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Abstract In this paper, we investigate the relationship between solutions and their derivatives for
the differential equation f (k)+Ak−1 f (k−1)+ ...+A0 f = 0 with k ≥ 2 and entire functions of
finite iterated p−order, when A j ( j = 0, 1, ..., k − 1) are entire functions of finite iterated
p−order in order to generalize and extend the results given by Wang and Lü, Liu and
Zhang and Belaı̈di.
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1. INTRODUCTION AND MAIN RESULT

In this paper, we shall assume that the reader is familiar with the fundamental re-
sults and the standard notations of the Nevanlinna value distribution theory of mero-
morphic functions (see [3] , [8]). For the definition of the iterated order of a mero-
morphic function, we use the same definition as in [4] ,

[
2, p. 317

]
,
[
5, p. 129

]
. For

all r ∈ R, we define exp1 r := er and expp+1 r := exp
(
expp r

)
, p ∈ N. We also define

for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N. More-

over, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1. ([4] , [5]) Let f be a meromorphic function. The iterated p−order
ρp ( f ) of f is defined by

ρp ( f ) = lim
r→+∞

logp T (r, f )

log r
(p ≥ 1 is an integer) , (1.1)

where T (r, f ) is the Nevanlinna characteristic function of f (see [3] , [8]) .
For p = 1, this notation is called: order, and for p = 2 : hyper-order.

Definition 1.2. ([4] , [5]) The finiteness degree of the order of a meromorphic func-
tion f is defined by
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i ( f ) =


0, for f rational,

min
{
j ∈ N : ρ j ( f ) < +∞

}
, for f transcendental for which

some j ∈ N with ρ j ( f ) < +∞ exists,
+∞, for f with ρ j ( f ) = +∞ for all j ∈ N.

(1.2)

Definition 1.3. ([4]) Let f be a meromorphic function. The iterated exponent of
convergence of the sequence of distinct zeros of f (z) is defined by

λp ( f ) = lim
r→+∞

logp N
(
r, 1

f

)
log r

; p ≥ 1 is an integer, (1.3)

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {|z| < r}. For p = 1,

this notation is called: exponent of convergence of the sequence of distinct zeros, and
for p = 2, we get the hyper-exponent of convergence of the sequence of distinct zeros.

Definition 1.4. ([6]) Let f be a meromorphic function. Then the iterated exponent of
convergence of the sequence of distinct fixed points of f (z) is defined by

τp ( f ) = λp ( f − z) = lim
r→+∞

logp N
(
r, 1

f−z

)
log r

; p ≥ 1 is an integer. (1.4)

For p = 1, this notation is called: exponent of convergence of the sequence of distinct
fixed points. However, for p = 2, we get the hyper-exponent of convergence of the
sequence of distinct fixed points (see [7]). Thus τp ( f ) = λp ( f − z) is an indication
of oscillation of distinct fixed points of f (z) .

Definition 1.5. The growth index of the iterated convergence exponent of the se-
quence of zero points of a meromorphic function f with iterated order is defined by

iλ ( f ) =


0 if n

(
r, 1

f

)
= O

(
log r

)
min {n ∈ N : λn ( f ) < ∞} if λn ( f ) < ∞ for some n ∈ N.
∞ if λn ( f ) < ∞ for all n ∈ N

Similarly, we can define the growth index iλ ( f ) of λp ( f ) and iτ ( f ) , iτ ( f )
of τp ( f ) , τp ( f ) .

For k ≥ 2, we consider the linear differential equation

f (k) + A (z) f = 0, (1.5)

where A (z) is a transcendental meromorphic function of finite iterated order ρp (A) =
ρ > 0. Many important results have been obtained on the fixed points of general tran-
scendental meromorphic functions for almost four decades (see [11, 13]). However,
there are a few studies on the fixed points of solutions of differential equations. In
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[15] , Wang and Lü have investigated the fixed points and hyper-order of solutions
of second order linear differential equations with meromorphic coefficients and their
derivatives. They have obtained the following result:

Theorem A ([15]) Suppose that A (z) is a transcendental meromorphic function sat-
isfying δ (∞, A) = lim

r→+∞
m(r,A)
T (r,A) = δ > 0, ρ (A) = ρ < +∞. Then every meromorphic

solution f (z) /≡ 0 of the equation

f
′′
+ A (z) f = 0 (1.6)

is such that f , f
′

and f
′′

have infinitely many fixed points and

τ ( f ) = τ
(

f
′)
= τ

(
f
′′)
= ρ ( f ) = +∞, (1.7)

τ2 ( f ) = τ2
(

f
′)
= τ2

(
f
′′)
= ρ2 ( f ) = ρ. (1.8)

Theorem A has been generalized to higher order differential equations by Liu
and Zhang as follows (see [13]):

Theorem B ([13]) Suppose that k ≥ 2 and A (z) is a transcendental meromorphic
function satisfying δ (∞, A) = lim

r→+∞
m(r,A)
T (r,A) = δ > 0, ρ (A) = ρ < +∞. Then every

meromorphic solution f (z) , 0 of (1.4) , has the property: f and f
′
, f
′′
, ..., f (k) all

have infinitely many fixed points and

τ ( f ) = τ
(

f
′)
= τ

(
f
′′)
= ... = τ

(
f (k)

)
= ρ ( f ) = +∞, (1.9)

τ2 ( f ) = τ2
(

f
′)
= τ2

(
f
′′)
= ... = τ2

(
f (k)

)
= ρ2 ( f ) = ρ. (1.10)

Theorem A and B have been generalized by B. Belaidi for iterated p-order
(see [2]):
Theorem C ([2]) Let k > 2 and A (z) be transcendental meromorphic function of
finite iterated order ρp (A) = ρ > 0 such that δ (∞, A) = lim

r→+∞
m(r,A)
T (r,A) = δ > 0.

Suppose, moreover, that either:
(i) all poles of f are of uniformly multiplicity or that
(ii) δ (∞, f ) > 0.
If φ , 0 is a meromorphic function with finite iterated p−order ρp (φ) < +∞, then
every meromorphic solution f (z) , 0 of (1.5), satisfies

λp ( f − φ) = λp
(

f
′ − φ

)
= ... = λp

(
f (k) − φ

)
= ρp ( f ) = +∞, (1.11)

and
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λp+1 ( f − φ) = λp+1
(

f
′ − φ

)
= ... = λp+1

(
f (k) − φ

)
= ρp+1 ( f ) = ρ. (1.12)

For k ≥ 2, we consider the linear differential equation

f (k) + Ak−1 f (k−1) + ... + A0 f = 0, k ≥ 2, (1.13)

where A j ( j = 0, 1, ..., k − 1) are entire functions of finite iterated p−order.

The main purpose of this paper is to study the relation between solutions and
their derivatives of the differential equation (1.13) and entire functions of finite iter-
ated p−order where we generalize and extend the results of Wang and Lü, Liu and
Zhang and Belaidi. In fact, we prove the following result:

Theorem 1.1. Let k ≥ 2 and (A j) j=0,1,2,...k−1 be entire functions of finite iterated
p-order such that i (A0) = p; 0 < p < ∞. Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or
max

{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

If φ (z) , 0 is an entire function with i (φ) < p + 1 or ρp+1 (φ) < ρp (A0), then every
solution f (z) , 0 of (1.13) satisfies

iλ
(

f (i) − φ
)
= iλ

(
f (i) − φ

)
= i ( f ) = p + 1, i ∈ N (1.14)

and

λp+1
(

f (i) − φ
)
= λp+1

(
f (i) − φ

)
= ρp+1 ( f ) = ρp (A0) , i ∈ N. (1.15)

For φ (z) = z in Theorem 1.1, we obtain the following corollaries:

Corollary 1.1. Let k ≥ 2 and (A j) j=0,1,2,...k−1 be entire functions of finite iterated
p-order such that i (A0) = p(0 < p < ∞). Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or
max

{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

Then every solution f (z) , 0 of (1.13), is such that all the derivatives f (i) (i ∈ N) have
infinitely many fixed points and we have

i
τ

(
f (i)

)
= iτ

(
f (i)

)
= i ( f ) = p + 1, i ∈ N (1.16)
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and

τp+1
(

f (i)
)
= τp+1

(
f (i)

)
= ρp+1 ( f ) = ρp (A0) = ρ, i ∈ N. (1.17)

Corollary 1.2. Suppose that k ≥ 2 and A (z) is a transcendental entire function such
that 0 < ρp (A) = ρ < +∞. If φ (z) , 0 is an entire function with i (φ) < p + 1 or
ρp+1 (φ) < ρ, then every solution f (z) , 0 of (1.5) satisfies (1.14) and (1.15).

2. AUXILIARY LEMMATA

To prove our main results, we need the following lemmata.

Lemma 2.1. [6] Suppose that A0, A1, ..., Ak−1, F (. 0) are meromorphic functions
and let f be a meromorphic solution of the equation

f (k) + Ak−1 f (k−1) + ... + A1 f
′
+ A0 f = F, (2.1)

such that i ( f ) = ρ + 1 (0 < p < ∞) . If either
max

{
i (F) , i

(
A j

)
j = 0, 1, ..., k − 1

}
< p + 1

or
max

{
ρp+1 (F) , ρp+1

(
A j

)
j = 0, 1, ..., k − 1

}
< ρp+1 ( f ) ,

then we have iλ ( f ) = iλ ( f ) = i ( f ) = p + 1 and λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) .

Lemma 2.2. (see Remark 1.3 of [10]). If f is a meromorphic function with i ( f ) = p,
then ρp

(
f
′)
= ρp ( f ).

Lemma 2.3. ([10]) Let k ≥ 2 and A j ( j = 0, 1, ..., k − 1) be entire functions of finite
iterated p-order such that i (A0) = p, (0 < p < ∞). Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or
max

{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

Then every solution f (z) , 0 of (1.13) satisfies i ( f ) = p + 1 and ρp+1 ( f ) = ρp (A0) .

Let A j ( j = 0, 1, ..., k − 1) be entire functions. We define the following sequence of
functions: 

A0
j = A j, j = 0, 1, ..., k − 1

Ai
k−1 = Ai−1

k−1 −

(
Ai−1

0

)′
Ai−1

0

, i ∈ N

Ai
j = Ai−1

j + Ai−1
j+1

(
Ψi−1

j+1

)′
Ψi−1

j+1

, j = 0, 1, ..., k − 2, i ∈ N,

(2.2)
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where Ψi−1
j+1 =

Ai−1
j+1

Ai−1
0

.

Remark 2.1. In the case where one of functions Ai
j ( j = 0, 1, ..., k − 1) is equal to

zero then Ai+1
j = Ai

j−1 ( j = 0, 1, ..., k − 1) .

Lemma 2.4. Assume that f is an entire solution of (1.13) . Then gi = f (i) is an entire
solution of the equation

g(k)
i + Ai

k−1g(k−1)
i + ... + Ai

0gi = 0, (2.3)

where Ai
j ( j = 0, 1, ..., k − 1) are given by (2.2).

Proof. Assume that f is a solution of equation (1.13) and let gi = f (i). We prove that
gi is an entire solution of the equation (2.11) . Our proof is by induction: For i = 1,
differentiating both sides of (1.13) , we obtain

f (k+1) + Ak−1 f (k) +
(
A
′
k−1 + Ak−2

)
f (k−1) + ... +

(
A
′
1 + A0

)
f
′
+ A

′
0 f = 0, (2.4)

and replacing f by

f = − ( f (k) + Ak−1 f (k−1) + ... + A1 f
′
)

A0
,

we get

f (k+1)+

Ak−1 −
A
′
0

A0

 f (k)+

A
′
k−1 + Ak−2 − Ak−1

A
′
0

A0

 f (k−1)...+

A
′
1 + A0 − A1

A
′
0

A0

 f
′
= 0.

That is
g(k)

1 + A1
k−1g(k−1)

1 + A1
k−2g(k−2)

1 ... + A1
0g1 = 0.

Suppose that the assertion is true for the values which are strictly smaller than a
certain i. We suppose gi−1 is a solution of the equation

g(k)
i−1 + Ai−1

k−1g(k−1)
i−1 + Ai−1

k−2g(k−2)
i−1 ... + Ai−1

0 gi−1 = 0. (2.5)

Differentiating (2.5) , we can write

g(k+1)
i−1 + Ai−1

k−1g(k)
i−1 +

((
Ai−1

k−1

)′
+ Ak−2

)
g(k−1)

i−1 + ...

+

((
Ai−1

1

)′
+ Ai−1

0

)
g
′
i−1 + A

′
0gi−1 = 0. (2.6)

In (2.6) , replacing gi−1 by

gi−1 = −
(g(k)

i−1 + Ai−1
k−1g(k−1)

i−1 + Ai−1
k−2g(k−2)

i−1 ... + A (gi−1)
′
)

Ai−1
0

,
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yields

g(k+1)
i−1 +

Ai−1
k−1 −

(
Ai−1

0

)′
Ai−1

0

 g(k)
i−1 +

(Ai−1
k−1

)′
+ Ak−2 − Ai−1

k−1

(
Ai−1

0

)′
Ai−1

0

 g(k−1)
i−1 ...+

+

(Ai−1
1

)′
+ Ai−1

0 − Ai−1
1

(
Ai−1

0

)′
Ai−1

0

 g
′
i−1 = 0. (2.7)

That is
g(k)

i−1 + Ai−1
k−1g(k−1)

i−1 + Ai−1
k−2g(k−2)

i−1 ... + Ai−1
0 gi−1 = 0.

Lemma 2.4 is thus proved.

Lemma 2.5. Let A j ( j = 0, 1, ..., k − 1) be entire functions of finite order. Assume
that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or
max

{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞,

and let Ai
j, ( j = 0, 1, ..., k−1) be defined as in (2.2). Then all nontrivial meromorphic

solution g of the equation

g(k) + Ai
k−1g(k−1) + ... + Ai

0g = 0, k ≥ 2 (2.8)

satisfy : i (g) = p + 1 and ρp+1 (g) = ρ.

Proof. Let { f1, f2, ..., fk} be a fundamental system of solutions of (1.13). We show
that

{
f (i)
1 , f (i)

2 , ..., f (i)
k

}
is a fundamental system of solutions of (2.8). By Lemma 2.4,

it follows that f (i)
1 , f (i)

2 , ..., f (i)
k is a solutions (2.8) . Let α1, α2, ..., αk be constants such

that
α1 f (i)

1 + α2 f (i)
2 + ... + αk f (i)

k = 0.

Then, we have
α1 f1 + α2 f2 + ... + αk fk = P (z) ,

where P (z) is a polynomial of degree less than i. Since α1 f1 + α2 f2 + ... + αk fk is
a solution of (1.13), then P is a solution of (1.13), and by Lemma 2.3, we conclude
that P is an infinite solution of (1.13); this leads to a contradiction. Therefore, P
is a trivial solution. We deduce that α1 f1 + α2 f2 + ... + αk fk = 0. Using the fact
that { f1, f2, ..., fk} is a fundamental system of solutions of (1.13), we get α1 = α2 =

... = αk = 0. Now, let g be a non trivial solution of (2.8). Then, using the fact
that

{
f (i)
1 , f (i)

2 , ..., f (i)
k

}
is a fundamental solution of (2.8) , we claim that there exist
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constants α1, α2, ..., αk not all equal to zero, such that g = α1 f (i)
1 +α2 f (i)

2 + ...+αk f (i)
k .

Let h = α1 f1+α2 f2+...+αk fk, h be a solution of (1.13) and h(i) = g.Hence, by Lemma
2.2, we have ρp+1 (h) = ρp+1 (g) , and by Lemma 2.3, we have i (h) = i (g) = p + 1
and ρp+1 (h) = ρp+1 (g) = ρ.

3. PROOF OF THEOREM 1.1

Assume that f is a solution of equation (1.13) . By Lemma 2.3, we can write i ( f ) =
p + 1, ρp+1 ( f ) = ρp (A0) . Taking gi = f (i), then, using Lemma 2.2, we have i (gi) =
p+1, ρp+1 (gi) = ρp (A0) . Now, let w (z) = gi (z)−φ (z) , where φ is an entire function
with ρp+1 (φ) < ρp (A0) .
Then i (w) = i (gi) = p + 1, and ρp+1 (w) = ρp+1 (gi) = ρp+1 ( f ) = ρ (A0) .
In order to prove iλ (gi − φ) = iλ (gi − φ) = p + 1 and λp+1 (gi − φ) = λp+1 (gi − φ) =
ρ (A0), we need to prove only iλ (w) = iλ (w) = p + 1 and λp+1 (w) = ρ (A0) . Using
the fact that gi = w + φ, and by Lemma 2.4 we get

w(k) + Ai
k−1w(k−1) + ... + Ai

0w = −
(
φ(k) + Ai

k−1φ
(k−1) + ... + Ai

0φ
)
= F. (3.1)

By ρp

(
Ai

j

)
< ∞, ρp+1 (φ) < ρp (A0) and Lemma 2.3, we get F . 0 and ρp+1 (F) < ∞.

By Lemma 2.4 iλ (w) = iλ (w) = p + 1 and λp+1 (w) = λp+1 (w) = ρp+1 (w) = ρ (A0) .
The proof of theorem 1.1 is complete.
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