Differential Equations Via Hadamard Approach: Some Existence/Uniqueness Results

Oualid Abdelaziz and Zoubir Dahmani
LPAM, Faculty of SEI, UMAB University, Algeria
e-mails: zzdahmani@yahoo.fr, abdelaziz0011@gmail.com

Received 1 April 2018; Accepted 2 May 2018
(Communicated by Iqbal H. Jebril)

Abstract

In this work, we are concerned with a problem of fractional differential equations involving Hadamard operators. New existence and uniqueness result is discussed. Another existence result using Schaeffer fixed point theorem is also established.

Keywords: Banach contraction principle, Fixed point theorem, Hadamard fractional operators, Existence and uniqueness.

2010 Mathematics Subject Classification: 39A10, 39A14.

1 Introduction

In recent years, fractional differential equations theory has been acquired much attention due to its applications in a physics, mechanics, chemistry, biology, economics, signal and image processing, etc.. For some practical developments of this fractional theory, we refer the reader to $[2,5,6,8,9,14]$. Other recent papers on fractional differential equations can be found in $[7,10,11,15]$ and the references therein. It is to note that the most of the above mentioned works are based on Riemann Liouville or Caputo fractional derivatives.
In 1892, Hadamard [12] introduced another class of fractional operators, which differs from the above mentioned ones (Riemann-Liouville, Caputo) because Hadamard operators involve logarithmic functions of arbitrary exponent and named as Hadamard derivative/ Hadamard integral, for more detials, see [1,3,4,13].
Motivated by the Hadamard fractional theory, in this work, taking $1 \leq \alpha \leq$
$2, \beta>0,1<\eta<e, 1<t<e$, we are concerned with studying the existence and uniqueness as well as the existence of at leat of one solution for the following problem:

$$
D^{\alpha} x(t)=f\left(t, x(t), D^{\alpha-1} x(t)\right),
$$

with the integral conditions:

$$
x(1)=0, A J^{\beta} x(\eta)+B x^{\prime}(e)=c,
$$

where the derivative D^{α} and the integral J^{β} are considered in the sense of Hadamard.

2 Preliminaries on Hadamard approach

We introduce some definitions and some auxiliairy results that will be used in the paper. We begin by the following definition:

Definition 2.1 [13] The Hadamard fractional integral of order $\alpha>0$ of a function $f \in C([a, b]), 0 \leq a \leq b \leq \infty$, is defined as

$$
\begin{equation*}
J^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{f(s)}{s} d s, \alpha>0, t \geq a \tag{1}
\end{equation*}
$$

where $\Gamma(\alpha):=\int_{0}^{\infty} e^{-x} x^{\alpha-1} d x$, and $\log ()=.\log _{e}($.$) .$
We recall also:
Definition $2.2[13]$ Let $0 \leq a \leq b \leq \infty, \delta=t \frac{d}{d t}$ and $A C_{\delta}^{n}[a, b]=\{f:[a, b] \longmapsto \mathbb{R}$: $\left.\delta^{n-1}[f(t)] \in A C[a, b]\right\}$. The Hadamard derivative of order $\alpha>0$ for a function $f \in A C_{\delta}^{n}[a, b]$ is defined as

$$
\begin{equation*}
D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(t \frac{d}{d t}\right)^{n} \int_{a}^{t}\left(\log \frac{t}{s}\right)^{n-\alpha-1} \frac{f(s)}{s} d s \tag{2}
\end{equation*}
$$

where $n-1<\alpha<n, n=[\alpha]+1$.
We have also:
Lemma 2.3 [13] Let $\alpha>0, g \in L^{p}([a, b]), \quad 1 \leq p \leq \infty$ Then

$$
D^{\alpha} J^{\alpha} g(t)=g(t), t \in[a, b] .
$$

Proposition 2.4 [13] If $\alpha, \beta>0$, then

$$
\begin{aligned}
D^{\alpha}\left(\log \frac{t}{a}\right)^{\beta-1} & =\frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}\left(\log \frac{t}{a}\right)^{\beta-\alpha-1} \\
J^{\alpha}\left(\log \frac{t}{a}\right)^{\beta-1} & =\frac{\Gamma(\beta)}{\Gamma(\beta+\alpha)}\left(\log \frac{t}{a}\right)^{\beta+\alpha-1} .
\end{aligned}
$$

We need also the lemmas:
Lemma 2.5 [13] For $\alpha>0$, a solution of the fractional differential equation $D^{\alpha} x(t)=0$ is given by

$$
\begin{equation*}
x(t)=\sum_{j=1}^{n} c_{j}(\log t)^{\alpha-j} \tag{3}
\end{equation*}
$$

where $c_{j} \in \mathbb{R}, j=1, \ldots, n$, and $n-1<\alpha<n$.
Lemma 2.6 [13] Let $\alpha>0$. We have

$$
\begin{equation*}
J^{\alpha} D^{\alpha} x(t)=x(t)+\sum_{j=1}^{n} c_{j} \log (t)^{\alpha-j} \tag{4}
\end{equation*}
$$

where $c_{j} \in \mathbb{R}, j=1, \ldots, n$, and $n-1<\alpha<n$.
In the literature, we can read the following Schaefer fixed point theorem.
Lemma 2.7 Let E be a Banach space and assume that $T: E \rightarrow E$ is a completely continuous operator. If the set $V:=\{x \in E: x=\mu T x, 0<\mu<1\}$ is bounded, then T has a fixed point in E.

Now, we are ready to prove our first auxiliary "main result":
Lemma 2.8 Let $f \in C([1, e], \mathbb{R})$. The problem

$$
\begin{cases}D^{\alpha} x(t)=f\left(t, x(t), D^{\alpha-1} x(t)\right), & 1<t<e, 1<\alpha \leq 2 \tag{5}\\ x(1)=0, & A J^{\beta} x(\eta)+B x^{\prime}(e)=c, \quad \beta>0,1<\eta<e\end{cases}
$$

has a unique solution given by:

$$
\begin{aligned}
x(t)= & J^{\alpha} f\left(t, x(t), D^{\alpha-1} x(t)\right)+(\log t)^{\alpha-1}\left[\frac{c-A J^{\alpha+\beta} f\left(\eta, x(\eta), D^{\alpha-1} x(\eta)\right)}{\Omega}\right. \\
& \left.\frac{-B J^{\alpha} f\left(e, x(e), D^{\alpha-1} x(e)\right)}{\Omega}\right],
\end{aligned}
$$

where

$$
\Omega=\frac{B(\alpha-1)}{e}+\frac{A \Gamma(\alpha)}{\Gamma(\alpha+\beta)}(\log \eta)^{\alpha+\beta-1} .
$$

Proof: Thanks to Lemma 2.6, we have

$$
\begin{equation*}
x(t)=J^{\alpha} f\left(t, x(t), D^{\alpha-1} x(t)\right)+c_{1}(\log)^{\alpha-1}+c_{2}(\log)^{\alpha-2} \tag{6}
\end{equation*}
$$

The first boundary condition gives $c_{2}=0$. So we obtain

$$
x(t)=J^{\alpha} f\left(t, x(t), D^{\alpha-1} x(t)\right)+c_{1}(\log)^{\alpha-1} .
$$

Thus,

$$
J^{\beta} x(\eta)=J^{\alpha+\beta} f\left(\eta, x(\eta), D^{\alpha-1} x(\eta)\right)+\frac{c_{1}}{\Gamma(\beta)} \int_{1}^{\eta}(\log \eta)^{\beta-1}(\log s)^{\alpha-1} \frac{d s}{s}
$$

Using Proposition 2.4, we can write

$$
\begin{equation*}
J^{\beta} x(\eta)=J^{\alpha+\beta} f\left(\eta, x(\eta), D^{\alpha-1} x(\eta)\right)+c_{1} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}(\log \eta)^{\beta+\alpha-1} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(e)=J^{\alpha-1} f\left(e, x(e), D^{\alpha-1} x(e)\right)+\frac{c_{1}}{\Gamma(\alpha) e} . \tag{8}
\end{equation*}
$$

Using the second boundary condition, we get:

$$
\begin{aligned}
c=A J^{\alpha+\beta} f\left(\eta, x(\eta), D^{\alpha-1} x(\eta)\right)+ & A c_{1} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}(\log \eta)^{\beta+\alpha-1} \\
& +B J^{\alpha-1} f\left(e, x(e), D^{\alpha-1} x(e)\right)+c_{1} \frac{B(\alpha-1)}{e}
\end{aligned}
$$

that is

$$
\begin{equation*}
c_{1}=\frac{c-A J^{\alpha+\beta} f\left(\eta, x(\eta), D^{\alpha-1} x(\eta)\right)-B J^{\alpha} f\left(e, x(e), D^{\alpha-1} x(e)\right)}{A_{\frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}}(\log)^{\alpha+\beta-1}+\frac{B(\alpha-1)}{e}} . \tag{9}
\end{equation*}
$$

Finally, substituting the values of c_{1} and c_{2} in (6), we obtain (5). This completes the proof.

Let us now consider the space defined by:

$$
X:=\left\{x \mid x \in C^{2}([1, e], \mathbb{R}), D^{\alpha-1} x \in C([1, e], \mathbb{R})\right\}
$$

equipped with the norm

$$
\|x\|_{X}=\|x\|+\left\|D^{\alpha-1} x\right\| .
$$

On this space, we introduce the operator $T: X \longrightarrow X$ as follows:

$$
\begin{aligned}
(T x)(t)= & \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}+\frac{(\log t)^{\alpha-1}}{\Omega} \\
& \times\left[c-\frac{A}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}\right. \\
& \left.-\frac{B}{\Gamma(\alpha)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}\right], t \in[1, e]
\end{aligned}
$$

where,
$\Omega=\frac{B(\alpha-1)}{e}+A \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}(\log \eta)^{\alpha+\beta-1}$.
This operator will be used to prove our main results by application of fixed point theory on Banach spaces.

3 Main results

We begin by introducing the quantities:

$$
M_{1}:=\frac{1}{\Gamma(\alpha+\beta)}+\frac{1}{|\Omega|}\left\{\frac{|A|(\log \eta)^{\alpha+\beta}}{\Gamma(\alpha+\beta+1)}+\frac{|B|}{\Gamma(\alpha)}\right\}
$$

and

$$
M_{2}:=1+\frac{\Gamma(\alpha)}{|\Omega|}\left\{\frac{|A|(\log \eta)^{\alpha+\beta}}{\Gamma(\alpha+\beta+1)}+\frac{|B|}{\Gamma(\alpha)}\right\} .
$$

Then, we establish the following existence and uniqueness results by application of Banach contraction principle.

3.1 Existence and Uniqueness

We have:

Theorem 3.1 Assume that $f:[1, e] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that satisfies:

$$
\begin{equation*}
\left(H_{1}\right) \quad\left|f\left(t, x_{1}, y_{1}\right)-f\left(t, x_{2}, y_{2}\right)\right| \leq k_{1}\left|x_{1}-x_{2}\right|+k_{2}\left|y_{1}-y_{2}\right|, \tag{10}
\end{equation*}
$$

for each $t \in[1, e]$ and $x_{1}, y_{1}, x_{2}, y_{2} \in \mathbb{R}$.
If we suppose

$$
\begin{equation*}
k M<1, \tag{11}
\end{equation*}
$$

then, the problem (5) has a unique solution on $[1, e]$, where $k:=\max \left\{k_{1}, k_{2}\right\}, M:=M_{1}+M_{2}$.

Proof: To prove this theorem, we need to prove that the operator T has a fixed point in the $C([1, e], \mathbb{R})$. So, we shall prove that T is a contraction mapping on $C([1, e], \mathbb{R})$.

For $x, y \in X$ and for each $t \in[1, e]$, we have

$$
\begin{aligned}
|(T x)(t)-(T y)(t)| \leq & \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s \\
& +\frac{(\log t)^{\alpha-1}}{|\Omega|}\left[\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1}\right. \\
& \times \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s+\frac{|B|}{\Gamma(\alpha-1)} \\
& \left.\times \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s\right] .
\end{aligned}
$$

Thanks to $\left(H_{1}\right)$, we obtain

$$
\begin{aligned}
|(T x)(t)-(T y)(t)| \leq & k\left(\|x-y\|+\left\|D^{\alpha-1} x-D^{\alpha-1} y\right\|\right) \max _{t \in[1, e]}\left\{\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{1}{s} d s\right. \\
& +\frac{(\log t)^{\alpha-1}}{|\Omega|}\left[\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.\left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]\right\}
\end{aligned}
$$

Consequently, it yields that

$$
\begin{equation*}
\|(T x)-(T y)\| \leq k M_{1}\left(\|x-y\|+\left\|D^{\alpha-1} x-D^{\alpha-1} y\right\|\right) . \tag{12}
\end{equation*}
$$

On the other hand, we observe that

$$
\begin{aligned}
\left|\left(D^{\alpha-1} T x\right)(t)-\left(D^{\alpha-1} T y\right)(t)\right| \leq & \int_{1}^{t} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s \\
& +\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1}\right. \\
& \times \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s \\
& +\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \\
& \left.\times \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)-f\left(s, y(s), D^{\alpha-1} y(s)\right)\right|}{s} d s\right] .
\end{aligned}
$$

By $\left(H_{1}\right)$, we have

$$
\begin{aligned}
\left\|\left(D^{\alpha-1} T x\right)(t)-\left(D^{\alpha-1} T y\right)(t)\right\| \leq & k\left(\|x-y\|+\left\|D^{\alpha-1} x-D^{\alpha-1} y\right\|\right) \max _{t \in[1, e]}\left\{\int_{1}^{t} \frac{1}{s} d s\right. \\
& +\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.\left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|\left(D^{\alpha-1} T x\right)-\left(D^{\alpha-1} T y\right)\right\| \leq k M_{2}\left(\|x-y\|+\left\|D^{\alpha-1} x-D^{\alpha-1} y\right\|\right) . \tag{13}
\end{equation*}
$$

By (12) and (13), we can write

$$
\|(T x)-(T y)\|_{X} \leq k M\|x-y\|_{X}
$$

Thanks to (11), we conclude that T is contractive.
As a consequence of Banach fixe point theorem, we deduce that T has a unique point fixe which is a solution of our problem.

3.2 Existence

Our second result will use the Scheafer fixed point theorem. We have:
Theorem 3.2 Assume that
$\left(H_{2}\right)$: The function f is continuous.
$\left(H_{3}\right)$: There exists $L>0$, such that f is bounded by L.
Then, the problem (5) has at least one solution defined on $[1, e]$.
Proof: We will prove the theorem using the following steps:
Step 1: We remark that The continuity of the functions f implies that T is continuous on X.

Step 2: The operator T is completely continuous.
We define the set $B_{r}:=\left\{x \in X,\|x\|_{X} \leq r\right\}$, where $r>0$. For $x \in B_{r}$, we obtain

$$
\begin{aligned}
|(T x)(t)| \leq & \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s \\
& +\frac{(\log t)^{\alpha-1}}{|\Omega|}\left[|c|+\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1}\right. \\
& \times \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s \\
& \left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right]
\end{aligned}
$$

The condition $\left(H_{3}\right)$ allows us to say that

$$
\begin{aligned}
|(T x)(t)| \leq & \max _{t \in[1, e]}\left\{\frac{L}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{1}{s} d s\right. \\
& +\frac{(\log t)^{\alpha-1}}{|\Omega|}\left[\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.\left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]+\frac{|c|(\log t)^{\alpha-1}}{|\Omega|}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|(T x)\| \leq L M_{1}+\frac{|c|}{|\Omega|} \tag{14}
\end{equation*}
$$

For $D^{\alpha-1}$, we have

$$
\begin{aligned}
\left|\left(D^{\alpha-1} T x\right)(t)\right| \leq & \int_{1}^{t} \frac{\mid f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s \\
& +\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[|c|+\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right. \\
& \left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right] .
\end{aligned}
$$

Thanks to $\left(H_{3}\right)$, it yields that

$$
\begin{aligned}
\left\|D^{\alpha-1} T x\right\| \leq & \max _{t \in[1, e]}\left\{\int_{1}^{t} \frac{L}{s} d s+\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[\frac{L|A|}{\Gamma(\alpha+\beta)}\right.\right. \\
& \left.\left.\times \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]+\frac{|c| \Gamma(\alpha)}{(\log t)^{2}|\Omega|}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|\left(D^{\alpha-1} T x\right)\left(\| \leq L M_{2}+\frac{|c| \Gamma(\alpha)}{|\Omega|}\right. \tag{15}
\end{equation*}
$$

Using (12) and (13), we obtain

$$
\begin{equation*}
\|T x\|_{X} \leq L\left(M_{1}+M_{2}\right)+2 \frac{|c| \Gamma(\alpha)}{|\Omega|} . \tag{16}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|T x\|_{X} \leq \infty \tag{17}
\end{equation*}
$$

Hence, the operator T maps bounded sets into bounded sets in X.

Step 3: Equi-continuity of $T\left(B_{r}\right)$:
For $t_{1}, t_{2} \in[1, e] ; t_{1}<t_{2}$, and $x \in B_{r}$, we have:

$$
\begin{aligned}
\left|(T x)\left(t_{2}\right)-(T x)\left(t_{1}\right)\right|= & \left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{1}^{t_{1}}\left(\log \frac{t_{2}}{s}\right)^{\alpha-1} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s\right. \\
& +\frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(\log \frac{t_{2}}{s}\right)^{\alpha-1} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s \\
& -\frac{1}{\Gamma(\alpha)} \int_{1}^{t_{1}}\left(\log \frac{t_{1}}{s}\right)^{\alpha-1} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s \\
& +\frac{\left(\left(\log t_{2}\right)^{\alpha-1}-\left(\log t_{1}\right)^{\alpha-1}\right)}{\Omega}\left[c-\frac{A}{\Gamma(\alpha+\beta)}\right. \\
& \times \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s \\
& \left.-\frac{B}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s\right] \mid
\end{aligned}
$$

Thanks to $\left(H_{3}\right)$, we can state that

$$
\begin{aligned}
\left|(T x)\left(t_{2}\right)-(T x)\left(t_{1}\right)\right| \leq & \frac{L}{\Gamma(\alpha)}\left|\int_{1}^{t_{1}}\left[\left(\log \frac{t_{2}}{s}\right)^{\alpha-1}-\left(\log \frac{t_{1}}{s}\right)^{\alpha-1}\right] \frac{1}{s} d s\right| \\
& +\frac{L}{\Gamma(\alpha)}\left|\int_{t_{1}}^{t_{2}}\left(\log \frac{t_{2}}{s}\right)^{\alpha-1} \frac{1}{s} d s\right| \\
& +\frac{\left|\left(\left(\log t_{2}\right)^{\alpha-1}-\left(\log t_{1}\right)^{\alpha-1}\right)\right|}{|\Omega|}\left[|c|+\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]
\end{aligned}
$$

Therefore,

$$
\begin{gather*}
\left|(T x)\left(t_{2}\right)-(T x)\left(t_{1}\right)\right| \leq \frac{L}{\Gamma(\alpha+1)}\left[\left|\left(\log t_{1}\right)^{\alpha}-\left(\log t_{2}\right)^{\alpha}+\left(\log t_{2}-\log t_{1}\right)^{\alpha}\right|+\left|\left(\log t_{1}-\log t_{2}\right)^{\alpha}\right|\right] \\
+\frac{\left|\left(\left(\log t_{2}\right)^{\alpha-1}-\left(\log t_{1}\right)^{\alpha-1}\right)\right|}{|\Omega|}\left[|c|+\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
\left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right] \tag{18}
\end{gather*}
$$

We have also,

$$
\begin{aligned}
\left|\left(D^{\alpha-1} T x\right)\left(t_{2}\right)-\left(D^{\alpha-1} T x\right)\left(t_{1}\right)\right| \leq & \left|\int_{1}^{t_{2}} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s-\int_{1}^{t_{1}} \frac{f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s\right| \\
& +\frac{\Gamma(\alpha)}{\left(\left|\left(\log t_{2}\right)^{2}-\left(\log t_{1}\right)^{2}\right|\right)|\Omega|}\left[|c|+\frac{|A|}{\Gamma(\alpha+\beta)}\right. \\
& \times \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s \\
& \left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right] .
\end{aligned}
$$

By $\left(H_{3}\right)$, we obtain

$$
\begin{aligned}
\left|\left(D^{\alpha-1} T x\right)\left(t_{2}\right)-\left(D^{\alpha-1} T x\right)\left(t_{1}\right)\right| \leq & \left|\int_{t_{1}}^{t_{2}} \frac{L}{s} d s\right|+\frac{\left(\left|\left(\log t_{2}\right)^{-2}-\left(\log t_{1}\right)^{-2}\right|\right) \Gamma(\alpha)}{|\Omega|} \\
& \times\left[|c|+\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|\left(D^{\alpha-1} T x\right)\left(t_{2}\right)-\left(D^{\alpha-1} T x\right)\left(t_{1}\right)\right| \leq & \left|\log t_{2}-\log t_{1}\right|+\frac{\left(\left|\left(\log t_{2}\right)^{-2}-\left(\log t_{1}\right)^{-2}\right|\right) \Gamma(\alpha)}{|\Omega|} \\
& {\left[|c|+\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right.} \\
& \left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right] .
\end{aligned}
$$

Consequently, we obtain

$$
\sup _{t \in[1, e]}\left|T x\left(t_{2}\right)-T x\left(t_{1}\right)\right|+\sup _{t \in[1, e]}\left|\left(D^{\alpha-1} T x\right)\left(t_{2}\right)-\left(D^{\alpha-1} T x\right)\left(t_{1}\right)\right| \longrightarrow 0 \text { as } t_{2} \longrightarrow t_{1}
$$

In these inequalities the right hand sides are independent of x and tend to zero as t_{1} tends to t_{2}.
Then, as a consequence of Steps 2,3 and by Arzela-Ascoli theorem, we conclude that T is completely continuous.

Step 4: The set defined by

$$
\begin{equation*}
\Delta:=\{(x) \in X ; x=\lambda T(x), 0<\lambda<1\} \tag{19}
\end{equation*}
$$

is bounded:
Let $x \in \Delta$, then $x=T(x)$, for some $0<\lambda<1$. Thus, for each $t \in[1, e]$, we have:

$$
\begin{aligned}
x(t)=\lambda & {\left[\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}+\frac{(\log t)^{\alpha-1}}{\Omega}\right.} \\
& \left\{c-\frac{A}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}\right. \\
& \left.\left.-\frac{B}{\Gamma(\alpha)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-1} f\left(s, x(s), D^{\alpha-1} x(s)\right) \frac{d s}{s}\right\}\right] .
\end{aligned}
$$

Thanks to $\left(H_{3}\right)$, we can write

$$
\begin{aligned}
\frac{1}{\lambda}|x(t)| \leq & \max _{t \in[1, e]}\left\{\frac{L}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{1}{s} d s\right. \\
& +\frac{(\log t)^{\alpha-1}}{|\Omega|}\left[\frac{L|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s\right. \\
& \left.\left.+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]+\frac{|c|(\log t)^{\alpha-1}}{|\Omega|}\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
|x(t)| \leq \lambda\left(L M_{1}+\frac{|c|}{|\Omega|}\right) \tag{20}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left.\frac{1}{\lambda} \right\rvert\,\left(D^{\alpha-1} x(t) \mid \leq\right. & \int_{1}^{t} \frac{\mid f\left(s, x(s), D^{\alpha-1} x(s)\right)}{s} d s \\
& +\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[|c|+\frac{|A|}{\Gamma(\alpha+\beta)} \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right. \\
& \left.+\frac{|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{\left|f\left(s, x(s), D^{\alpha-1} x(s)\right)\right|}{s} d s\right] .
\end{aligned}
$$

The condition $\left(H_{3}\right)$ implies that

$$
\begin{aligned}
\frac{1}{\lambda}\left|\left(D^{\alpha-1} x\right)(t)\right| \leq & \max _{t \in[1, e]}\left\{\int_{1}^{t} \frac{L}{s} d s+\frac{\Gamma(\alpha)}{(\log t)^{2}|\Omega|}\left[\frac{L|A|}{\Gamma(\alpha+\beta)}\right.\right. \\
& \left.\left.\times \int_{1}^{\eta}\left(\log \frac{\eta}{s}\right)^{\alpha+\beta-1} \frac{1}{s} d s+\frac{L|B|}{\Gamma(\alpha-1)} \int_{1}^{e}\left(\log \frac{e}{s}\right)^{\alpha-2} \frac{1}{s} d s\right]+\frac{|c| \Gamma(\alpha)}{(\log t)^{2}|\Omega|}\right\} .
\end{aligned}
$$

Hence, we can write

$$
\begin{equation*}
\left|\left(D^{\alpha-1} x\right)(t)\right| \leq \lambda\left(L M_{2}+\frac{|c| \Gamma(\alpha)}{|\Omega|}\right) . \tag{21}
\end{equation*}
$$

It follows from (20) and (21) that

$$
\begin{equation*}
\|x\|_{X} \leq \lambda\left(L\left(M_{1}+M_{2}\right)+2 \frac{|c| \Gamma(\alpha)}{|\Omega|}\right) . \tag{22}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\|x\|_{X} \leq \infty \tag{23}
\end{equation*}
$$

Consequently, Δ is bounded.
As a conclusion of Schaefer fixed point theorem, we deduce that T has at least one fixed point, which is a solution of (1).

4 Open Problem

Is it possible to extend the above results in the case of coupled order of Hadamard integration?
The same question can be posed with the (k, s)-Riemann-Liouville integrals and with mixed Riemann-Liouville integrals.

References

[1] T. Abdeljawad, D. Baleanu, F. Jarad, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, (2012).
[2] B. Ahmad and A. Alsaedi, K. Ntouyas, W. Shammakh, P. Agarwal, Existence theory for fractional differential equations with non-separated type nonlocal multi-point and multi-strip boundary, Adv. Diff. Equations, (2018).
[3] B. Ahmad and S.K Ntouyas, On Hadamard fractional integro-differential boundary value problems, Appl. Math. Comput., 47 (2015), 119-131.
[4] B. Ahmad and S.K. Ntouyas, Initial Value Problem for Hybrid Hadamard fractional integro-differential equations, EJDE, 47 (2014), 110-120.
[5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012).
[6] M. Benchohra, S. Hamani, S.K Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear. Anal. tma., 71 (2009), 2391-2396.
[7] M. Bengrine and Z. Dahmani, Boundary Value Problems For Fractional Differential Equations, J. Open Problems Compt. Math., 5, December (2012).
[8] P.L. Butzer? A.A. Kilbas, J.J Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Math. Anal. Appl., 269 (2002), 387-400.
[9] G. Christopher, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Comput. Math. Appl., 61 (2011), 191-202.
[10] Z. Dahmani and L. Tabharit, Fractional Order Differential Equations Involving Caputo Derivative, Comput. Math. Appl., 4 (2014), 40-55.
[11] F. Dugundji and A. Granas, Fixed Point Theory, Springer, New York., (2003).
[12] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Math. Pures Appl., 8 (1892), 101-186.
[13] A.A. Kilbas, Hadamard-type fractional calculus, Korean Math. Soc., 38 (2001), 1191-1204.
[14] A.A. Kilbas, I.O Marichev, G.S Samko, Fractional Integrals and Derivatives - Theory and Applications, Gordon and Breach, Langhorne, (1993).
[15] A.A. Kilbas, H.M Srivastava, J.J Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., 204 (2006).

