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Abstract

In this work, we are concerned with a problem of fractional
differential equations involving Hadamard operators. New ex-
istence and uniqueness result is discussed. Another existence
result using Schaeffer fixed point theorem is also established.
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1 Introduction

In recent years, fractional differential equations theory has been acquired much
attention due to its applications in a physics, mechanics, chemistry, biology,
economics, signal and image processing, etc.. For some practical developments
of this fractional theory, we refer the reader to [2,5,6,8,9,14]. Other recent
papers on fractional differential equations can be found in [7,10,11,15] and the
references therein. It is to note that the most of the above mentioned works
are based on Riemann Liouville or Caputo fractional derivatives.
In 1892, Hadamard [12] introduced another class of fractional operators, which
differs from the above mentioned ones ( Riemann-Liouville, Caputo) because
Hadamard operators involve logarithmic functions of arbitrary exponent and
named as Hadamard derivative/ Hadamard integral, for more detials, see
[1,3,4,13].
Motivated by the Hadamard fractional theory, in this work, taking 1 ≤ α ≤
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2, β > 0, 1 < η < e, 1 < t < e, we are concerned with studying the exis-
tence and uniqueness as well as the existence of at leat of one solution for the
following problem:

Dαx(t) = f(t, x(t), Dα−1x(t)),

with the integral conditions:

x(1) = 0, AJβx(η) +Bx′(e) = c,

where the derivative Dα and the integral Jβ are considered in the sense of
Hadamard.

2 Preliminaries on Hadamard approach

We introduce some definitions and some auxiliairy results that will be used in
the paper. We begin by the following definition:

Definition 2.1 [13] The Hadamard fractional integral of order α > 0 of a
function f ∈ C([a, b]),0 ≤ a ≤ b ≤ ∞, is defined as

Jαf(t) =
1

Γ (α)

∫ t

a

(
log

t

s

)α−1
f (s)

s
ds, α > 0, t ≥ a, (1)

where Γ (α) :=
∫∞

0
e−xxα−1dx, and log (.) = loge (.).

We recall also:

Definition 2.2 [13] Let 0 ≤ a ≤ b ≤ ∞, δ = t
d

dt
and ACn

δ [a, b] = {f : [a, b] 7−→ R :

δn−1[f(t)] ∈ AC[a, b]} . The Hadamard derivative of order α > 0 for a function
f ∈ ACn

δ [a, b]is defined as

Dαf(t) =
1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1
f (s)

s
ds, (2)

where n− 1 < α < n,n = [α] + 1.

We have also:

Lemma 2.3 [13] Let α > 0, g ∈ Lp ([a, b]) , 1 ≤ p ≤ ∞ Then

DαJαg (t) = g (t) , t ∈ [a, b] .

Proposition 2.4 [13] If α, β > 0, then

Dα

(
log

t

a

)β−1

=
Γ (β)

Γ (β − α)

(
log

t

a

)β−α−1

Jα
(

log
t

a

)β−1

=
Γ (β)

Γ (β + α)

(
log

t

a

)β+α−1

.
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We need also the lemmas:

Lemma 2.5 [13] For α > 0, a solution of the fractional differential equation
Dαx(t) = 0 is given by

x(t) =
n∑
j=1

cj (log t)α−j , (3)

where cj ∈ R, j = 1, ..., n, and n− 1 < α < n.

Lemma 2.6 [13] Let α > 0. We have

JαDαx(t) = x(t) +
n∑
j=1

cj log (t)α−j , (4)

where cj ∈ R, j = 1, ..., n, and n− 1 < α < n.

In the literature, we can read the following Schaefer fixed point theorem.

Lemma 2.7 Let E be a Banach space and assume that T : E → E is a
completely continuous operator. If the set V := {x ∈ E : x = µTx, 0 < µ < 1}
is bounded, then T has a fixed point in E.

Now, we are ready to prove our first auxiliary ”main result”:

Lemma 2.8 Let f ∈ C ([1, e],R) . The problem{
Dαx(t) = f(t, x(t), Dα−1x(t)), 1 < t < e, 1 < α ≤ 2
x(1) = 0, AJβx(η) +Bx′(e) = c, β > 0, 1 < η < e

(5)
has a unique solution given by:

x(t) = Jαf(t, x(t), Dα−1x(t)) + (log t)α−1

[
c− AJα+βf(η, x(η), Dα−1x(η))

Ω

−BJαf(e, x(e), Dα−1x(e))

Ω

]
,

where

Ω =
B(α− 1)

e
+

AΓ(α)

Γ(α + β)
(log η)α+β−1 .

Proof: Thanks to Lemma 2.6, we have

x (t) = Jαf
(
t, x (t) , Dα−1x (t)

)
+ c1 (log)α−1 + c2 (log)α−2 (6)
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The first boundary condition gives c2 = 0. So we obtain

x(t) = Jαf(t, x(t), Dα−1x (t)) + c1 (log)α−1 .

Thus,

Jβx(η) = Jα+βf(η, x(η), Dα−1x (η)) +
c1

Γ(β)

∫ η

1

(log η)β−1 (log s)α−1 ds

s
.

Using Proposition 2.4, we can write

Jβx(η) = Jα+βf(η, x(η), Dα−1x(η)) + c1
Γ(α)

Γ(α + β)
(log η)β+α−1 (7)

and
x′(e) = Jα−1f(e, x(e), Dα−1x(e)) +

c1

Γ(α)e
. (8)

Using the second boundary condition, we get:

c = AJα+βf(η, x(η), Dα−1x(η)) + Ac1
Γ(α)

Γ(α + β)
(log η)β+α−1

+BJα−1f(e, x(e), Dα−1x(e)) + c1
B(α− 1)

e
,

that is

c1 =
c− AJα+βf(η, x(η), Dα−1x(η))−BJαf(e, x(e), Dα−1x(e))

A Γ(α)
Γ(α+β)

(log)α+β−1 +
B(α− 1)

e

. (9)

Finally, substituting the values of c1 and c2 in (6), we obtain (5).
This completes the proof.

Let us now consider the space defined by:

X :=
{
x | x ∈ C2 ([1, e],R) , Dα−1x ∈ C ([1, e],R)

}
equipped with the norm

‖ x ‖X=‖ x ‖ + ‖ Dα−1x ‖ .

On this space, we introduce the operator T : X −→ X as follows:

(Tx)(t) =
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s), Dα−1x(s))
ds

s
+

(log t)α−1

Ω

×
[
c− A

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1

f(s, x(s), Dα−1x(s))
ds

s

− B

Γ(α)

∫ e

1

(
log

e

s

)α−1

f(s, x(s), Dα−1x(s))
ds

s

]
, t ∈ [1, e],
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where,

Ω =
B(α− 1)

e
+ A

Γ(α)

Γ(α + β)
(log η)α+β−1 .

This operator will be used to prove our main results by application of fixed
point theory on Banach spaces.

3 Main results

We begin by introducing the quantities:

M1 :=
1

Γ (α + β)
+

1

| Ω |

{
| A | (log η)α+β

Γ (α + β + 1)
+
| B |
Γ (α)

}

and

M2 := 1 +
Γ (α)

| Ω |

{
| A | (log η)α+β

Γ (α + β + 1)
+
| B |
Γ (α)

}
.

Then, we establish the following existence and uniqueness results by applica-
tion of Banach contraction principle.

3.1 Existence and Uniqueness

We have:

Theorem 3.1 Assume that f : [1, e] × R × R → R is a continuous function
that satisfies:

(H1) |f (t, x1, y1)− f (t, x2, y2)| ≤ k1 |x1 − x2|+ k2 |y1 − y2| , (10)

for each t ∈ [1, e] and x1, y1, x2, y2 ∈ R.
If we suppose

kM < 1, (11)

then, the problem (5) has a unique solution on [1, e],
where k := max{ k1, k2},M := M1 +M2.

Proof: To prove this theorem, we need to prove that the operator T has a fixed
point in the C([1, e],R). So, we shall prove that T is a contraction mapping
on C([1, e],R).
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For x, y ∈ X and for each t ∈ [1, e], we have

|(Tx)(t)− (Ty)(t)| ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds

+
(log t)α−1

|Ω|

[
|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1

×|f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds+
|B|

Γ(α− 1)

×
∫ e

1

(
log

e

s

)α−2 |f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds

]
.

Thanks to (H1), we obtain

| (Tx)(t)− (Ty)(t) | ≤ k
(
‖ x− y ‖ + ‖ Dα−1x−Dα−1y ‖

)
max
t∈[1,e]

{
1

Γ(α)

∫ t

1

(
log

t

s

)α−1
1

s
ds

+
(log t)α−1

|Ω|

[
|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]}

Consequently, it yields that

‖ (Tx)− (Ty) ‖≤ kM1

(
‖ x− y ‖ + ‖ Dα−1x−Dα−1y ‖

)
. (12)

On the other hand, we observe that

∣∣(Dα−1Tx)(t)− (Dα−1Ty)(t)
∣∣ ≤ ∫ t

1

|f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds

+
Γ(α)

(log t)2|Ω|

[
|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1

×|f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2

×|f(s, x(s), Dα−1x(s))− f(s, y(s), Dα−1y(s))|
s

ds

]
.
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By (H1), we have

‖ (Dα−1Tx)(t)− (Dα−1Ty)(t) ‖ ≤ k
(
‖ x− y ‖ + ‖ Dα−1x−Dα−1y ‖

)
max
t∈[1,e]

{∫ t

1

1

s
ds

+
Γ(α)

(log t)2|Ω|

[
|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]}
.

Therefore,

‖ (Dα−1Tx)− (Dα−1Ty) ‖≤ kM2

(
‖ x− y ‖ + ‖ Dα−1x−Dα−1y ‖

)
. (13)

By (12) and (13), we can write

‖ (Tx)− (Ty) ‖X≤ kM ‖ x− y ‖X
Thanks to (11), we conclude that T is contractive.
As a consequence of Banach fixe point theorem, we deduce that T has a unique
point fixe which is a solution of our problem.

3.2 Existence

Our second result will use the Scheafer fixed point theorem. We have:

Theorem 3.2 Assume that
(H2) : The function f is continuous.
(H3) : There exists L > 0, such that f is bounded by L.
Then, the problem (5) has at least one solution defined on [1, e].

Proof: We will prove the theorem using the following steps:

Step 1: We remark that The continuity of the functions f implies that T
is continuous on X.

Step 2: The operator T is completely continuous.
We define the set Br := {x ∈ X, ‖x‖X ≤ r} , where r > 0. For x ∈ Br, we
obtain

|(Tx)(t)| ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, x(s), Dα−1x(s))|
s

ds

+
(log t)α−1

|Ω|

[
|c|+ |A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1

×|f(s, x(s), Dα−1x(s))|
s

ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 |f(s, x(s), Dα−1x(s))|
s

ds

]
.
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The condition (H3) allows us to say that

|(Tx)(t)| ≤ max
t∈[1,e]

{
L

Γ(α)

∫ t

1

(
log

t

s

)α−1
1

s
ds

+
(log t)α−1

|Ω|

[
L|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
+
|c| (log t)α−1

|Ω|

}
.

Therefore,

‖ (Tx) ‖≤ LM1 +
|c|
|Ω|

. (14)

For Dα−1, we have

∣∣(Dα−1Tx)(t)
∣∣ ≤ ∫ t

1

|f(s, x(s), Dα−1x(s))

s
ds

+
Γ(α)

(log t)2|Ω|

[
|c|+ |A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 |f(s, x(s), Dα−1x(s))|
s

ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 |f(s, x(s), Dα−1x(s))|
s

ds

]
.

Thanks to (H3), it yields that

‖ Dα−1Tx ‖ ≤ max
t∈[1,e]

{∫ t

1

L

s
ds+

Γ(α)

(log t)2|Ω|

[
L|A|

Γ(α + β)

×
∫ η

1

(
log

η

s

)α+β−1 1

s
ds+

L|B|
Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
+
|c|Γ(α)

(log t)2|Ω|

}
.

Hence,

‖ (Dα−1Tx)(‖≤ LM2 +
|c|Γ(α)

|Ω|
. (15)

Using (12) and (13), we obtain

‖ Tx ‖X≤ L (M1 +M2) + 2
|c|Γ(α)

|Ω|
. (16)

Therefore,

‖ Tx ‖X≤ ∞ (17)

Hence, the operator T maps bounded sets into bounded sets in X.
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Step 3: Equi-continuity of T (Br) :
For t1, t2 ∈ [1, e] ; t1 < t2, and x ∈ Br, we have:

|(Tx)(t2)− (Tx)(t1)| =

∣∣∣∣∣ 1

Γ(α)

∫ t1

1

(
log

t2
s

)α−1
f(s, x(s), Dα−1x(s))

s
ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
f(s, x(s), Dα−1x(s))

s
ds

− 1

Γ(α)

∫ t1

1

(
log

t1
s

)α−1
f(s, x(s), Dα−1x(s))

s
ds

+

(
(log t2)α−1 − (log t1)α−1)

Ω

[
c− A

Γ(α + β)

×
∫ η

1

(
log

η

s

)α+β−1 f(s, x(s), Dα−1x(s))

s
ds

− B

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 f(s, x(s), Dα−1x(s))

s
ds

]∣∣∣∣ .
Thanks to (H3), we can state that

|(Tx)(t2)− (Tx)(t1)| ≤ L

Γ(α)

∣∣∣∣∣
∫ t1

1

[(
log

t2
s

)α−1

−
(

log
t1
s

)α−1
]

1

s
ds

∣∣∣∣∣
+

L

Γ(α)

∣∣∣∣∣
∫ t2

t1

(
log

t2
s

)α−1
1

s
ds

∣∣∣∣∣
+
|
(
(log t2)α−1 − (log t1)α−1) |

|Ω|

[
|c|+ L|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
Therefore,

|(Tx)(t2)− (Tx)(t1)| ≤ L

Γ(α + 1)
[|(log t1)α − (log t2)α + (log t2 − log t1)α|+ | (log t1 − log t2)α |]

+
|
(
(log t2)α−1 − (log t1)α−1) |

|Ω|

[
|c|+ L|A|

Γ(α + β)

∫ η
1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e
1

(
log

e

s

)α−2 1

s
ds

]
(18)
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We have also,

∣∣(Dα−1Tx)(t2)− (Dα−1Tx)(t1)
∣∣ ≤ ∣∣∣∣∫ t2

1

f(s, x(s), Dα−1x(s))

s
ds−

∫ t1

1

f(s, x(s), Dα−1x(s))

s
ds

∣∣∣∣
+

Γ(α)

(|(log t2)2 − (log t1)2|) |Ω|

[
|c|+ |A|

Γ(α + β)

×
∫ η

1

(
log

η

s

)α+β−1 |f(s, x(s), Dα−1x(s))|
s

ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 |f(s, x(s), Dα−1x(s))|
s

ds

]
.

By (H3), we obtain

∣∣(Dα−1Tx)(t2)− (Dα−1Tx)(t1)
∣∣ ≤ ∣∣∣∣∫ t2

t1

L

s
ds

∣∣∣∣+
(|(log t2)−2 − (log t1)−2|)Γ(α)

|Ω|

×
[
|c|+ L|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
.

Thus,∣∣(Dα−1Tx)(t2)− (Dα−1Tx)(t1)
∣∣ ≤ |log t2 − log t1|+

(|(log t2)−2 − (log t1)−2|)Γ(α)

|Ω|[
|c|+ L|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
.

Consequently, we obtain

sup
t∈[1,e]

| Tx(t2)−Tx(t1) | + sup
t∈[1,e]

| (Dα−1Tx)(t2)−(Dα−1Tx)(t1) |−→ 0 as t2 −→ t1

In these inequalities the right hand sides are independent of x and tend to zero
as t1 tends to t2.
Then, as a consequence of Steps 2, 3 and by Arzela-Ascoli theorem, we con-
clude that T is completely continuous.

Step 4: The set defined by

∆ := {(x) ∈ X;x = λT (x) , 0 < λ < 1} (19)
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is bounded:
Let x ∈ ∆, then x = T (x), for some 0 < λ < 1. Thus, for each t ∈ [1, e], we
have:

x(t) = λ

[
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s), Dα−1x(s))
ds

s
+

(log t)α−1

Ω{
c− A

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1

f(s, x(s), Dα−1x(s))
ds

s

− B

Γ(α)

∫ e

1

(
log

e

s

)α−1

f(s, x(s), Dα−1x(s))
ds

s

}]
.

Thanks to (H3), we can write

1

λ
|x(t)| ≤ max

t∈[1,e]

{
L

Γ(α)

∫ t

1

(
log

t

s

)α−1
1

s
ds

+
(log t)α−1

|Ω|

[
L|A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 1

s
ds

+
L|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
+
|c| (log t)α−1

|Ω|

}
.

Therefore,

| x(t) |≤ λ

(
LM1 +

|c|
|Ω|

)
. (20)

On the other hand,

1

λ

∣∣(Dα−1x(t)
∣∣ ≤ ∫ t

1

|f(s, x(s), Dα−1x(s))

s
ds

+
Γ(α)

(log t)2|Ω|

[
|c|+ |A|

Γ(α + β)

∫ η

1

(
log

η

s

)α+β−1 |f(s, x(s), Dα−1x(s))|
s

ds

+
|B|

Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 |f(s, x(s), Dα−1x(s))|
s

ds

]
.

The condition (H3) implies that

1

λ
| (Dα−1x)(t) | ≤ max

t∈[1,e]

{∫ t

1

L

s
ds+

Γ(α)

(log t)2|Ω|

[
L|A|

Γ(α + β)

×
∫ η

1

(
log

η

s

)α+β−1 1

s
ds+

L|B|
Γ(α− 1)

∫ e

1

(
log

e

s

)α−2 1

s
ds

]
+
|c|Γ(α)

(log t)2|Ω|

}
.

Hence, we can write

| (Dα−1x)(t) |≤ λ

(
LM2 +

|c|Γ(α)

|Ω|

)
. (21)
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It follows from (20) and (21) that

‖ x ‖X≤ λ

(
L (M1 +M2) + 2

|c|Γ(α)

|Ω|

)
. (22)

Thus,

‖ x ‖X≤ ∞ (23)

Consequently, ∆ is bounded.
As a conclusion of Schaefer fixed point theorem, we deduce that T has at least
one fixed point, which is a solution of (1).

4 Open Problem

Is it possible to extend the above results in the case of coupled order of
Hadamard integration?
The same question can be posed with the (k, s)−Riemann-Liouville integrals
and with mixed Riemann-Liouville integrals.
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