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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR

FRACTIONAL PROBLEM ON THE HALF LINE

S. BELARBI

Abstract. This paper deals with the differential equations of fractional order on
the half-line. By Leggett-Williams theorem, we present recent results for the exis-
tence of positive solutions for a Caputo fractional problem. An illustrative example
is also presented.

1. Introduction

In the last few years, fractional differential equations theory have received in-
creasing attention. This theory has been developed very quickly and attracted a
considerable interest from researches (see [1, 2, 3, 6, 7]).

The motivation for those works stems from both the development of the theory
and the applications of such constructions in various sciences such as physics,
mechanics, chemistry, engineering, and so on. For an extensive collection of such
results, we refer the readers to the monographs by Kilbas and al [10], Miller and
Ross [16] and Podlubný [18].

As one of the focal topics in the research, some kinds of fractional differential
equation with specific configurations have been presented. More specifically, In
[4], the authors investigated the existence and multiplicity of positive solutions of
the nonlinear fractional differential equation boundary value problem{

Dαx(t) + a(t)f(x(t)) = 0 0 < t < 1, 1 < α ≤ 2

x(0) = 0, x′(1) = 0

By using Krasnosel’skii’ s fixed point theorem and Leggett-Williams theorem
[17, 11], some sufficient conditions for the existence of positive solutions to the
above FBVP are obtained. Moreover, the study of positive solution has been
studied in [5, 8, 9, 13, 19].

To the best of our knowledge, there are few papers devoted to the study of
fractional differential equations with a Laplacian operator on the half-line [12, 14,
15, 20, 21], where boundary value problems on the half-line have been applied
(unsteady flow of gas through a semi-infinite porous medium, the theory of drain
flows, etc).
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In this article, we are concerned with the following fractional differential equa-
tion:

(
p(t)Φ(Dαx(t))

)′
+ f(t, x(t)) = 0, t ∈ [0,∞), 0 < α ≤ 1

x(0) =
∞∫
0

g(s)x(s)ds+ θ,

lim
t→+∞

p(t)Φ(Dαx(t)) = ρ,

(1)

where ρ ≥ 0, θ ≥ 0, and Dα denotes Caputo fractional derivative of order α,
g : [0,∞) → [0,∞) is continuous with

∫∞
0
g(s)ds < 1, p : [0,∞) → (0,∞) is

continuous, and Φ(x) = |x|q−2x with q > 1, and, the inverse function of Φ is

Φ−1(x) = |x|q′−2x, where 1
q + 1

q′ = 1.

This paper is organized as follows: In section 2, we prepare some material need
to prove our main results. In section 3, we obtain existence results of the positive
solutions for (1) using Leggett-Williams theorem. In section 4, we give an example
to illustrate our results.

2. Preliminaries

In this section, we give some definitions, lemmas and properties which will be used
in the next sections.

Definition 1. The Riemann-Liouville fractional integral operator of order α>0,
for a continuous function f on [0,∞) is defined as:

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ α > 0, t > 0.(2)

Definition 2. The Caputo derivative of order α of f ∈ Cn([0,∞[) is defined
as:

Dαf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ n− 1 < α, n ∈ N∗.(3)

Definition 3. A function f : [0,∞)×R→ R is called a Carathéodory function
if the following conditions are satisfied

(i) For each u ∈ R, t→ f(t, u) is measurable on (0,∞),
(ii) For each t ∈ [0,∞), u→ f(t, u) is continuous on R,
(iii) For each r > 0, there exists Br, Br(t) > 0, t ∈ [0,∞),

∫∞
0
Br(s)ds < ∞,

such that |u| ≤ r implies |f(t, u)| ≤ Br(t), t ∈ [0,∞).

Definition 4. Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if

(i) ax ∈ P and x+ y ∈ P for all x, y ∈ P and a ≥ 0,
(ii) if x ∈ P and −x ∈ P, then x = 0.

Let ψ be a nonnegative functional on a cone P of a real Banach space X. We
define the sets

Pr = {y ∈ P : |y| < r},
P (ψ; a, b) = {y ∈ P : a ≤ ψ(y), |y| < b}.
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We need also the Leggett-Williams fixed point theorem [8]

Theorem 5. Let a < b < d < c be positive numbers, T : Pc → Pc be a com-
pletely continuous operator, and ψ be a nonnegative continuous concave functional
on P, such that ψ(y) ≤ ‖y‖ for all y ∈ Pc. Suppose that

– {y ∈ P (ψ; b, d) : ψ(y) > b} 6= ∅, ψ(Ty) > b for y ∈ P (ψ; b, d),

– ‖Ty‖ < a, for y ∈ P, with ‖y‖ ≤ a,
– ψ(Ty) > a for y ∈ P (ψ; b, c) with ‖Ty‖ > d.

Then T has at least three fixed points y1, y2 and y3 such that ‖y1‖ < a, ψ(y2) > b
and ‖y3‖ > a with ψ(y3) < b.

We cite also the following three lemmas:

Lemma 6. For α > 0, the general solution of the fractional differential equation
Dαx = 0 is given by

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,(4)

where ci ∈ R, i = 0, 1, 2, .., n− 1, n = [α] + 1.

Lemma 7. Let α > 0. Then we have

JαDαx(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,(5)

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Lemma 8. Let β > α > 0. Then the formula

DαJβf(t) = Jβ−αf(t), t ∈ [a, b](6)

is valid.

3. Main Results

We introduce the following quantities:

λ := λ(t) =

∫ t

0

Φ−1
( 1

p(s)

)
ds.

λ∗ :=

∫ ∞
0

Φ−1
( 1

p(s)

)
ds.

For k > 1 large enough, we take λ( 1
k ) < 1.

We take also

µ :=

∫ 1
k

0

Φ−1
( 1

p(s)

)
ds

1

1 +
∫∞

0
Φ−1( 1

p(s) )ds
.

It is clear that 0 < µ < 1.
Now, we consider the following Banach space

X = {x ∈ C[0,∞) : lim
t→∞

x(t) <∞},

with the norm
‖x‖ = sup

t∈[0,∞)

|x(t)| for x ∈ X,
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and we define the cone P by

P :=
{
x ∈ X : x(t) ≥ 0, x(t) is non-decreasing on [0,∞),

min
t∈[ 1

k ,k]
x(t) ≥ µ sup

t∈[0,∞)

x(t)
}
.

On P, we define the functional

ψ(y) := min
t∈[ 1

k ,k]
y(t).

It is easy to see that ψ is a nonnegative continuous concave functional on P
satisfies

ψ(y) ≤ ‖y‖ , y ∈ P.
Now, we introduce the following hypotheses:

(H111) The constant λ∗ < ∞, and the function p : [0,∞) → (0,∞) is continuous
and satisfies ∫ ∞

0

g(t)

∫ t

0

Φ−1
( 1

p(u)

)
dudt <∞.

(H222) The function f : [0,∞) × [0,∞) → [0,∞) is a Carathéodory function with
f(t, 0) 6= 0 on each subinterval of [0,∞).

(H333) There exist A, c > 0 such that(
ρ+

∫ ∞
0

Ac

(1 + t)2
ds

)[∫∞
0
g(u)

[
θ + JαΦ−1( 1

p(t) )
]

du

1−
∫∞

0
g(s)ds

+ JαΦ−1
( 1

p(t)

)]
+ θ ≤ c.

(H444) There exist b > 0, B > 0, such that∫∞
0
g(u)

[
θ + 1

Γ(α)

∫ 1
k

0
( 1
k − τ)Φ−1( ρ

p(τ) + 1
p(τ)

∫∞
τ

Bb
(1+s)2 ds)dτ

]
du

1−
∫∞

0
g(s)ds

≥ b.

We prove the following two lemmas:

Lemma 9. Let 0 < α ≤ 1 and suppose that (H111) and (H222) hold. A solution of
the problem (1) is given by

x(t) =
1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)

[
θ + JαΦ−1(

ρ+
∫∞
t
f(s, x(s))ds

p(t)
)

]
du

+ θ + JαΦ−1

[
ρ+

∫∞
t
f(s, x(s))ds

p(t)

](7)

Proof. Since f is a Carathéodory function, then we can write

p(t)Φ(Dαx(t)) = ρ+

∫ ∞
t

f(s, x(s))ds.

Therefore,

Dαx(t) = Φ−1

[
ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
.
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Thanks to Lemma 7, we deduce that

x(t) = x(0) + JαΦ−1

[
ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
.

The boundary conditions in (1) imply that

x(t) =

∫ ∞
0

g(s)x(s)ds+ θ + JαΦ−1

[
ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
.(8)

Since ∫ ∞
0

g(s)ds < 1,

then it follows that∫ ∞
0

g(s)x(s)ds =
1

1−
∫∞

0
g(s)ds

·
∫ ∞

0

g(u)

[
θ + JαΦ−1(

ρ+
∫∞
t
f(s, x(s))ds

p(t)
)

]
du.

(9)

Combining (8) and (9), we get Lemma 9. �

Lemma 10. Suppose that (H111) and (H222) hold and x is a solution of (1). Then
we have:

(a) Dαx(t) ≥ 0; t ∈ [0,∞[.
(b) The function x is concave with respect to λ on [0,∞), and it is positive with

respect to t on [0,∞).

Proof. (a) Since x is a solution of (1), then for all t ∈ [0,∞) we have

[p(t)Φ(Dαx(t))]′ ≤ 0.

Thanks to (H222),we have

ρ− p(t)Φ(Dαx(t)) ≤ 0, t ∈ [0,∞)

which satisfies
p(t)Φ(Dαx(t)) ≥ 0, since ρ ≥ 0.

Thus
Dαx(t) ≥ 0 for all t ∈ [0,∞).

(b) Since Dαx ≥ 0, then to prove that x > 0, it suffices to show that x(0) ≥ 0.
We have

x(0) =

∫ ∞
0

g(s)x(s)ds+ θ ≥ x(0)

∫ ∞
0

g(s)ds.

Since
∫∞

0
g(s)ds < 1, it follows then that x(0) ≥ 0.

Hence
x(t) ≥ 0 for t ∈ [0,∞).

With help of (H222) it follows that

x(t) > 0 for all t ∈ (0,∞).

Finally, we shall prove that x is concave with respect to λ on [0,∞).
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Thanks to (H111), we have λ∗ <∞, and then λ ∈ C([0,∞ ), [0, λ∗[).
On the other hand, we have

dx

dλ
=

dx

dt

1

Φ−1( 1
p(t)

) ≥ 0,

p(t)Φ
(dx

dt

)
= Φ

(dx

dλ

)
,

and

d2x

dλ2
=

[
p(t)Φ

(dx

dt

)]′
Φ′
(dx

dλ

)dλ

dt

.

Using the fact that [p(t)Φ(Dαx(t))]
′ ≤ 0, α = 1, Φ′(x) > 0, x > 0 and dλ

dt > 0, we

obtain d2x
dλ2 ≤ 0.

Hence x(t) is concave with respect to λ on [0,∞). The proof is complete. �

Now, we define the following nonlinear operator T : P → X by:

Tx(t) =
1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)

[
θ + JαΦ−1

(
ρ+

∫∞
t
f(s, x(s))ds

p(t)

)]
du

+ θ + JαΦ−1

[
ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
.

(10)

Then, we prove the following result:

Lemma 11. Suppose that (H111) and (H222) hold. We have

(i*) For x ∈ P , Tx satisfies

(p(t)Φ(DαTx(t)))′ + f(t, x(t)) = 0, t ∈ [0,∞), 0 < α ≤ 1,

Tx(0) =

∫ ∞
0

g(s)Tx(s)ds+ θ, θ ≥ 0,

lim
t→+∞

p(t)Φ(DαTx(t)) = ρ, ρ ≥ 0.

(ii*) Tx ∈ P for each x ∈ P.
(iii*) x is a bounded positive solution of (1) if and only if x is a solution the

equation x = Tx in P .

Proof. The proof of (i* ) follows from the definition of T and is omitted.
To show (ii* ), we note from (i∗) that Tx is a solution of (1). Then, Lemma 10

implies that
Tx(t) ≥ 0, T ′x(t) ≥ 0 for all t ∈ [0,∞),

and Tx(t) is concave with respect to λ.
To complete the proof of TP ⊆ P, it suffices to prove that

min
t∈[1/k,k]

Tx(t) ≥ µ sup
t∈[0,∞)

Tx(t).(11)
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Since x ∈ X and f is a Carathéodory function, then

Tx(t) ≤ 1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)

[
θ + JαΦ−1(

ρ+
∫∞
t
Br(s)ds

p(t)
)

]
du

+ θ +
1

Γ(α)

∫ ∞
0

(t− τ)α−1Φ−1

[
ρ+

∫∞
τ
Br(s)ds

p(τ)

]
dτ <∞.

This means that supt∈[0,∞) Tx(t) exists. So, we shall consider two cases:

Case A. Suppose Tx(t) achieves its maximum at σ ∈ [0,∞)
For t ∈ [1/k, k], we can write

Tx(t) ≥ Tx(1/k) = Tx(t(λ(1/k)))

= Tx

(
t

(
1− λ(1/k) + λ(σ)

1 + λ(σ)

λ(1/k)

1− λ(1/k) + λ(σ)
+

λ(1/k)

1 + λ(σ)
λ(σ)

))
Thanks to the concavity of Tx with respect to λ, we have:

Tx(t) ≥ 1− λ(1/k) + λ(σ)

1 + λ(σ)
Tx

(
t

(
λ(1/k)

1− λ(1/k) + λ(σ)

))
+

λ(1/k)

1 + λ(σ)
Tx(t(λ(σ)))

≥ λ(1/k)

1 + λ(σ)
Tx(t(λ(σ))) =

∫ 1/k

0

Φ−1

(
1

p(s)

)
ds

1

1 + λ(σ)
Tx(t(λ(σ)))

≥
∫ 1/k

0

Φ−1

(
1

p(s)

)
ds

1

1 +
∫∞

0
Φ−1( 1

p(s) )ds
sup

t∈[0,∞)

Tx(t)

= µ sup
t∈[0,∞)

Tx(t).

Case B. Now, suppose Tx(t) achieves its maximum at ∞ : Choose σ′ ∈ [0,∞),
then, with the same arguments as before, we get for t ∈ [1/k, k] that

Tx(t) ≥ µTx(σ′).

Let σ′ →∞, then for t ∈ [1/k, k], we can write

Tx(t) ≥ µ sup
t∈[0,∞)

Tx(t).

Thanks to A and B, we deduce that Tx ∈ P .
The proof of (iii*) is based on Lemma 8 and it can be omitted. �

Our main result is given by:

Theorem 12. Assume that the hypothesis (H111) and (H222) hold, and there exist
constants a, b and c such that 0 < a < b < c.

(D1) f(t, x) <
Aa

(1 + t)2
for all t ∈ (0,∞) and x ∈ [0, a];

(D2) f(t, x) >
Bb

(1 + t)2
for all t ∈ [1/k, k] and x ∈ [b, c];

(D3) f(t, x) ≤ Ac

(1 + t)2
for all t ∈ (0,∞) and x ∈ [0, c].
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Then, the (1) has at least three bounded positive solutions x1, x2 and x3 satisfying
‖x1‖ < a, b < ψ(x2), a < x3 with ψ(x3) < b.

Proof. We shall prove that the operator T is completely continuous on P.
It is easy to verify that T : P → P is well defined. We prove that T is continuous
and maps bounded sets into pre-compact sets: Let xn → x0 as n→∞ in P , then
there exists r0 such that

sup
n≥0
‖xn‖ < r0.

Hence, we have ∫ ∞
0

|f(s, xn(s))− f(s, x0(s))|ds ≤
∫ ∞

0

Br0(s)ds.

By the Lebesgue dominated convergence theorem, we obtain∫ ∞
t

f(u, xn(u))du→
∫ ∞
t

f(u, x0(u))du uniformly as n→∞.

Let ε > 0. For all n, we have

Φ(ρ) +

∫ ∞
s

f(u, xn(u))du ≤ Φ(ρ) +

∫ ∞
0

Br0(s)ds ≡ r.

On the other hand, we know that Φ−1 is uniformly continuous on [0, r]. It follows
then that there exists δ > 0, such that for x, y ∈ [0, r], |x− y| < δ, we have∣∣Φ−1(x)− Φ−1(y)

∣∣ < ε.

So for the above δ > 0, there exists N > 0, such that∣∣∣∣ρ+

∫ ∞
t

f(u, xn(u))du− (ρ+

∫ ∞
t

f(u, x0(u))du)

∣∣∣∣ < δ,

where n > N , t ∈ [0,∞).
Then for n > N , we can write∣∣∣∣Φ−1(ρ+

∫ ∞
t

f(u, xn(u))du)− Φ−1(ρ+

∫ ∞
t

f(u, x0(u))du)

∣∣∣∣ < ε.

Hence, for t ∈ [0,∞), and n > N, yields

|Txn− Tx0(t)|

=
1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[
Jα
[
Φ−1

(ρ+
∫∞
t
f(s, xn(s))ds

p(t)

)
− Φ−1

(ρ+
∫∞
t
f(s, x0(s))ds

p(t)

)]
du
]

+ Jα
[
Φ−1

(ρ+
∫∞
t
f(s, xn(s))ds

p(t)

)
− Φ−1

(ρ+
∫∞
t
f(s, x0(s))ds

p(t)

)]
≤ ε

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
(
JαΦ−1

( 1

p(t)

))
du+ εJαΦ−1

( 1

p(t)

)
≤ ε
[ 1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
(
JαΦ−1

( 1

p(t)

))
du+ JαΦ−1

( 1

p(t)

)]
.
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It follows then that

‖Txn − Tx0‖ → 0 uniformly as n→∞.
So, T is continuous.

Let Ω be an arbitrary bounded subset of P . First, we shall prove that T is
bounded: Since Ω is bounded, then there exists r > 0, such that ‖x‖ ≤ r, for all
x ∈ Ω. Thanks to Definition 3, we obtain

0 ≤ Tx(t) =
1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[
θ + JαΦ−1

(ρ+
∫∞
t
f(s, x(s))ds

p(t)

)]
du

+ θ + JαΦ−1
[ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
≤ 1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[
θ + JαΦ−1

(ρ+
∫∞
s
Br(s)ds

p(t)

)]
du

+ θ +
1

Γ(α)

∫ ∞
0

(t− τ)α−1Φ−1
[ρ+

∫∞
τ
Br(s)ds

p(τ)

]
dτ.

This means that TΩ is bounded.
Now we shall prove the equicontinuity of T (Br). Let us take t1, t2 ∈ (0,∞),

t1 < t2 and x ∈ Ω. We have

|Tx(t2)− Tx(t1)|

≤ 1

1−
∫∞

0
g(s)ds

×
∫ ∞

0

g(u)
[ ∫ t2

0

( (t2 − τ)α−1 − (t1 − τ)α−1

Γ(α)

)
Φ−1

(ρ+
∫∞
τ
Br(s)ds

p(τ)

)
dτ
]
du

+
1

Γ(α)

∫ t2

0

((t2 − τ)α−1 − (t1 − τ)α−1)Φ−1
[ρ+

∫∞
τ
Br(s)ds

p(τ)

]
dτ.

We see that the function ϕ(x) = xα−1 − (α − 1)x is decreasing on [0, 1] , and
increasing on (1,∞). Consequently we can write

(t2 − τ)α−1 − (t1 − τ)α−1 ≤ (α− 1)(t2 − t1), on [0, 1]

and
(t1 − τ)α−1 − (t2 − τ)α−1 ≤ (α− 1)(t1 − t2), on (1,∞).

We deduce from these two inequalities that if t1,t2 ∈ [0, 1], then

|Tx(t2)− Tx(t1)|

≤ 1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[ (α− 1)(t2 − t1)

Γ(α)

∫ t2

0

Φ−1
(ρ+

∫∞
τ
Br(s)ds

p(τ)

)
dτ
]
du

+
(α− 1)(t2 − t1)

Γ(α)

∫ t2

0

Φ−1
[ρ+

∫∞
τ
Br(s)ds

p(τ)

]
dτ
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and
|Tx(t2)− Tx(t1)|

≤ 1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[ (α− 1)(t1 − t2)

Γ(α)

∫ t2

0

Φ−1
(ρ+

∫∞
τ
Br(s)ds

p(τ)

)
dτ
]
du

+
(α− 1)(t1 − t2)

Γ(α)

∫ t2

0

Φ−1
[ρ+

∫∞
τ
Br(s)ds

p(τ)

]
dτ,

provided that t1, t2 ∈ (1,∞).
When t1 → t2, in the above tow inequalities, we claim that |Tx(t2)− Tx(t1)|

tend to 0. Consequently TΩ is equicontinuous. According to the Ascoli-Arzela
theorem we deduce that T is completely continuous operator.

Note that ψ(x) ≤ ‖x‖ for x ∈ Pc. We will show that the conditions of Theorem 5
are satisfied: Put x ∈ Pc. Then ‖x‖ ≤ c, we find

‖Tx(t)‖ = sup
t∈[0,∞)

Tx(t)

=
1

1−
∫∞

0
g(s)ds

∫ ∞
0

g(u)
[
θ + JαΦ−1

(ρ+
∫∞
t
f(s, x(s))ds

p(t)

)]
du

+ θ + JαΦ−1
[ρ+

∫∞
t
f(s, x(s))ds

p(t)

]
.

Thanks to (D3), we have

‖Tx(t)‖ ≤

(
ρ+

∫∞
0

Ac
(1+s)2 ds

)
1−

∫∞
0
g(s)ds

∫ ∞
0

g(u)
[
θ + JαΦ−1

( 1

p(t)

)]
du

+ θ +
(
ρ+

∫ ∞
0

Ac

(1 + s)2
ds
)
JαΦ−1

( 1

p(t)

)
.

Using (H333), we get
‖Tx(t)‖ ≤ c

This implies that T : Pc → Pc.
By the same way, if x ∈ Pa, then with help of (D1), we obtain ‖Tx‖ < a, and

therefore (C2) is satisfied.
Let d be a fixed constant such that b < d ≤ c. Then ψ(d) ≥ d > b and ‖d‖ = d,

it means P (ψ, b, d) 6= ∅.
For any x ∈ P (ψ, b, d), it holds that ‖x‖ ≤ d and ψ(x) = mint∈[ 1

k ,k] x(t). Then

we have

ψ(Tx) = min
t∈[ 1

k ,k]
Tx(t) = Tx

(1

k

)

=

∫∞
0
g(u)

[
θ + 1

Γ(α)

∫ 1
k

0
( 1
k − τ)Φ−1

(ρ+∫ ∞
τ
f(s,x(s))ds

p(τ)

)
dτ
]

du

1−
∫∞

0
g(s)ds

+ θ +
1

Γ(α)

∫ 1
k

0

(1

k
− τ
)

Φ−1
(ρ+

∫∞
τ
f(s, x(s))ds

p(τ)

)
dτ
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In view of (D2) and (H444), we obtain

ψ(Tx) ≥

∫∞
0
g(u)

[
θ + 1

Γ(α)

∫ 1
k

0

(
1
k − τ

)
Φ−1

(ρ+∫ ∞
τ

Bb
(1+s)2

ds

p(τ)

)
dτ

]
du

1−
∫∞

0
g(s)ds

≥ b.

Thus (C1) is satisfied.
Finally, for any x∈P (ψ, b, c) with ‖Tx‖>d, then ‖x‖≤c and mint∈[ 1

k ,k] x(t)≥b,
by the same method, we can also show that ψ(Tx) > b easily, which means that
(C3) holds.

Therefore, by the conclusion of Theorem 5, the operator T has at least three
fixed points. This implies that (1) has at least three solutions. �

4. Example

Let us consider the problem(
1
16 exp

(
t
2

) (
D

1
2x(t)

)4
)′

+
2x+ 1

9 + t2
= 0, t ∈ [0,∞),

x(0) =
1

8

∫ ∞
0

exp(−2s)x(s)ds+ 1,

1

16
lim

t→+∞
exp

(
t

2

)(
D

1
2x(t)

)4

= 1.

(12)

We have

p(t) =
1

16
exp

( t
2

)
, Φ(x) = x4, g(t) =

exp(−2t)

8
,

f(t, x) =
2x+ 1

9 + t2
, θ = ρ = 1.

It is clear that

λ = λ(t) = 16

(
1− exp

(
− t

8

))
and

∫ ∞
0

g(t)dt =
1

8

∫ ∞
0

exp(−2t)dt =
1

16
< 1.

Through a simple calculation, we get

λ∗ = 16 <∞, and

∫ ∞
0

g(t)

∫ t

0

Φ−1

(
1

p(u)

)
dudt =

1

17
<∞,

The function f is a Carathéodory function and f(t, 0) 6= 0 on each subinterval of
[0,∞). So (H111) and (H222) hold.

Taking k = 1010, then λ( 1
k ) < 1 and 0 < µ = 16

17 (1− exp(− 1
8×1010 )) < 1.

Next, in order to demonstrate our main result obtained, we choose a, b, c, A,B
and C such that (H333) and (H444) be satisfied.

By Theorem 5, we conclude that the example (12) has at least three positive
solutions.

Acknowledgment. The author would like to thank Professor Zoubir Dah-
mani for his helpful suggestions
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