So, a simple computation shows that
6h =1,283,6, = 1,058,

and, we have
k161 + k26, = 0,0164904.

Using the condition (3.25), we get,
k101 + k26, < 1.

Therefore it follow from Theorem (3.2) that the boundary value problem (1.1) has a solution.

Example 4.2. Consider the following system of fractional Bounded value problem:

7
7 D3y Py ()|
D2x (t) + 571'(\/%4’28’) + 5n(ﬁ6t+2>2(1;-y(t)) — O/t S ]/
\Cos(rrt)| D2x(t)
u |x(t)] _
D=y () + iy 7\F(t+1) =0te]
x(0)=0,x(1 —yc(%) 0,y(0)=0,y(1) — %y(%)
xU(O):O,xﬂ(l)—%x (%): y()_oy (1) % (%):
For this example, we have
£t x,y) = %] . e " “/2' ,t€[0,1],x,y € [0,00),
5 (Vr+2et) 5 (et +2)2 (1+ [y))
t
12 s (1131, ¢ 10,113,y < [0,00).

) = 547z v i) 7 )

Fort e ] = [0/ 1] and X, Y, X1, Y1 S [O, 00) . Then we have:
F(bxy) ~ f (bxa,)] = e’ x = x| Lyl
7y s A1 Y1 5(ﬁ6t+2)2(1+|x|)(1+|x1|) 57‘[(\/E+28t)

et 1
S ) T S—
5n(ﬁet+2)2| 1 57 (/7T + 2¢t) v =l
Sp—— PR R
T s (va+2)? ' o

IN

and
x—x cos ()] Iy = |
t,x,y)—g(t x1, =
gl =8 Gl = A ey G D 717
P P 1 G0 I Y
14w 7vr+12 Y

L r—mlty-w)

IN
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e — 1 _ 1
So,we can take: ki = Se(vr2) and ky = TG
It, follows then that

My =0,51254, M = 1,9531, M3 = 0,43113, My = 1,32719,

and

2,46564 n 1,75832
5n(ym+2)”  14VT
Hence by Theorem (3.1) the boundary value problem (1.1) has a unique solution.
Now, using the condition (3.25), we get:

ki (My + My) +ky (M3 + My) = =0,081914 < 1.

ki + ko = — 212722 5+ 096759 _ 0.044183.
5m(Vr+2)° 14w

Therefore,
k161 + k6, < 1.

By Theorem (3.2) the boundary value problem (1.1) has a solution.
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