Int. J. Nonlinear Anal. Appl. 4 (2013) No. 2, 45-52 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir



# Some new results using integration of arbitrary order

A. Anber<sup>a</sup>, Z. Dahmani<sup>b,\*</sup>, B. Bendoukha<sup>c</sup>

<sup>a</sup>Department of Mathematics, USTO University of Oran, Algeria. <sup>b</sup>LPAM, Faculty of SEI, UMAB, University of Mostaganem, Algeria. <sup>c</sup>LPAM, Faculty of Exact Science and Informatics, UMAB, University of Mostaganem, Algeria.

# Abstract

In this paper, we present recent results in integral inequality theory. Our results are based on the fractional integration in the sense of Riemann-Liouville

*Keywords:* Integral inequality, Riemann-Liouville integral operator. *2010 MSC:* 26D10; 26A33.

## 1. Introduction

The integral inequalities involving functions of independent variables play a fundamental role in the theory of differential equations. Motivated by certain applications, many such new inequalities have been discovered in the past few years (see [2, 5, 13, 14, 15]). Moreover, the fractional type inequalities are of great importance. We refer the reader to [1, 16] for some applications. Let us now turn our attention to some results that have inspired our work. We consider the quantity

$$R_{a,b}(p,q,f,g) := \int_{a}^{b} pf^{2}(x) dx \int_{a}^{b} qg^{2}(x) dx + \int_{a}^{b} qf^{2}(x) dx \int_{a}^{b} pg^{2}(x) dx$$

$$-2\Big(\int_{a}^{b} p|fg|(x) dx\Big)\Big(\int_{a}^{b} q|fg|(x) dx\Big) - 2\Big(\int_{a}^{b} p|fg|(x) dx\Big)\Big(\int_{a}^{b} q|fg|(x) dx\Big),$$
(1.1)

where f and g are two continuous functions on [a, b] and p and q are two positive and continuous functions on [a, b].

In the case, when p = q, S.S. Dragomir [10] proved the inequality:

$$0 < R_{1,\Omega}(p, f, g) := R_{\Omega}(p, p, f, g) \le \frac{(M - m)^2}{2mM} \Big( \int_{\Omega} p|fg|(x) \, d\mu(x) \Big), \tag{1.2}$$

\*Corresponding author

*Email addresses:* ah.anber@yahoo.fr (A. Anber ), zzdahmani@yahoo.fr (Z. Dahmani ), b.bendoukha@yahoo.fr (B. Bendoukha)

provided f and g are Lebesgue  $\mu$ - measurable,  $pf^2, pg^2$  are Lebesgue  $\mu$ - integrable on  $\Omega$  and  $0 < m \leq |\frac{f(x)}{g(x)}| \leq M \leq \infty$ , for  $\mu$  a.e. $x \in \Omega$ . For other results related to the Cauchy-Schwarz difference (1), in the case p = q, a number of valued extensions can be found in [3, 6, 7, 8, 9, 12, 18] and the references cited therein.

The main aim of this paper is to establish some new fractional integral inequalities of Cauchy-Schwarz type by giving an upper and a lower bound for the quantity (1.1) Some new fractional results related to Cassel's inequality [4], [17], [19] are also generated. For our results, some classical inequalities can be deduced as some special cases. Our results have some relationships with [3], [10].

### 2. Description of the fractional calculus

We introduce some definitions and properties which will be used in this paper:

**Definition 2.1.** A real valued function f is said to be in the space  $C_{\mu}([0, \infty[), \mu \in \mathbb{R} \text{ if there exists} a real number <math>r > \mu$ , such that  $f(t) = t^r f_1(t)$ , where  $f_1 \in C([0, \infty))$ .

**Definition 2.2.** A function f is said to be in the space  $C^n_{\mu}([0,\infty[), n \in \mathbb{N}, if f^{(n)} \in C_{\mu}([0,\infty[), n \in \mathbb{N}))$ 

**Definition 2.3.** The Riemann-Liouville fractional integral operator of order  $\alpha \ge 0$ , for a function  $f \in C_{\mu}([0,\infty[), \mu \ge -1, is defined as$ 

$$J^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\tau)^{\alpha-1} f(\tau) d\tau; \quad \alpha > 0, t > 0$$
  
$$J^{0}f(t) = f(t).$$
 (2.1)

For the convenience of establishing the results, we give the following property:

$$J^{\alpha}J^{\beta}f(t) = J^{\alpha+\beta}f(t).$$
(2.2)

For the expression (2.1), when  $f(t) = t^{\beta}$  we get another expression that will be used later:

$$J^{\alpha}t^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}t^{\alpha+\beta}.$$
(2.3)

For more details, see [11, 16].

### 3. Main results

Our first result is the following theorem:

**Theorem 3.1.** Suppose that f and g are two continuous functions on  $[0, \infty[$  and p and q are two positive continuous function on  $[0, \infty[$ , such that  $p|\frac{f}{g}|, p|\frac{g}{f}|, q|\frac{g}{f}|, pf^2, pg^2, qf^2$  and  $qg^2$  are integrable functions on  $[0, \infty[$ . If there exist m and M two positive real numbers, such that

$$0 < m \le |f(\tau)g(\tau)| \le M; \tau \in [0, t], t > 0, \tag{3.1}$$

then we have

$$m^{2} \left( J^{\alpha}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) + J^{\alpha}(p|\frac{f}{g}|)(t) J^{\alpha}(|q\frac{g}{f}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t) \right)$$

$$\leq J^{\alpha}pf^{2}(t) J^{\alpha}qg^{2}(t) + J^{\alpha}qf^{2}(t)J^{\alpha}pg^{2}(t) - 2J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t)$$

$$\leq M^{2} \left( J^{\alpha}(p|\frac{f}{g}|)(t)J^{\alpha}(q|\frac{g}{f}|)(t) + J^{\alpha}(q|\frac{f}{g}|)(t)J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t) \right),$$

$$(3.2)$$

$$\leq M^{2} \left( J^{\alpha}(p|\frac{f}{g}|)(t)J^{\alpha}(q|\frac{g}{f}|)(t) + J^{\alpha}(q|\frac{f}{g}|)(t)J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t) \right),$$

for any  $\alpha > 0, t > 0$ .

# Proof.

In the identity

$$\frac{u^2 + v^2}{2} - uv = \frac{1}{2}uv\left(\sqrt{\frac{u}{v}} - \sqrt{\frac{v}{u}}\right)^2; u > 0, v > 0,$$

we take  $u = |f(\tau)g(\rho)|$  and  $v = |f(\rho)g(\tau)|, \tau, \rho \in [0, t], t > 0$ . Then we can write

$$\frac{f^{2}(\tau)g^{2}(\rho) + f^{2}(\rho)g^{2}(\tau)}{2} - |f(\tau)g(\rho)||f(\tau)g(\rho)|$$

$$= \frac{1}{2}|f(\tau)g(\tau)||f(\rho)g(\rho)|\left(\sqrt{|\frac{f(\tau)}{g(\tau)}||\frac{g(\rho)}{f(\rho)}|} - \sqrt{|\frac{f(\rho)}{g(\rho)}||\frac{g(\tau)}{f(\tau)}|}\right)^{2}.$$
(3.3)

On the other hand, we have

$$\left(\sqrt{\left|\frac{f(\tau)}{g(\tau)}\right|\left|\frac{g(\rho)}{f(\rho)}\right|} - \sqrt{\left|\frac{f(\rho)}{g(\rho)}\right|\left|\frac{g(\tau)}{f(\tau)}\right|}\right)^2 = \left|\frac{f(\tau)}{g(\tau)}\right|\left|\frac{g(\rho)}{f(\rho)}\right| + \left|\frac{f(\rho)}{g(\rho)}\right|\left|\frac{g(\tau)}{f(\tau)}\right| - 2.$$
(3.4)

Using (3.4) and the condition (3.1) we can write

$$\frac{m^{2}}{2} \Big( \left| \frac{f(\tau)}{g(\tau)} \right| \left| \frac{g(\rho)}{f(\rho)} \right| + \left| \frac{f(\rho)}{g(\rho)} \right| \left| \frac{g(\tau)}{f(\tau)} \right| - 2 \Big) \\
\leq \frac{f^{2}(\tau)g^{2}(\rho) + f^{2}(\rho)g^{2}(\tau)}{2} - \left| f(\tau)g(\tau) \right| \left| f(\rho)g(\rho) \right| \\
\leq \frac{M^{2}}{2} \Big( \left| \frac{f(\tau)}{g(\tau)} \right| \left| \frac{g(\rho)}{f(\rho)} \right| + \left| \frac{f(\rho)}{g(\rho)} \right| \left| \frac{g(\tau)}{f(\tau)} \right| - 2 \Big).$$
(3.5)

Hence we get,

$$\frac{m^{2}}{2} \left( \left| \frac{g(\rho)}{f(\rho)} \right| J^{\alpha}(p|\frac{f}{g}|)(t) + \left| \frac{f(\rho)}{g(\rho)} \right| J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) \right) \\
\leq \frac{g^{2}(\rho)J^{\alpha}pf^{2}(t) + f^{2}(\rho)J^{\alpha}pg^{2}(t)}{2} - \left| f(\rho)g(\rho) \right| J^{\alpha}(p|fg|)(t) \\
\leq \frac{M^{2}}{2} \left( \left| \frac{g(\rho)}{f(\rho)} \right| J^{\alpha}(p|\frac{f}{g}|)(t) + \left| \frac{f(\rho)}{g(\rho)} \right| J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) \right).$$
(3.6)

Multiplying both sides of (3.6) by  $\frac{(t-\rho)^{\alpha-1}}{\Gamma(\alpha)}q(\rho)$ , then integrating the resulting inequalities with respect to  $\rho$  over [0, t], we obtain

$$\frac{m^{2}}{2} \left( J^{\alpha}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) + J^{\alpha}(p|\frac{f}{g}|)(t) J^{\alpha}(q|\frac{g}{f}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t) \right) \\
\leq \frac{J^{\alpha}pf^{2}(t)J^{\alpha}qg^{2}(t) + J^{\alpha}qf^{2}(t)J^{\alpha}pg^{2}(t)}{2} - J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t) \\
\leq \frac{M^{2}}{2} \left( J^{\alpha}(p|\frac{f}{g}|)(t)J^{\alpha}(q|\frac{g}{f}|)(t) + J^{\alpha}(q|\frac{f}{g}|)(t)J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t) \right).$$
(3.7)

Theorem 3.1 is thus proved.  $\Box$ 

**Remark 3.2.** Applying Theorem 3.1 for  $p = q, \alpha = 1, d\mu(\tau) = d\tau$ , we obtain Theorem 1 of [3] on  $[0, t] = \Omega$ .

The previous result can be generalized to the following:

**Theorem 3.3.** Suppose that f and g are two continuous functions on  $[0, \infty[$  and let p and q be two positive continuous functions on  $[0, \infty[$ , such that

 $p|\frac{f}{g}|, p|\frac{g}{f}|, q|\frac{f}{g}|, q|\frac{g}{f}|, pf^2, qf^2, pg^2$  and  $qg^2$  are integrable functions on  $[0, \infty[$ . If there exist m and M two positive real numbers, such that

$$0 < m \le |f(\tau)g(\tau)| \le M; \tau \in [0, t], t > 0,$$
(3.8)

then the inequalities

$$m^{2} \Big( J^{\alpha}(p|\frac{f}{g}|)(t) J^{\beta}(q|\frac{g}{f}|)(t) + J^{\beta}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) J^{\beta}q(t) \Big)$$
  

$$\leq J^{\alpha}pf^{2}(t) J^{\beta}qg^{2}(t) + J^{\beta}qf^{2}(t) J^{\alpha}pg^{2}(t) - 2J^{\alpha}(p|fg|)(t) J^{\beta}(q|fg|)(t)$$
  

$$\leq M^{2} \Big( J^{\alpha}(p|\frac{f}{g}|)(t) J^{\beta}(q|\frac{g}{f}|)(t) + J^{\beta}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) J^{\beta}q(t) \Big)$$
(3.9)

are valid for any  $\alpha > 0, \beta >, t > 0$ .

**Proof**. Multiplying both sides of (3.6) by  $\frac{(t-\rho)^{\beta-1}}{\Gamma(\beta)}q(\rho)$ , then integrating the resulting inequalities with respect to  $\rho$  over [0, t], we obtain:

$$\frac{m^{2}}{2} \Big( J^{\alpha}(p|\frac{f}{g}|)(t) J^{\beta}(q|\frac{g}{f}|)(t) + J^{\beta}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) J^{\beta}q(t) \Big) \\
\leq \frac{J^{\alpha}pf^{2}(t) J^{\beta}qg^{2}(t) + J^{\beta}qf^{2}(t) J^{\alpha}pg^{2}(t)}{2} - J^{\alpha}(p|fg|)(t) J^{\beta}(q|fg|)(t) \\
\leq \frac{M^{2}}{2} \Big( J^{\alpha}(p|\frac{f}{g}|)(t) J^{\beta}(q|\frac{g}{f}|)(t) + J^{\beta}(q|\frac{f}{g}|)(t) J^{\alpha}(p|\frac{g}{f}|)(t) - 2J^{\alpha}p(t) J^{\beta}q(t) \Big).$$
(3.10)

The proof of Theorem 3.3 is thus achieved.  $\Box$ 

**Remark 3.4.** It is clear that Theorem 3.1 would follow as a special case of of Theorem 3.3 when  $\alpha = \beta$ .

Now, we shall propose a new generalization of Cassel's inequality. We have:

**Theorem 3.5.** Let f, g be two continuous functions on  $[0, \infty[$  and let p and q be two positive continuous functions on  $[0, \infty[$ , such that  $pf^2, qf^2, pg^2$  and  $qg^2$  are integrable on  $[0, \infty[$ . If there exist m and M two positive real numbers, such that

$$0 < m \le \left|\frac{f(\tau)}{g(\tau)}\right| \le M; \tau \in [0, t], t > 0, \tag{3.11}$$

then we have

$$J^{\alpha}pf^{2}(t)J^{\alpha}qg^{2}(t) - J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t)$$

$$\leq \frac{(M-m)^{2}}{4mM}J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t),$$
(3.12)

for any  $\alpha > 0, t > 0$ .

**Proof**. From the condition  $\left|\frac{f(\tau)}{g(\tau)}\right| \le M; \tau \in [0, t], t > 0$ , we have

$$f^{2}(\tau) \leq M|f(\tau)g(\tau)|; \tau \in [0,t], t > 0.$$
(3.13)

Therefore,

$$\frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\tau)^{\alpha-1} p(\tau) f^{2}(\tau) d\tau \leq \frac{M}{\Gamma(\alpha)} \int_{0}^{t} (t-\tau)^{\alpha-1} p(\tau) |f(\tau)g(\tau)| d\tau.$$
(3.14)

Consequently,

$$J^{\alpha}pf^{2}(t) \leq MJ^{\alpha}(p|fg|)(t).$$

$$(3.15)$$

Now, using the condition  $m \leq \left|\frac{f(\tau)}{g(\tau)}\right|; \tau \in [0, t], t > 0$ , we can write

$$mJ^{\alpha}qg^{2}(t) \leq J^{\alpha}(q|fg|)(t).$$
(3.16)

Multiplying (3.15) and (3.16) we obtain

$$J^{\alpha}pf^{2}(t)J^{\alpha}qg^{2}(t) \leq \frac{M}{m}J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t).$$
(3.17)

Consequently, we get

$$J^{\alpha}pf^{2}(t)J^{\alpha}qg^{2}(t) - J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t)$$

$$\leq \frac{M-m}{m}J^{\alpha}(p|fg|)(t)J^{\alpha}(q|fg|)(t),$$
(3.18)

which implies (3.12) Theorem 3.5 is thus proved.  $\Box$ 

**Remark 3.6.** If we take  $\alpha = 1, p = q$ , then we obtain Cassel's inequality [10],[19] on [0, t].

Also, with the same assumptions as before, we get the following generalization of Theorem 3.5:

**Theorem 3.7.** Let f, g be two continuous functions on  $[0, \infty[$  and let p and q be two positive continuous functions on  $[0, \infty[$ , such that  $pf^2, qf^2, pg^2$  and  $qg^2$  are integrable on  $[0, \infty[$ . If there exist m, M positive real numbers, such that

$$0 < m \le \left|\frac{f(\tau)}{g(\tau)}\right| \le M, \tau \in [0, t], t > 0, \tag{3.19}$$

then, for any  $\alpha > 0, \beta > 0, t > 0$ , the inequality

$$J^{\alpha}pf^{2}(t) J^{\beta}qg^{2}(t) - J^{\alpha}(p|fg|)(t)J^{\beta}(q|fg|)(t) \leq \frac{(M-m)^{2}}{4mM}J^{\alpha}(p|fg|)(t) J^{\beta}(q|fg|)(t)$$
(3.20)

is valid.

**Proof**. From the condition  $m \leq |\frac{f(\tau)}{g(\tau)}|; \tau \in [0, t], t > 0$ , we can write

$$mJ^{\beta}qg^{2}(t) \leq J^{\beta}(q|fg|)(t).$$
 (3.21)

Thanks to (3.16) and (3.21) we obtain

$$J^{\alpha}pf^{2}(t)J^{\beta}qg^{2}(t) \leq \frac{M}{m}J^{\alpha}(p|fg|)(t)J^{\beta}(q|fg|)(t).$$
(3.22)

Therefore,

$$J^{\alpha}pf^{2}(t)J^{\beta}qg^{2}(t) - J^{\alpha}(p|fg|)(t)J^{\beta}(q|fg|)(t)$$

$$\leq \frac{M-m}{m}J^{\alpha}(p|fg|)(t)J^{\beta}(q|fg|)(t).$$
(3.23)

Hence, we deduce the desired inequality (3.20).  $\Box$ We give also the following corollaries:

**Corollary 3.8.** Let F, G be two continuous functions on  $[0, \infty[$  and let p and q be two positive continuous functions on  $[0, \infty[$ , such that  $p|_{\overline{G}}^{F}|, p|_{\overline{G}}^{G}|, q|_{\overline{F}}^{G}|, pF^{2}, pG^{2}, qF^{2}$  and  $qG^{2}$  are integrable functions on  $[0, \infty[$ . If there exist n, N, M positive real numbers, such that  $|F(\tau)G(\tau)| \leq M$  and

$$0 < n \le \left|\frac{F(\tau)}{G(\tau)}\right| \le N, \tau \in [0, t], t > 0, \tag{3.24}$$

then, for any  $\alpha > 0, t > 0$ , the inequality

$$J^{\alpha}pF^{2}(t)J^{\alpha}qG^{2}(t) + J^{\alpha}qF^{2}(t)J^{\alpha}pG^{2}(t) - 2J^{\alpha}(p|FG|)(t)J^{\alpha}(q|FG|)(t)$$

$$\leq \frac{M^{2}(N-n)^{2}}{2nN}J^{\alpha}pJ^{\alpha}q(t)$$
(3.25)

is valid.

**Proof**. In Theorem 3.5, we take  $f := \sqrt{|\frac{F}{G}|}$ ,  $g := \sqrt{|\frac{G}{F}|}$ . We constat that  $n \leq \frac{f(\tau)}{g(\tau)} \leq N$ ;  $\tau \in [0, t]$ , t > 0, and then

$$J^{\alpha}(p|\frac{F}{G}|)(t)J^{\alpha}(q|\frac{G}{F}|)(t) - J^{\alpha}p(t)J^{\alpha}q(t)$$

$$\leq \frac{(N-n)^{2}}{4nN}J^{\alpha}p(t)J^{\alpha}q(t).$$
(3.26)

We have also

$$J^{\alpha}(q|\frac{F}{G}|)(t)J^{\alpha}(p|\frac{G}{F}|)(t) - J^{\alpha}p(t)J^{\alpha}q(t)$$

$$\leq \frac{(N-n)^{2}}{4nN}J^{\alpha}p(t)J^{\alpha}q(t).$$
(3.27)

Combining (3.26) and (3.27), we obtain

$$J^{\alpha}(p|\frac{F}{G}|)(t)J^{\alpha}(q|\frac{G}{F}|)(t) + J^{\alpha}(q|\frac{F}{G}|)(t)J^{\alpha}(p|\frac{G}{F}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t)$$

$$\leq \frac{(N-n)^{2}}{2nN}J^{\alpha}p(t)J^{\alpha}q(t).$$
(3.28)

Since  $|F(\tau)G(\tau)| \leq M$ ;  $\tau \in [0, t]$ , t > 0, then thanks to the second inequality of (3.2) (Theorem 3.1), we claim that

$$J^{\alpha}pF^{2}(t)J^{\alpha}qG^{2}(t) + J^{\alpha}qF^{2}(t)J^{\alpha}pG^{2}(t) - 2J^{\alpha}(p|FG|)(t)J^{\alpha}(q|FG|)(t) \leq M^{2} \Big(J^{\alpha}(p|\frac{F}{G}|)(t)J^{\alpha}(q|\frac{G}{F}|)(t) + J^{\alpha}(q|\frac{F}{G}|)(t)J^{\alpha}(p|\frac{G}{F}|)(t) - 2J^{\alpha}p(t)J^{\alpha}q(t)\Big).$$
(3.29)

Using (3.28) and (3.29), we obtain the desired inequality (3.25).  $\Box$ 

**Remark 3.9.** If we take  $p = q, \alpha = 1, d\mu(\tau) = d\tau$ , then we obtain Corollary 3.8 on  $\Omega$  provided that  $\Omega = [0, t]$ .

**Corollary 3.10.** Let F, G, p and q satisfy the conditions of Corollary 3.8. Then, for any  $\alpha > 0, \beta > 0, t > 0$ , we have

$$J^{\alpha}pF^{2}(t)J^{\beta}qG^{2}(t) + J^{\beta}qF^{2}(t)J^{\alpha}pG^{2}(t) - 2J^{\alpha}(p|FG|)(t)J^{\beta}(q|FG|)(t)$$

$$\leq \frac{M^{2}(N-n)^{2}}{2nN}J^{\alpha}pJ^{\beta}q(t).$$
(3.30)

**Proof**. We apply Theorem 3.5 and Theorem ??.  $\Box$ 

**Remark 3.11.** If we take  $\alpha = \beta$ , then we obtain Corollary 3.8.

### References

- [1] G.A. Anastassiou, Fractional Differentiation Inequalities. Springer, (2009).
- [2] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Dordrecht, (1992).
- [3] N.S. Barnett, S.S. Dragomir and I. Gomm, On some integral inequalities related to the Cauchy-Bunyakovsky-Schwarz inequality, Appl. Math. Letters, 23 (2010), 1008-1012.
- [4] P. Cerone and S.S. Dragomir, New bounds for the Chebyshev functional, ajmaa.org/RGMIA/papers/v6n2/NICF.pdf, 2003.
- [5] P. Cerone and S.S. Dragomir, A refinement of the Gruss inequality and applications, Tankang J. Math., 38 (1), (2007), 37-49.
- [6] Z. Dahmani and L. Tabharit, New fractional bounds for some classical inequalities. Submitted paper.
- S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, Journal of Inequalities in Pure and Applied Mathematics, 4 (3) (2003), Art. 63.
- [8] S.S. Dragomir and N.T. Diamond, Integral inequalities of Gruss type via Polya-Szego and Shisha-Mond results, East Asian Mathematical Journal, 19 (1), (2003), 27-39.

- [9] S.S. Dragomir, Reverses of Schwarz, Triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 5 (3), (2004) Art. 76.
- [10] S.S. Dragomir, Advances in Inequalities of the Schwarz, Gruss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc., New York, (2005).
- [11] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, (1997), 223-276.
- [12] W. Greub and W. Rheinboldt, On a generalisation of an inequality of L.V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
- [13] S. Mazouzi and F. Qi, On an open problem regarding an integral inequality. JIPAM. J. Inequal. Pure Appl. Math., 4 (2) (2003), Art. 31.
- [14] D.S. Mitrinovic, J.E. Pecaric and A.M. Fink, Classical and new inequalities in Analysis. Kluwer Academic Publishers, Dordrecht, (1993).
- [15] B.G.Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, (1998).
- [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
- [17] G. Polya and G. Szego, Aufgaben and lahrsotse ans der Analysis, Berlin, (1), (1925), 213-214.
- [18] M.Z. Sarikaya, N. Aktan and H. Yildirim, On weighted Chebyshev-Gruss like inequalities on time scales, J. Math. Inequal., 2 (2) (2008), 185-195.
- [19] G.S. Watson, Serial correlation in regression analysis, I, Biometrika, 42 (1955), 327-341.