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NEW INEQUALITIES FOR A CLASS OF DIFFERENTIABLE
FUNCTIONS

Z. DAHMANI1∗

Abstract. In this paper, we use the Riemann-Liouville fractional integrals to
establish some new integral inequalities related to Chebyshev’s functional in the
case of two differentiable functions.

1. Introduction and Basic Definitions

Let us consider

T (f, g) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1

b− a

(∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)
(1.1)

where f and g are two integrable functions on [a, b] [4].
The relation (1.1) has evoked the interest of many researchers and several inequali-
ties related to this functional have appeared in the literature, to mention a few, see
[1, 2, 6, 7] and the references cited therein.
The main aim of this paper is to establish some new inequalities for (1.1) by us-
ing the Riemann-Liouville fractional integrals. We give our results in the case of
differentiable functions.
We shall introduce the following spaces which are used throughout this paper.
Let C([0,∞[) the space of all continuous functions from [0,∞[ into R and let
L∞([0,∞[) the space of essentially bounded functions f(x) on [0,∞[, with the norm

||f ||∞ := inf{C ≥ 0, |f(x)| ≤ C; for almost every x ∈ [0,∞[}.
For the Riemann-Liouville integrals, we give the following definitions and properties.

Definition 1.1. A real valued function f(t), t ≥ 0 is said to be in the space
Cµ, µ ∈ R if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C([0,∞[).

Definition 1.2. A function f(t), t ≥ 0 is said to be in the space Cn
µ , µ ∈ R, if

f (n) ∈ Cµ
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Definition 1.3. The Riemann-Liouville fractional integral operator of order α ≥ 0,
for a function f ∈ Cµ, (µ ≥ −1) is defined as

Jαf(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),
(1.2)

where Γ(α) :=
∫∞

0
e−uuα−1du.

For the convenience of establishing the results, we give the semigroup property:

JαJβf(t) = Jα+βf(t), α ≥ 0, β ≥ 0, (1.3)

which implies the commutative property

JαJβf(t) = JβJαf(t). (1.4)

For more details, one can consult [8].

2. Main Results

Theorem 2.1. Let f and g be two differentiable functions on [0,∞[ such that
f ′, g′ ∈ L∞([0,∞[). Then for all t > 0, α > 0, we have:∣∣∣ tα

Γ(α + 1)
Jαfg(t)− Jαf(t)Jαg(t)

∣∣∣
≤ ||f ′||∞||g′||∞

[
tα

Γ(α+1)
Jαt2 − (Jαt)2

]
.

(2.1)

Proof. Let f and g be two functions satisfying the conditions of Theorem 2.1.
Define

H(τ, ρ) := (f(τ)− f(ρ))(g(τ)− g(ρ)); τ, ρ ∈ (0, t), t > 0. (2.2)

Multiplying (2.2) by (t−τ)α−1

Γ(α)
; τ ∈ (0, t) and integrating the resulting identity with

respect to τ from 0 to t, we can state that

1

Γ(α)

∫ t

0

(t− τ)α−1H(τ, ρ)dτ

= Jαfg(t)− f(ρ)Jαg(t)− g(ρ)Jαf(t) + f(ρ)g(ρ) tα

Γ(α+1)
.

(2.3)

Now, multiplying (2.3) by (t−ρ)α−1

Γ(α)
; ρ ∈ (0, t) and integrating the resulting identity

with respect to ρ over (0, t), we can write

1

Γ2(α)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)α−1H(τ, ρ)dτdρ

= 2
(

tα

Γ(α+1)
Jαfg(t)− Jαf(t)Jαg(t)

)
.

(2.4)

On the other hand, we have

H(τ, ρ) =

∫ ρ

τ

∫ ρ

τ

f ′(y)g′(z)dydz. (2.5)



FRACTIONAL INTEGRAL INEQUALITIES... 21

Since f ′, g′ ∈ L∞([0,∞[), then we can write

|H(τ, ρ)| ≤
∣∣∣ ∫ ρ

τ

f ′(y)dy
∣∣∣∣∣∣ ∫ ρ

τ

g′(z)dz
∣∣∣ ≤ ||f ′||∞||g′||∞(τ − ρ)2. (2.6)

Consequently,

1

Γ2(α)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)α−1|H(τ, ρ)|dτdρ

≤ ||f ′||∞||g′||∞
Γ2(α)

∫ t
0

∫ t
0
(t− τ)α−1(t− ρ)α−1(τ 2 − 2τρ+ ρ2)dτdρ.

(2.7)

Thus, we obtain the following estimate

1

Γ2(α)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)α−1|H(τ, ρ)|dτdρ

≤ ||f ′||∞||g′||∞
[

tα

Γ(α+1)
Jαt2 − 2(Jαt)2 + tα

Γ(α+1)
Jαt2

]
.

(2.8)

By the relations (2.4),(2.8) and using the properties of the modulus, we get the
desired inequality (2.1). �

Remark 2.2. Applying Theorem 2.1 for α = 1, we obtain (Corollary 6.2 of[7] on
[0, t]): ∣∣∣t∫ t

0

f(τ)g(τ)dτ −
(∫ t

0

f(τ)dτ
)(∫ t

0

g(τ)dτ
)∣∣∣ ≤ t4/12.

Our next result is the following theorem, in which we use two real positive pa-
rameters.

Theorem 2.3. Let f and g be two differentiable functions on [0,∞[ such that
f ′, g′ ∈ L∞([0,∞[). Then for all t > 0, α > 0, β > 0, we have

∣∣∣ tα

Γ(α + 1)
Jβfg(t) +

tβ

Γ(β + 1)
Jαfg(t)− Jαf(t)Jβg(t)− Jβf(t)Jαg(t)

∣∣∣
≤ ||f ′||∞||g′||∞

[
tα

Γ(α+1)
Jβt2 − 2(Jαt)(Jβt) + tβ

Γ(β+1)
Jαt2

]
.

(2.9)

Proof. The relation (2.3) implies that

1

Γ(α)Γ(β)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)β−1H(τ, ρ)dτdρ

= tα

Γ(α+1)
Jβfg(t) + tβ

Γ(β+1)
Jαfg(t)− Jαf(t)Jβg(t)− Jβf(t)Jαg(t).

(2.10)

On the other hand, the relation (2.6) implies that

1

Γ(α)Γ(β)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)β−1|H(τ, ρ)|dτdρ

≤ ||f ′||∞||g′||∞
Γ(α)Γ(β)

∫ t
0

∫ t
0
(t− τ)α−1(t− ρ)β−1(τ − ρ)2dτdρ.

(2.11)

Using (2.10) and (2.11), we get the inequality (2.9). �
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Remark 2.4. Applying Theorem 2.3 for α = β we obtain Theorem 2.1.

The following results have some applications in the perturbed quadrature rules
(see, for example, [3, 5]).

Theorem 2.5. Let f and g be two differentiable functions on [0,∞[ with g′(t) 6=
0, t ∈ [0,∞[. If there exists a constant M > 0 such that

∣∣∣f ′(t)g′(t)

∣∣∣ ≤ M, then for all

α > 0, β > 0, we have

∣∣∣ tα

Γ(α + 1)
Jβfg(t) +

tβ

Γ(β + 1)
Jαfg(t)− Jαf(t)Jβg(t)− Jβf(t)Jαg(t)

∣∣∣
≤M

[
tβ

Γ(β+1)
Jαg2(t) + tα

Γ(α+1)
Jβg2(t)− 2Jαg(t)Jβg(t)

]
.

(2.12)

Proof. Let f and g be two functions satisfying the conditions of Theorem 2.5. Then
for every τ, ρ ∈ [0, t]; τ = ρ, t > 0 there exists a c between τ and ρ so that

f(τ)− f(ρ)

g(τ)− g(ρ)
=
f ′(c)

g′(c)
.

Hence for every τ, ρ ∈ [0, t]; t > 0, we have

|f(τ)− f(ρ)| ≤M |g(τ)− g(ρ)|. (2.13)

This implies that ∣∣∣H(τ, ρ)
∣∣∣ ≤M

(
g(τ)− g(ρ)

)2

, τ, ρ ∈ [0, t]. (2.14)

Then, it follows that

1

Γ(α)Γ(β)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)β−1|H(τ, ρ)|dτdρ

≤ M
Γ(α)Γ(β)

∫ t
0

∫ t
0
(t− τ)α−1(t− ρ)β−1

(
g2(τ)− 2g(τ)g(ρ) + g2(ρ)

)
dτdρ.

(2.15)

Therefore,

1

Γ(α)Γ(β)

∫ t

0

∫ t

0

(t− τ)α−1(t− ρ)β−1|H(τ, ρ)|dτdρ

≤M
[

tβ

Γ(β+1)
Jαg2(t) + tα

Γ(α+1)
Jβg2(t)− 2Jαg(t)Jβg(t)

]
.

(2.16)

Theorem 2.5 is thus proved. �

Corollary 2.6. Let f and g be two differentiable functions on [0,∞[; with g′(t) 6=
0, t ∈ [0,∞[. If there exists a constant M > 0 such that

∣∣∣f ′(t)g′(t)

∣∣∣ ≤ M, then for all

α > 0, we have:
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∣∣∣ tα

Γ(α + 1)
Jαfg(t)− Jαf(t)Jαg(t)

∣∣∣
≤M

[
tα

Γ(α+1)
Jαg2(t)− (Jαg(t))2

]
.

(2.17)

Proof. We apply Theorem 2.5 for α = β. �

Remark 2.7. Applying Theorem 2.5 for α = β = 1, we obtain ( Corollary 4.2 of[7]
on [0, t]): ∣∣∣t∫ t

0

f(τ)g(τ)dτ −
(∫ t

0

f(τ)dτ
)(∫ t

0

g(τ)dτ
)∣∣∣

M ≤
[
t
∫ t

0
g2(τ)dτ −

( ∫ t
0
g(τ)dτ

)2]
.

(2.18)
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