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Abstract

In this work, we are concerned with a problem of fractional
differential equations involving Hadamard operators. New ezx-
istence and uniqueness result is discussed. Another existence
result using Schaeffer fixed point theorem is also established.
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1 Introduction

In recent years, fractional differential equations theory has been acquired much
attention due to its applications in a physics, mechanics, chemistry, biology,
economics, signal and image processing, etc.. For some practical developments
of this fractional theory, we refer the reader to [2,5,6,8,9,14]. Other recent
papers on fractional differential equations can be found in [7,10,11,15] and the
references therein. It is to note that the most of the above mentioned works
are based on Riemann Liouville or Caputo fractional derivatives.

In 1892, Hadamard [12] introduced another class of fractional operators, which
differs from the above mentioned ones ( Riemann-Liouville, Caputo) because
Hadamard operators involve logarithmic functions of arbitrary exponent and
named as Hadamard derivative/ Hadamard integral, for more detials, see
[1,3,4,13].

Motivated by the Hadamard fractional theory, in this work, taking 1 < a <
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2,6 >0,1 <n<el<t<e weare concerned with studying the exis-
tence and uniqueness as well as the existence of at leat of one solution for the
following problem:

Dx(t) = f(t,x(t), D' (t)),
with the integral conditions:
z(1) = 0, AJ%z(n) + Ba'(e) = ¢,

where the derivative D® and the integral J? are considered in the sense of
Hadamard.

2 Preliminaries on Hadamard approach

We introduce some definitions and some auxiliairy results that will be used in
the paper. We begin by the following definition:

Definition 2.1 [13/ The Hadamard fractional integral of order o > 0 of a
function f € C([a,b]),0 <a <b< oo, is defined as

JOf(t) = ﬁ/at (log é)a_l fis)ds, a>0,t>a, (1)

where T (o) == [~ e "z 'dx, and log (.) = log, ().

We recall also:

d
Definition 2.2 [13/ Let0 < a <b < 00, § = t% and AC§la,b) = {f : [a,b] —> R :
6" f(t)] € ACla,b]}. The Hadamard derivative of order o > 0 for a function

f € AC}[a,blis defined as

D f() = ﬁ (t%)n / t (log E)H_l @ds, @)

wheren —1 <a <n,n=[a]+ 1.

We have also:

Lemma 2.3 [13] Let a > 0,9 € L? ([a,b]), 1 <p <oo Then
D*J%g (t) =g (t),t € [a,b].

Proposition 2.4 [13] If o, B > 0, then

o () i ()

N AR ) AN
() i (=)
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We need also the lemmas:

Lemma 2.5 [18] For a > 0, a solution of the fractional differential equation
D%x(t) = 0 is given by

n

w(t) =) ¢ (logt)™, (3)

J=1

wherec; € R, j=1,...,n,andn -1 <o <n.

Lemma 2.6 [13] Let o > 0. We have
JOD x(t) = x(t) + Y _¢jlog (£)*77 (4)
=1

wherec; € R, j=1,...,n,andn -1 <o <n.

In the literature, we can read the following Schaefer fixed point theorem.

Lemma 2.7 Let E be a Banach space and assume that T : E — E is a
completely continuous operator. If the setV :={x € E:x = puTz, 0 < pu < 1}
1s bounded, then T has a fixed point in E.

Now, we are ready to prove our first auxiliary ”main result”:

Lemma 2.8 Let f € C([1,¢],R). The problem

Dx(t) = f(t,z(t), D*z(t)), 1<t<el<a<?2
{;1:(1): , AJPz(n)+ Ba'(e)=c, B>0,1<n<e
()

has a unique solution given by:

c— AT f(n,z(n), D z(n))
Q

o(t) = Jaf(tv$<t)7Da_1x(t))+(logt)a1[
—BJ“f<m<e>,Da—1x<e>>] ,

Q

where

~ Bla—1) ATl ()
= T+

(logn)* Pt

Proof: Thanks to Lemma 2.6, we have

x(t)=Jf (t,x(t), D2 (t)) + c1 (log)* ™" + ¢z (log)* > (6)
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The first boundary condition gives ¢; = 0. So we obtain

Thus,

JPa(n) = J° f(n, 2(n), D"z (n)) + = /j(bgn)ﬁ_l (10g8)a_1?

z(t) = JOf(t, x(t), DL (1) + ¢; (log)* .

ds

()

Using Proposition 2.4, we can write

JPx

and

() = J**P f(n, x(n), D" (n)) + et g (o8 n)et (M)
7€) = I e we), D Hale)) + o ®)

Using the second boundary condition, we get:

¢ = AT fna(), D a(m) + Ac—a (logy)Ptat

that is

cl =

C(a+ pB)
+BJ fle,xz(e), D" x(e)) + clB<a€_ D
¢ — AJ*tP f(n,x(n), D*'a(n)) — BJ*f(e,x(e), D*'x(e)) ()
B(a—1) '

I'(a) a+p—-1
Ararg (log) + .

Finally, substituting the values of ¢; and ¢, in (6), we obtain (5).
This completes the proof.

Let us now consider the space defined by:

X :={z|zeC*(1,e,R),D* 'z € C([L,e],R)}

equipped with the norm

I llx=l =]+ D* = ||

On this space, we introduce the operator T': X — X as follows:

(T)()

_ ﬁ/j (log f)a_lf@,x(s),pa—lx(s))@ + %

X [c — ﬁ /j <log g)wrﬁl f(s,x(s), Da_lx(s))%
_% /1e <log §>a1 f(s,x(s),Da_lx(S))% ;tele,
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where,

B(a—1) ()
Q= + A lo
e I'(a+p) (log
This operator will be used to prove our main results by application of fixed
point theory on Banach spaces.

)a+ﬁ71

3 Main results

We begin by introducing the quantities:

_ ! L [ 1A (ogn)™ |B]
M“‘rm+5fﬂ9|{rm+ﬁ+m'ﬂx®}

and

_ T [[A](ogn)*™ |B]
Mf_1+|9|{1wa+5+1)+r@m}‘

Then, we establish the following existence and uniqueness results by applica-
tion of Banach contraction principle.

3.1 Existence and Uniqueness

We have:

Theorem 3.1 Assume that f : [1,e] x R x R — R is a continuous function
that satisfies:

(Hy) |f(tz, ) — f(t 2o, y2)] < Kyl — zo| + ko lyr — 2l (10)

for each t € [1,¢e] and z1,y1,T2,y2 € R,
If we suppose

kM <1, (11)

then, the problem (5) has a unique solution on [1,¢],
where k := max{ ky, ko}, M = My + M.

Proof: To prove this theorem, we need to prove that the operator 7" has a fixed
point in the C([1,¢],R). So, we shall prove that T is a contraction mapping
on C([1,¢],R).
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For z,y € X and for each t € [1,¢], we have

(T2)(t) — (Ty)(0)] < FL) / (1og§) IS (s, (s), D a(s)) = f(s,(s), D y(s)]

(a s

+(log\stz)\ - [r(olﬁ 3) /j (1os g)aﬂn

|f(s,2(s), D*""x(s)) — f(5,y(s), D*y(s))] B
X . ds + Mo —1)
[t ) Llee)- D) - oyt D2 o )

S

Thanks to (H;), we obtain

te(l,e]

(logt)*™ Al /’7 nyeti-11
log 2 La
Tl Ters ), (g ) s

+F(c’xB—‘ 0 /1 (10g S)M %ds] }

Consequently, it yields that

|TDO -~ T)®) | < k(lo—yll+] Dz — Doy ||)max{ L[ (e t) L

| (Tz) = (Ty) |[< kM, (| 2 —y || + | D'z = D* Ty []). (12)

On the other hand, we observe that

|(Da_1TZE)() Da IT / |f S, ZL‘ Da 1 )) f( ( )?Da_ly(s)ﬂds

(a) Al [T et
+<1ogt> I [ <a+5>/ (1055)
(s,2(5), D" (s) — £ (5, 9(5), D*y(9))

+P(LB—| 0 / (105)"
N (s (s), D La(s))
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By (H:), we have

te(l,e] 1

Q@ A K at+p-1
+(101;§)2>|Q| [r<c|v+|ﬁ>/ ()™

‘B’ /e a—21
_— 1 —d
+F(a—1) 1 <0g5> s
Therefore,

| (D°'Ta) — (D*'Ty) || < kM (| & —y || + 1| D*'a = DMy [} (13)

t

_ a— a— a— 1
| (D' Tz)(t) = (D 'Ty)t) | < E(loz—yll + | D 'e— Dy |]) maX{
1
S

By (12) and (13), we can write
| (Tz) = (Ty) [x< kM [z —y ||x

Thanks to (11), we conclude that T" is contractive.
As a consequence of Banach fixe point theorem, we deduce that T has a unique
point fixe which is a solution of our problem.

3.2 Existence

Our second result will use the Scheafer fixed point theorem. We have:

Theorem 3.2 Assume that

(Hy) : The function f is continuous.

(Hs) : There ezists L > 0, such that f is bounded by L.

Then, the problem (5) has at least one solution defined on [1,e].

Proof: We will prove the theorem using the following steps:

Step 1: We remark that The continuity of the functions f implies that T
is continuous on X.

Step 2: The operator T is completely continuous.
We define the set B, := {x € X, ||z|yx <r}, where r > 0. For z € B,, we
obtain

L\ fs,ls), Do ()
0 < o [ (1062 ds

S

(log )™ [A] [T pyets
o e URS = JACH
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The condition (H3) allows us to say that

L t\*"1
T < = [ (gt) =
(Tz)(1)] < tenﬁ?ii{r(a)/l <og5> ~ds
(logt)*™ ' [ L|A| /77 n\ot+h-11
log ~ -
ol (Tess ), (log) s

L|B| ¢ eye—21 || (log t)* "
PP (10g &) 2as| 4 1080 L
+F(a—1)/1 (loe) S} T

Therefore,

| (Tz) [|< LM, + % (14)

For D*~!, we have

|(Da71T{L‘)(t)‘ S /1 |f(8,:}3(8),£a x(s))ds

I'(a) Al ! o+t [f(s, 2(s), D*a(s))|
(log t)2]Q] {M * T'(a+3) /1 <log g) 5 ds

Bl [ () M) D)

Thanks to (Hj), it yields that

tr () L|A]|
Da—lT < _d
I7e | < et [ Sas e gt (e

g atp-11] L|Bj| c eye21 |l ()
n
log ~ Zds + ——7t log — Zd S d el S O
X/l (O s> S ° I(a—l)/1 (O s) s 5] (logt)?|Q]

Hence,
|0 Ta)ls o+ I (15)
Using (12) and (13), we obtain
| Tz ||x< L(M; + M) +2‘C|’1;2(|0‘). (16)
Therefore,
| Tz [|x< oo (17)

Hence, the operator 7" maps bounded sets into bounded sets in X.
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Step 3: Equi-continuity of 7'(B,) :
For t1,ts € [1,€]; t; < to, and x € B,, we have:

S

1
I(a)

[
I /( oh s, als). D a(s))
ol

(
(a
T () ! s, 2(s), D Ma(s)) |
F S
((logtg )* ! — (logt1)*” 1) [ A
0 I'(a+ PB)
. /77 (log n)Wl fls, (s), D>t (s))

S S

—r<aB_ . / (g )~ 2161, D) ds] |

|(T)(t2) = (T) ()]

S

Thanks to (Hjz), we can state that

t1 a—1 a—1
/ [(Iog t—z) — (log t—1> ] lds
1 S s s

=

|(T2)(t2) = (T2)(t)] <

Therefore,

[|[(logt1)™ — (logt2)* + (logta — logt1)*| + | (logt; — logta)™ ]

L
|(T)(t2) — (T) ()] < Tlat1)

| (logt2)* ™ — (log 1)) |
" Q) [

LIAI

a+p-1 1
) —ds

el + vy
S

v (s

LIB| . eyo—2 1
Ta_nh (10g5) Eds]
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We have also,

" flsa(s). D la(s) | [ fls.o(s). D Na(s))
I(a) A
T og ) - (og ) ['C‘ CEY)
[ () fesa(5, D2l
Bl 7 ey |fis.a(s), Do la(s)
+F(oz— 1)/1 (log ;) S ds] '

(D' Tx)(t) — (D*'Tx)(t1)] < ds

By (Hj), we obtain

[(D°7'Ta)(t2) — (D°7'Tx)(ty)] <

S| (|(logts) — (logh)2)T(a)
/ﬁ Eds’ * Q]

L|A| n nyeth-11
—_— log = -d
X[|C|+F(oz+ﬁ)/l (Ogs> s
L|B| ¢ eya—21
—_— log - —ds| .
+F(a—1)/1 <0g3> s S]
Thus,

(I(log )~ — (log t1)~*|)I'(ev)
2]

LA (" myethil
e log 2 -
{‘C’+F(a+ﬁ)/1 (og5> sds
L|B| ¢ eye—21
_HPL [ (o €T 2as|
+F(oz—1)/1 (Ogs) sds}

|(Da_1TZE)(t2) — (Da_lTZL‘) (tl)’ S |10g tQ — log t1| +

Consequently, we obtain
sup | Tz(ty)—Tx(ty) | + sup | (D 'Tx)(ts)—(D* 'Tx)(t;) |— 0 as to — t;
te(l,e] te(l,e]

In these inequalities the right hand sides are independent of x and tend to zero
as t; tends to t5.

Then, as a consequence of Steps 2,3 and by Arzela-Ascoli theorem, we con-
clude that T is completely continuous.

Step 4: The set defined by

A={(z)e X;z2=AT(z),0< A< 1} (19)
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is bounded:
Let x € A, then x = T'(z), for some 0 < A < 1. Thus, for each t € [1,¢], we
have:

w=2 l% / (10%)&_1 (), D a2 LB
{c - % /177 (log Q>a+ﬁ_l F (s, 2(s), D™ ()2

k[ o]

Thanks to (Hjs), we can write
1 L [ t\"'1
—lz(t)] < — log — -d
)] < trg[gg]{r(&)/l (g) Lis
(logt)* ' [ L|A| /”( nyetB-11
log )" ~d
Tl [Tars h VB ST
1

LBl [¢/ eyo-? | (log £)°~!
P (10g € lgroet) L
+F(a—1)/1 (10g5) sdsl LT

Therefore,
| z(t) [< A (LM1 + ”ﬁll) (20)
On the other hand,
Hiorta] < [/ lrth Do),
A ! Bt | f(s, 2(s), D a(s))|
+(10F§s) )|Q| [’ I+ (|+|5)/1 (10g7) . s
B ¢ eNo—2 | f(s,x(s), D* (s
el [ (o) M) D)

The condition (H3) implies that

Gl {/ * Tog il T <§|ﬁ|ﬁ>e
></1 (ogg>a+ﬁ ids—k%/l (1og§)a* %ds] +%}.

| (D™ 2)(t) |< A (LM2+ 'C“I;)(‘O‘)) . (21)

Hence, we can write
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It follows from (20) and (21) that

e[ (e)
Thus,
| [[x< o0 (23)

Consequently, A is bounded.
As a conclusion of Schaefer fixed point theorem, we deduce that 7" has at least
one fixed point, which is a solution of (1).

4 Open Problem

Is it possible to extend the above results in the case of coupled order of
Hadamard integration?

The same question can be posed with the (k, s)—Riemann-Liouville integrals
and with mixed Riemann-Liouville integrals.

References

[1] T. Abdeljawad, D. Baleanu, F. Jarad, Caputo-type modification of
the Hadamard fractional derivatives, Advances in Difference Equations,
(2012).

[2] B. Ahmad and A. Alsaedi, K. Ntouyas, W. Shammakh, P. Agarwal,
FExistence theory for fractional differential equations with non-separated
type nonlocal multi-point and multi-strip boundary, Adv. Diff. Equations,
(2018).

[3] B. Ahmad and S.K Ntouyas, On Hadamard fractional integro-differential
boundary value problems, Appl. Math. Comput., 47 (2015), 119-131.

[4] B. Ahmad and S.K. Ntouyas, Initial Value Problem for Hybrid Hadamard
fractional integro-differential equations, EJDE, 47 (2014), 110-120.

[5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus
Models and Numerical Methods. Series on Complezity, Nonlinearity and
Chaos. World Scientific, Boston (2012).

[6] M. Benchohra, S. Hamani, S.K Ntouyas, Boundary value problems for
differential equations with fractional order and nonlocal conditions, Non-
linear. Anal. tma., 71 (2009), 2391-2396.



Differential equations via Hadamrad approach... 73

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

M. Bengrine and Z. Dahmani, Boundary Value Problems For Fractional
Differential FEquations, J. Open Problems Compt. Math., 5, December
(2012).

P.L. Butzer? A.A. Kilbas, J.J Trujillo, Compositions of Hadamard-type
fractional integration operators and the semigroup property, Math. Anal.
Appl., 269 (2002), 387-400.

G. Christopher, FEzistence and uniqueness of solutions to a fractional
difference equation with nonlocal conditions, Comput. Math. Appl., 61
(2011), 191-202.

7. Dahmani and L. Tabharit, Fractional Order Differential Equations In-
volving Caputo Derivative, Comput. Math. Appl., 4 (2014), 40-55.

F. Dugundji and A. Granas, Fized Point Theory, Springer, New York.,
(2003).

J. Hadamard, Fssai sur ’etude des fonctions donnees par leur developp-
ment de Taylor, J. Math. Pures Appl., 8 (1892), 101-186.

A.A. Kilbas, Hadamard-type fractional calculus, Korean Math. Soc., 38
(2001), 1191-1204.

A.A. Kilbas, I.O Marichev, G.S Samko, Fractional Integrals and Deriva-
tives - Theory and Applications, Gordon and Breach, Langhorne, (1993).

A A. Kilbas, H.M Srivastava, J.J Trujillo, Theory and Applications of
Fractional Differential FEquations. North-Holland Mathematics Studies,
Elsevier Science B.V., 204 (2006).



