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Abstract

This paper deals with a class of fractional hybrid differ-
ential equations. We prove an integral representation for the
studied class. Then, using the Banach contraction principle,
we establish some conditions that guarantee for us the exis-
tence of a unique solution.
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1 Introduction

The theory of Fractional differential equations is a very important tool for
modeling phenomena in applied sciences and engineering. It has applications
in physics, biology, chemistry, engineering, and more others applied domains,
we refer the reader to [9], [3], [13],[14] .
On the other hand, the hybrid differential equations is very interesting domain
for mathematics and physics, see for instance [1], [2], [5], [7], [8].
In this paper, we are concerned with the following problem:
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Dα1

(
x1(t)

f1(t, x1(t), x2(t), ..., xn(t))

)
= h1(t, x1(t), x2(t), ..., xn(t))

+Iδ1k1(t, x1(t), x2(t), ..., xn(t)), t ∈ J

Dα2

(
x(t)

f2(t, x1(t), x2(t), ..., xn(t))

)
= h2(t, x1(t), x2(t), ..., xn(t))

+Iδ2k2(t, x1(t), x2(t), ..., xn(t)), t ∈ J

· · ·

Dαn

(
xn(t)

fn(t, x1(t), x2(t), ..., xn(t))

)
= hn(t, x1(t), x2(t), ..., xn(t))

+Iδnkn(t, x1(t), x2(t), ..., xn(t)), t ∈ J

xi(0) = θi

∫ βi

0

ϕi(s)xi(s)ds,

0 < βi < 1, i = 1, 2, ..., n.
(1)

where, for i = 1, .., n, the symbols Dαi denote the Caputo fractional deriva-
tive with 0 < αi < 1, the symbols Iδi denote the Riemann-Liouville fractional
integral of order δi with 0 < δi < 1. J = [0, 1] represent a time interval, θi are
real numbers, ϕi are continuous functions on [0, βi], fi ∈ C((J × Rn,R− {0})
and hi, ki ∈ C((J × Rn,R) .

The paper is organized as follow: Section 2 is devoted to the preliminaries
and most important notions used throughout the development of the main
results. In section 3, we prove the main result on the uniqueness of one solution
for the hybrid problem. In the last section, two open questions are posed.

2 Preliminaries

We introduce some useful definitions and lemmas [6, 10, 11, 12].

Definition 2.1 Let α > 0 and h : [a, b] 7−→ R be a continuous function. The
Riemann-Liouville integral of order α is defined by:

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds, α > 0, a ≤ t ≤ b.
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Definition 2.2 Let α > 0, n− 1 < α ≤ n and h ∈ Cn([0, T ],R). The Caputo
fractional derivative is defined by:

Dαh(t) = In−α
dn

dtn
(h(t))

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds.

Lemma 2.3 For n− 1 < α ≤ n and h ∈ Cn([0, T ],R), the equation Dαh = 0
has a general solution given by:

h(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, .., n− 1.

Lemma 2.4 Under the assumptions of the above lemma, we have

IαDαh(t) = h(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1.

3 Main Results

First, we mention that we have noted x = (x1, x2, ..., xn)and x(t) = (x1(t), x2(t), ..., xn(t))
for the clarity of calculations and reading.

The following lemma is an auxiliary result that will be used throughout
this paper. We prove:

Lemma 3.1 Let i = 1, 2, ..., n and 0 < αi, δi < 1. If fi ∈ C((J × Rn,R− {0})
and hi, ki ∈ C((J × Rn,R) , then, the solution of the equation

Dαi

(
xi(t)

fi(t, x(t)

)
= hi(t, x(t)) + Iδiki(t, x(t)) (2)

under the condition:

xi(0) = θi

∫ βi

0

ϕi(s)xi(s)ds, 0 < βi < 1, i = 1, 2, ..., n (3)
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is given by:

xi(t) = fi(t, x(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, x(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, x(τ))dτ

+
θi

fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds

∫ βi

0

fi(s, x(s))ϕi(s)

×

[
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, x(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, x(τ))dτ

]
ds

)

(4)

with: fi(0, x(0)) 6= θi
∫ βi
0
fi(s, x(s))ϕi(s)ds.

Proof
For i = 1, ..., n, we consider:

Dαi

(
xi(t)

fi(t, x(t)

)
= hi(t, x(t)) + Iδiki(t, x(t)), t ∈ J (5)

By using lemmas 2.3 and 2.4, the general solution of (5) is given by:

xi(t)

fi(t, x(t))
= Iαihi(t, x(t)) + Iαi+δiki(t, x(t))− c0 (6)

where c0 ∈ R is an arbitrary constant.
From (6), we get:

xi(t) = fi(t, x(t))[Iαihi(t, x(t)) + Iαi+δiki(t, x(t))− c0] (7)

On the other hand, we multiply both sides of (7) by θiϕi(s), we get:

θiϕi(s)xi(s) = θiϕi(s)fi(s, x(s))
×[Iαihi(s, x(s) + Iαi+δiki(s, x(s))]− c0θifi(s, x(s))ϕi(s)

(8)
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Then thanks to (8), we can write:

θi

∫ βi

0

ϕi(s)xi(s)ds = θi

∫ βi

0

ϕi(s)fi(s, x(s))[Iαihi(s, x(s) + Iαi+δiki(s, x(s))]ds

−c0
∫ βi

0

θifi(s, x(s))ϕi(s)ds

(9)
Using (3) and (7), we get:

c0

(
fi(0, x(0))−

∫ βi

0

θifi(s, x(s))ϕi(s)ds

)
= θi

∫ βi

0

ϕi(s)fi(s, x(s))

×[Iαihi(s, x(s) + Iαi+δiki(s, x(s))]ds
(10)

which becomes

c0 =
θi(

fi(0, x(0))−
∫ βi
0
θifi(s, x(s))ϕi(s)ds

)
∫ βi

0

ϕi(s)fi(s, x(s))[Iαihi(s, x(s) + Iαi+δiki(s, x(s))]ds

(11)

Replacing c0 by its value in (7), we obtain (4).

Now, we introduce the following Banach spaces:

Xi = {xi(t), i = 1, ..., n : xi ∈ C(J,R)} (12)

with the norm:
‖xi‖Xi

= sup{|xi(t)| : t ∈ J} (13)

where i = 1.., n.
We bring to the attention that for i = 1, 2, ..., n,

(
Xi, ‖.‖Xi

)
is a Banach

space.
The product space: (

n∏
i=1

Xi, ‖.‖∏n
i=1Xi

)
(14)

is also a Banach space.
Let Q be an operator defined by:

Q :
∏n

i=1Xi →
∏n

i=1Xi

x(t) 7−→ Qx(t)
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such that for t ∈ J ,

Qx(t) =
(
Q1x(t),Q2x(t), ...,Qnx(t)

)
(15)

where:

Qix(t) = fi(t, x(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, x(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, x(τ))dτ

+
θi

fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds

∫ βi

0

fi(s, x(s))ϕi(s)

×

[
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, x(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, x(τ))dτ

]
ds

)

(16)

Theorem 3.2 We suppose that:

H1. There exist constants ξij , ζij for i, j = 1, ..., n such that:

|hi(t, x1, ..., xn)− hi(t, y1, ..., yn)| ≤
n∑
j=1

ξij|xj − yj| (17)

and

|ki(t, x1, ..., xn)− ki(t, y1, ..., yn)| ≤
n∑
j=1

ζij|xj − yj| (18)

for all t ∈ J , x, y ∈ Rn.

H2. There exist nonnegative constants Fi, i = 1, ..., n such that for all
t ∈ J and x ∈ Rn |fi(t, x(t))| ≤ Fi.
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H3.
∑n

i=1

(
Φi

∑n
j=1 ξij + Ψi

∑n
j=1 ζij

)
< 1, where:

Φi :=
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

Ψi :=
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

are satisfied.
Then, there exists a unique solution to (1) provided that θi and fi(0, x(0))
satisfy the condition of Lemma 3.1.

Proof

We need to proceed on two steps:
Step 1: Let Br be given by Br = {x ∈

∏n
i=1Xi : ‖x‖∏n

i=1Xi
< r} where r is

defined by:

r ≥
∑n

i=1 ΦiHi + ΨiKi

1−
∑n

i=1(Φi

∑n
j=1 ξij + Ψi

∑n
j=1 ζij)

(19)

Let Hi := sup
t∈J
|hi(t, 0, ...0)| < ∞ and Ki := sup

t∈J
t ∈ J |ki(t, 0, ...0)| < ∞, for

i = 1, ..., n.

We notice that using (H1), for x ∈ Br, we can write:

|hi(t, x1, ..., xn)| ≤ |hi(t, x1, ..., xn)− hi(t, 0, ...0)|+ |hi(t, 0, ...0)|
≤

∑n
j=1 ξijj|xj|+Hi

≤
∑n

j=1 ξijr +Hi

(20)

and

|ki(t, x1, ..., xn)| ≤ |ki(t, x1, ..., xn)− ki(t, 0, ...0)|+ |ki(t, 0, ...0)|
≤

∑n
j=1 ζij|xj|+Ki

≤
∑n

j=1 ζijr +Ki

(21)

On the other hand, we have:
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|Qix(t)| ≤ |fi(t, x(t))|

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, x(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, x(τ))|dτ

+
|θi|

|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

∫ βi

0

|fi(s, x(s))||ϕi(s)|

×

[
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, x(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, x(τ))|dτ

]
ds

)

(22)

So, using (H1), (H2), (20), and (21), we get:

|Qix(t)| ≤ Fi

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ

(
n∑
j=1

ξijr +Hi

)

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

(
n∑
j=1

ζijr +Ki

)

+

Fi|θi|sup
s∈J
|ϕi(s)|

|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

×
∫ βi

0

[
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ

(
n∑
j=1

ξijr +Hi

)

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

(
n∑
j=1

ζijr +Ki

)]
ds

)

(23)
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which leads to:

‖Qix‖Xi
≤

(
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

)(
n∑
j=1

ξijr +Hi

)

+

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

)

×

(
n∑
j=1

ζijr +Ki

)

= Φi

(
n∑
j=1

ξijr +Hi

)
+ Ψi

(
n∑
j=1

ζijr +Ki

)
(24)

for i = 1, ..., n.

So (24) implies that:

‖Qix‖Xi
≤ Φi

(
n∑
j=1

ξijr +Hi

)
+ Ψi

(
n∑
j=1

ζijr +Ki

)
, i = 1, ..., n. (25)

Hence,

‖Qix‖∏n
i=1Xi

≤ r. (26)

which leads to the conclusion that Qi(Br) ⊂ Br .
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Step 2: Let x, y ∈ Xi. For each t ∈ J , we have:

|Qix(t)−Qiy(t)| ≤ |fi(t, x(t))|

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, x(τ))− hi(τ, y(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, x(τ))− ki(τ, y(τ))|dτ

+
Fi|θi|

|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

∫ βi

0

|ϕi(s)|

×
[

1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, x(τ))− hi(τ, x(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, x(τ))− ki(τ, y(τ))|dτ
]
ds

)

(27)
Thanks to (H1) and (H2), we get:

‖Qix−Qiy‖Xi
≤ Fi

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ
n∑
j=1

ξij‖xj − yj‖

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

n∑
j=1

ζij‖xj − yj‖

+
Fi|θi|

|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

∫ βi

0

sup
s∈J
|ϕi(s)|

×
[

1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ

n∑
j=1

ξij‖xj − yj‖

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ
n∑
j=1

ζij‖xj − yj‖

]
ds

)

(28)
which becomes
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‖Qix−Qiy‖Xi
≤

(
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

)

×

(
n∑
j=1

ξij‖xj − yj‖

)

+

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, x(0))− θi
∫ βi
0
fi(s, x(s))ϕi(s)ds|

)

×

(
n∑
j=1

ζij‖xj − yj‖

)

= Φi

(
n∑
j=1

ξij‖xj − yj‖

)
+ Ψi

(
n∑
j=1

ζij‖xj − yj‖

)
(29)

From (29), we have:

‖Qix−Qiy‖Xi
≤

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖xj − yj‖

)
(30)

for i = 1, ..., n.

Therefore,

‖Qx−Qy‖∑n
i=1Xi

≤
n∑
i=1

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖xj − yj‖

)
(31)

Since (H3) assures that
∑n

i=1

(
Φi

∑n
j=1 ξij + Ψi

∑n
j=1 ζij

)
< 1, then the oper-

ator Q is contractive. Then, according to Banach contraction principle, the
system (1 ) has a unique solution on [0, 1].

4 Open Problems

It is to note that, in the future, we will be concerned with the problem (1) for
studying the existence of solution via Leray Schauder theorem and/or Kras-
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noselskii fixed point lemma.
Open problem A: In this paper, we have presented some conditions to prove
the existence and uniqueness of one solution for the problem (1). One first
question that needs to be asked is the following:
Is it possible to change the Banach space of the above problem and to present
some other conditions assuring the uniqueness of solution?
Open problem B: If we conserve the space and we change its associated
norm, what can be the conditions that assure the uniqueness of solution for
(1).
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