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1. Introduction
The study of integral inequalities is an important research

subject in mathematical analysis. These inequalities have
many applications in differential equations, probability theory
and statistical problems, but one of the most useful appli-
cations is to establish uniqueness of solutions in fractional
boundary value problems. For detailed applications on the
subject, one may refer to [9–12], and the references cited
therein. Moreover, the integral inequalities involving frac-
tional integration are also of great importance. For some
earlier work on the topic, we refer to [2–5, 7, 8, 14, 16, 17]. In
[9], P. Kumar presented new results involving higher moments
for continuous random variables. Also the author established
some estimations for the central moments. Other results based
on Gruss inequality and some applications of the truncated
exponential distribution have been also discussed by the au-
thor. In [10], Ostrowski type integral inequalities involving
moments of a continuous random variable defined on a finite
interval, is established. In [3], the author established several
inequalities for the fractional dispersion and the fractional

variance functions of continuous random variables. Recently,
A. Akkurt et al. [1] proposed new generalizations of the re-
sults in [3]. Very recently, Z. Dahmani [4, 6] presented new
fractional integral results for the fractional moments of contin-
uous random variables by correcting some results in [3]. In a
very recent work, M. Tomar et al. [17] proposed new integral
inequalities for the (k,s)−fractional expectation and variance
functions of a continuous random variable.
Motivated by the results presented in [3, 4, 6, 14, 17], in this
paper, we present some random variable integral inequalities
for the (k,s)−fractional operator.

2. Preliminaries
We recall the notations and definitions of the (k,s)−fractional
integration theory [13, 14, 17].

Definition 2.1. The Riemann–Liouville fractional integral of
order α ≥ 0, for a continuous function f on [a,b] is defined
by

Jα
a [ f (t)] = 1

Γ(α)

∫ t
a (t− τ)α−1 f (τ)dτ; α ≥ 0, a < t ≤ b ,

(2.1)

where Γ(α) =
∫

∞

0 e−uuα−1du.

Definition 2.2. The k−Riemann–Liouville fractional integral
of order α > 0, for a continuous function f on [a,b] is defined
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by

kJα
a [ f (t)] = 1

kΓk(α)

∫ t
a (t− τ)

α

k −1 f (τ)dτ; α > 0, a < t ≤ b ,

(2.2)

where Γk (α) =
∫

∞

0 e−
uk
k uα−1du.

Definition 2.3. The (k,s)−Riemann-Liouville fractional in-
tegral of order α > 0, for a continuous function f on [a,b] is
defined as

k
sJα

a [ f (t)] = (s+1)1− α
k

kΓk(α)

∫ t
a
(
ts+1− τs+1

) α

k −1
τs f (τ)dτ; α > 0, a < t ≤ b ,

(2.3)

where k > 0, s ∈ R\{−1} .

Theorem 2.4. Let f be continuous on [a,b] , k > 0, and s ∈
R\{−1} . Then,

k
sJα

a

[
k
sJβ

a [ f (t)]
]
= k

sJα+β
a [ f (t)] = k

sJβ
a
[

k
sJα

a [ f (t)]
]
, k > 0, s ∈ R\{−1} ,

(2.4)

for all α > 0, β > 0,a < t ≤ b.

Theorem 2.5. Let α > 0, β > 0, k > 0 and s ∈ R\{−1} .
Then, we have

k
sJα

a

[(
ts+1−as+1

) β

k −1
]
= Γk(β )

(s+1)
α
k Γk(α+β )

(
ts+1−as+1

) β+α

k −1
,

(2.5)

Remark 2.6. (i) : Taking s = 0, k > 0 in (5) , we obtain

kJα
a

[
(t−a)

β

k −1
]
= Γk(β )

Γk(α+β ) (t−a)
β+α

k −1 ,α,β > 0,a > 0,k > 0 .

(2.6)

(ii) : The formula (5) , for s = 0 and k = 1 becomes

Jα
a

[
(t−a)β−1

]
= Γ(β )

Γ(α+β ) (t−a)β+α−1 . (2.7)

Corollary 2.7. Let k > 0 and s ∈ R\{−1} . Then, for any
α > 0, we have

k
sJα

a [1] = 1

(s+1)
α
k Γk(α+k)

(
ts+1−as+1

) α

k −2
. (2.8)

Remark 2.8. (i) : For s = 0, k > 0 in (8) , we get

kJα
a [1] = 1

Γk(α+k) (t−a)
α

k −2 . (2.9)

(ii) : For s = 0, k = 1 in (8) , we have

Jα
a [1] = 1

Γ(α+1) (t−a)β−2 . (2.10)

For more details on (k,s)−fractional integral, we refer the
reader to [14, 17].

We recall also the following definitions [3, 4, 17]

Definition 2.9. The (k,s)−fractional expectation function of
order α > 0, for a random variable X with a positive p.d. f .
f defined on [a,b] is defined as

k
sEX ,α (t) :=

(s+1)1− α

k

kΓk (α)

t∫
a

(
ts+1− τ

s+1) α

k −1
τ

s+1 f (τ)dτ,

(2.11)

α > 0,k > 0,s ∈ R\{−1} and a < t ≤ b.

Definition 2.10. The (k,s)−fractional expectation function
of order α > 0 for the random variable X −E (X) with a
positive probability density function f defined on [a,b] is
defined as

k
sEX−E(X),α (t) :=

(s+1)1− α

k

kΓk (α)

t∫
a

(
ts+1− τ

s+1) α

k −1
τ

s (τ−E (X)) f (τ)dτ,

(2.12)

α > 0,k > 0,s ∈ R\{−1} and a < t ≤ b.

Definition 2.11. The (k,s)−fractional variance function of
order α > 0 for a random variable X having a positive p.d. f .
f on [a,b] is defined as

k
sσ

2
X ,α (t) :=

(s+1)1− α

k

kΓk (α)

t∫
a

(
ts+1− τ

s+1) α

k −1
τ

s (τ−E (X))2 f (τ)dτ,

(2.13)

α > 0,k > 0,s ∈ R\{−1} and a < t ≤ b.

We introduce also the following definition.

Definition 2.12. The (k,s)−fractional moment function of
orders r > 0, α > 0 for a continuous random variable X
having a p.d. f . f defined on [a,b] is defined as

k
sMr,α (t) :=

(s+1)1− α

k

kΓk (α)

t∫
a

(
ts+1− τ

s+1) α

k −1
τ

s+r f (τ)dτ,

(2.14)

α > 0,k > 0,s ∈ R\{−1} and a < t ≤ b.

Remark 2.13. If we take s = 0,α = k = 1 in Definition 12,
we obtain the classical moment of order r > 0 given by Mr :=
b∫
a
τr f (τ)dτ .

We define the quantities that will be used later:

H (τ,ρ) :=(g(τ)−g(ρ))(h(τ)−h(ρ)) , τ,ρ ∈ (a, t) , a< t ≤ b,

(2.15)
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and

ϕ
α
k,s (t,τ) :=

(s+1)1− α

k

Γk (α)

(
ts+1− τ

s+1) α

k −1
τ

s p(τ) ,k> 0,s∈R/{−1} τ ∈ (a, t) ,

(2.16)

where p : [a,b]→ R+ is a continuous function.

3. Inequalities for (k,s)− operator
We prove:

Theorem 3.1. Let X be a continuous random variable having
a p.d. f . f : [a,b]→ R+.

(i) : If f ∈ L∞ [a,b], then for all a < t ≤ b and α > 0,k >
0,s ∈ R\{−1} ,

k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),α (t)− k

sEX−E(X),α (t) k
sMr−1,α (t)

≤ ‖ f‖2
∞

[
k
sJα

a [1] k
sJα

a [tr]− k
sJα

a [t)] k
sJα

a
[
tr−1]] , (3.1)

(ii) : for all a < t ≤ b, the inequality
k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),α (t)− k

sEX−E(X),α (t) k
sMr−1,α (t)

≤ 1
2
(t−a)

(
tr−1−ar−1)( k

sJα
a [ f (t)]

)2
, (3.2)

is also valid for α > 0,k > 0,s ∈ R/{−1} .

Proof. Using (2.15) and (2.16), we can write

t∫
a

ϕ
α
k,s (t,τ)H (τ,ρ)dτ =

t∫
a

ϕ
α
k,s (t,τ)(g(τ)−g(ρ))(h(τ)−h(ρ))dτ.

(3.3)

Then ∫ t

a

∫ t

a
ϕ

α
k,s (t,τ)ϕ

α
k,s (t,ρ)H (τ,ρ)dτdρ (3.4)

=
∫ t

a

∫ t

a
ϕ

α
k,s (t,τ)ϕ

α
k,s (t,τ)(g(τ)−g(ρ))(h(τ)−h(ρ))dτdρ.

Hence

(s+1)2(1− α

k )

k2Γ2
k (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s(3.5)

×p(τ) p(ρ)(g(τ)−g(ρ))(h(τ)−h(ρ))dτdρ

= 2 k
sJα

a [p(t)] k
sJα

a [pgh(t)]−2 k
sJα

a [pg(t)] k
sJα

a [ph(t)] .

In (3.5), we choose p(t) = f (t), g(t) = t−E(X) and h(t) =
tr−1, t ∈ (a,b), we obtain

(s+1)2(1− α

k )

k2Γ2
k (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s (3.6)

×(τ−ρ)
(
τ

r−1−ρ
r−1) f (τ) f (ρ)dτdρ

= 2 k
sJα

a [ f (t)] k
sJα

a
[
tr−1(t−E(X)) f (t)

]
−2 k

sJα
a [(t−E(X)) f (t)] k

sJα
a
[
tr−1 f (t)

]
= 2 k

sJα
a [ f (t)] k

sEXr−1(X−E(X)),α (t)−2
(

k
sEX−E(X),α (t)

)
k
sMr−1,α (t) .

Using the fact f ∈ L∞ ([a,b]), we can write

(s+1)2(1− α

k )

k2Γ2
k (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s (3.7)

×(τ−ρ)
(
τ

r−1−ρ
r−1) f (τ) f (ρ)dτdρ

≤ ‖ f‖2
∞

(s+1)2( α

k −1)

k2Γ2 (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1)dτdρ

= ‖ f‖2
∞

[
2 k

sJα
a [1] k

sJα
a [tr]−2 k

sJα
a [t] k

sJα
a
[
tr−1]] .

By (3.6) and (3.7), we have

k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),α (t)−

(
k
sEX−E(X),α (t)

)
k
sMr−1,α (t)

≤ ‖ f‖2
∞

[
k
sJα

a [1] k
sJα

a [tr]− k
sJα

a [t] k
sJα

a
[
tr−1]] . (3.8)

Since sup
τ,ρ∈[a,t]

[
|τ−ρ|

∣∣τr−1−ρr−1
∣∣] = (t−a)

(
tr−1−ar−1

)
,

then we observe that

(s+1)2(1− α

k )

k2Γ2 (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1) f (τ) f (ρ)dτdρ (3.9)

≤ sup
τ,ρ∈[a,t]

[
|τ−ρ|

∣∣τr−1−ρ
r−1∣∣] (s+1)2( α

k −1)

k2Γ2 (α)

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1

×
(
ts+1−ρ

s+1) α

k −1
τ

s
ρ

s f (τ) f (ρ)dτdρ

= (t−a)
(
tr−1−ar−1)(k

sJα
a [ f (t)])2.

Thanks to (3.6) and (3.9), we obtain

k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),α (t)−

(
k
sEX−E(X),α (t)

)
k
sMr−1,α (t)

≤ (t−a)
(
tr−1−ar−1)(k

sJα
a [ f (t)])2. (3.10)

We prove also the following result:

Theorem 3.2. Let X be a continuous random variable having
a p.d. f . f : [a,b]→ R+. Then we have:

(i∗) For any k > 0,s ∈ R/{−1} and α > 0,β > 0,

k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),β (t)+

k
sJβ

a [ f (t)] k
sEXr−1(X−E(X)),α (t)

− k
sEX ,α (t) k

sMr−1,β (t)− k
sEX ,β (t)

k
sMr−1,α(t) (3.11)

≤ ‖ f‖2
∞

[
k
sJα

a [1] k
sJβ

a [tr]+ k
sJβ

a [1] k
sJα

a [tr]

− k
sJα

a [t] k
sJβ

a
[
tr−1]− k

sJβ
a [t] s

kJα
a
[
tr−1]] , a < t ≤ b,

where f ∈ L∞ [a,b] .
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(ii∗) The inequality

k
sJα

a [ f (t)] k
sEXr−1(X−E(X)),β (t)+

k
sJβ

a [ f (t)] k
sEXr−1(X−E(X)),α (t)

− k
sEX ,α (t) k

sMr−1,β (t)− k
sEX ,β (t)

k
sMr−1,α(t) (3.12)

≤ (t−a)
(
tr−1−ar−1) k

sJα
a [ f (t)] k

sJβ
a [ f (t)] , a < t ≤ b

is also valid for any k > 0,s ∈ R/{−1} and α > 0, β > 0.

Proof. Multiplying both sides of (3.4) by ϕ
β

k,s (t,ρ) , where

ϕ
β

k,s (t,ρ) :=
(s+1)1− α

k

Γk (α)

(
ts+1−ρ

s+1) α

k −1
τ

s p(τ) , ρ ∈ (a, t) , a< t ≤ b,

(3.13)

we can obtain∫ t

a

∫ t

a
ϕ

α
k,s (t,τ)ϕ

β

k,s (t,ρ)H (τ,ρ)dτdρ (3.14)

=
∫ t

a

∫ t

a
ϕ

α
k,s (t,τ)ϕ

β

k,s (t,ρ)(g(τ)−g(ρ))(h(τ)−h(ρ))dτdρ.

Hence,

(s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1
(3.15)

×τ
s
ρ

s p(τ) p(ρ)(g(τ)−g(ρ))(h(τ)−h(ρ))dτdρ

= k
sJα

a [p(t)] k
sJβ

a [pgh(t)]+ k
sJβ

a [p(t)] k
sJα

a [pgh(t)]

− k
sJα

a [ph(t)] k
sJβ

a [pg(t)]− k
sJβ

a [ph(t)] k
sJα

a [pg(t)] .

In (3.15), we take p(t) = f (t), g(t) = t−E(X), h(t) = tr−1.
So, we get

(s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1)) f (τ) f (ρ)dτdρ (3.16)

= k
sJα

a [ f (t)] k
sJβ

a
[
tr−1(t−E(X)) f (t)

]
+ k

sJβ
a [ f (t)] k

sJα
a
[
tr−1(t−E(X)) f (t)

]
− k

sJα
a [(t−E(X)) f (t)] k

sJβ
a
[
tr−1 f (t)

]
− k

sJβ
a [(t−E(X)) f (t)] k

sJα
a
[
tr−1 f (t)

]
= k

sJα
a [ f (t)] k

sEXr−1(X−E(X)),β (t)+
k
sJβ

a [ f (t)] k
sEXr−1(X−E(X)),α (t)

− k
sEX ,α (t) k

sMr−1,β (t)− k
sEX ,β (t)

k
sMr−1,α(t).

We have also

(s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1) f (τ) f (ρ)dτdρ (3.17)

≤ ‖ f‖2
∞

(s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1)dτdρ

= ‖ f‖2
∞

[
k
sJα

a [1] k
sJβ

a [tr]+ k
sJβ

a [1] k
sJα

a [tr]

− k
sJα

a [t] k
sJβ

a
[
tr−1]− k

sJβ
a [t] k

sJα
a
[
tr−1]] .

By (3.16) and (3.17), we obtain (3.11).
To prove (3.12), we remark that

(s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1
τ

s
ρ

s

×(τ−ρ)
(
τ

r−1−ρ
r−1) f (τ) f (ρ)dτdρ (3.18)

≤ sup
τ,ρ∈[a,t]

|(τ−ρ|
∣∣τr−1−ρ

r−1∣∣ (s+1)2
(

1− α+β

k

)
k2Γk (α)Γk (β )

t∫
a

t∫
a

(
ts+1− τ

s+1) α

k −1 (
ts+1−ρ

s+1) β

k −1

×τ
s
ρ

s f (τ) f (ρ)dτdρ

= (t−a)
(
tr−1−ar−1) k

sJα
a [ f (t)] k

sJβ
a [ f (t)] .

Therefore, by (3.16) and (3.18), we get (3.12).

Remark 3.3. If we take α = β in Theorem 15, we obtain
Theorem 14.

We give also the following (k,s)−fractional integral in-
equality:

Theorem 3.4. Let X be a continuous random variable hav-
ing a p.d. f . f : [a,b]→ R+. Assume that there exist con-
stants ϕ,φ such that ϕ ≤ f (t) ≤ φ . Then, for all k > 0,s ∈
R/{−1} ,α > 0, we have

k
sJα

a [ f (t)] k
sM2r,α(t)− k

sM2
r,α(t)≤

1
4
(br−ar)2

(
k
sJα

a [ f (t)]
)2

, a< t ≤ b.

(3.19)

Proof. Using Theorem 2.4 of [17], we can write∣∣∣ksJα
a [p(t)] k

sJα
a [phg(t)]− k

sJα
a [ph(t)] k

sJα
a [pg(t)]

∣∣∣≤ 1
4

(
k
sJα

a [p(t)]
)2

(φ −ϕ)2 .

(3.20)

In (3.20), we replace h by g, we will have∣∣∣ k
sJα

a [p(t)] k
sJα

a
[
pg2 (t)

]
− ( k

sJα
a [pg(t)])2

∣∣∣≤ 1
4

(
k
sJα

a [p(t)]
)2

(φ −ϕ)2 .

(3.21)

Taking p(t) = f (t), g(t) = tr, a < t ≤ b in (3.21), we obtain∣∣∣ k
sJα

a [ f (t)] k
sJα

a
[
t2r f (t)

]
− ( k

sJα
a [tr f (t)])2

∣∣∣≤ 1
4

(
k
sJα

a [ f (t)]
)2

(φ −ϕ)2 .

(3.22)

In (3.22), we take φ = br and ϕ = ar, then we have

0≤ k
sJα

a [ f (t)] k
sJα

a
[
t2r f (t)

]
−( k

sJα
a [tr f (t)])2≤ 1

4
(br−ar)2

(
k
sJα

a [ f (t)]
)2

.

(3.23)

This implies that

k
sJα

a [ f (t)] k
sM2r,α(t)− k

sM2
r,α(t)≤

1
4
(br−ar)2

(
k
sJα

a [ f (t)]
)2

.

(3.24)
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Finally, we present the following result:

Theorem 3.5. Let X be a continuous random variable hav-
ing a p.d. f . f : [a,b]→ R+. Assume that there exist con-
stants ϕ,φ such that ϕ ≤ f (t) ≤ φ . Then, for all k > 0,s ∈
R/{−1} ,α > 0,β > 0, we have

k
sJα

a [ f (t)] k
sM2r,β (t)+

k
sJβ

a [ f (t)] k
sM2r,α(t) (3.25)

+2arbr k
sJα

a [ f (t)] k
sJβ

a [ f (t)]

≤ (ar +br) k
sJα

a [ f (t)] k
sMr,β (t)+(ar +br) k

sJβ
a [ f (t)] k

sMr,α(t), a < t ≤ b.

Proof. We take p(t) = f (t), g(t) = tr, a < t ≤ b and by The-
orem 2.5 of [17], we can write[

k
sJα

a [ f (t)] k
sJβ

a
[
t2r f (t)

]
+ k

sJβ
a [ f (t)] k

sJα
a
[
t2r f (t)

]
(3.26)

−2 k
sJα

a [tr f (t)] k
sJβ

a [tr f (t)]
]2

≤
[(

φ
k
sJα

a [ f (t)]− k
sJα

a [tr f (t)]
)(

k
sJβ

a [tr f (t)]−ϕ
k
sJβ

a [ f (t)]
)

+
(

k
sJα

a [tr f (t)]−ϕ
k
sJα

a [ f (t)]
)(

φ
k
sJβ

a [ f (t)]− k
sJβ

a [tr f (t)]
)]2

.

Combining (3.21) and (3.26) and taking into account the fact
that the left-hand side of (3.21) is positive, we can write

k
sJα

a [ f (t)] k
sJβ

a
[
t2r f (t)

]
+ k

sJβ
a [ f (t)] s

kJα
a
[
t2r f (t)

]
−2 s

kJα
a [tr f (t))] k

sJβ
a [tr f (t)] (3.27)

≤
(

φ
k
sJα

a [ f (t)]− k
sJα

a [tr f (t)]
)(

k
sJβ

a [tr f (t)]−ϕ
k
sJβ

a [ f (t)]
)

+
(

k
sJα

a [tr f (t)]−ϕ
k
sJα

a [ f (t)]
)(

φ
k
sJβ

a [ f (t)]− k
sJβ

a [tr f (t)]
)
.

Therefore

k
sJα

a [ f (t)] k
sM2r,β (t)+

k
sJβ

a [ f (t)] k
sM2r,α (t)−2 k

sMr,β (t)
k
sMr,α (t)

≤
(

φ
k
sJα

a [ f (t)]− k
sMr,α (t)

)(
k
sMr,β (t)−ϕ

k
sJβ

a [ f (t)]
)

(3.28)

+
(

k
sMr,α (t)−ϕ

k
sJα

a [ f (t)]
)(

φ
k
sJβ

a [ f (t)]− k
sMr,β (t)

)
.

This implies that

k
sJα

a [ f (t)] k
sM2r,β (t)+

k
sJβ

a [ f (t)] k
sM2r,α (t)+2ϕφ

s
kJα

a [ f (t)] k
sJβ

a [ f (t)]

≤ (φ +ϕ)
(

k
sJα

a [ f (t)] k
sMr,β (t)+

k
sJβ

a [ f (t)] k
sMr,α (t)

)
. (3.29)

In (3.29), we take φ = br, ϕ = ar, then we have

k
sJα

a [ f (t)] k
sM2r,β (t)+

k
sJβ

a [ f (t)] k
sM2r,α (t)+2arbr s

kJα
a [ f (t)] k

sJβ
a [ f (t)]

≤ (ar +br)
(

k
sJα

a [ f (t)] k
sMr,β (t)+

k
sJβ

a [ f (t)] k
sMr,α (t)

)
. (3.30)
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