Bleaching and Degradation of Textile Dyes by Nonthermal Plasma Process at Atmospheric Pressure

Fatiha Abdelmalek,† Mouffok R. Ghezzar,‡ Mohamed Belhadj,† Ahmed Addou,† and Jean-Louis Brisset*‡

Laboratoire des Sciences et Techniques de l’Environnement et de la Valorisation. Faculté des Sciences de l’Ingénieur, Université de Mostaganem, Mostaganem, Algérie, and Laboratoire d’Électrochimie Interfaciale et de Chimie Analytique. Faculté des Sciences, Université de Rouen. 76821 Mont Saint-Aignan Cedex; France

The degradation of aqueous solutions of various dyes (e.g., Orange I, Crystal Violet, and Eriochrome Black T) used for the textile industry was performed by means of a special nonthermal quenched plasma technique (i.e., the gliding arc technique, which results from an electric discharge at atmospheric pressure and ambient temperature). The gaseous species formed in the discharge, and especially the OH radicals, induce strong oxidizing effects in the target solution, so that bleaching of the solution and degradation of the solute result, as evidenced by absorbance and chemical oxygen demand (COD) measurements. The two processes were considered as matching reactions, and overall kinetic data were derived when possible. A tentative mechanism based on literature data is also presented.

1. Introduction

Dyes make our world beautiful, but they bring us pollution: the colored waters of industrial effluents are unattractive because they account for significant concentrations of pollutants so that they become the sources of increasingly acute complaints. In particular, the wastewaters generated by the textile industry are characterized by strong color, highly fluctuating pH, high chemical oxygen demand (COD), and biotoxicity. Most of the synthetic dyes are azo dyes, and a number of them are suspected to be carcinogenic.3

The presence of dyes in water, even at very low concentrations, is easy to detect and makes the occurrence of the relevant solutes undesirable. Color is thus among the first contaminants to be identified, so that environmental regulations in most countries have made the bleaching of textile wastewaters mandatory prior to discharge.6

Environmental pollution by organic dyes presents a severe ecological problem that is increased by the fact that most of these dyes are difficult to degrade by traditional techniques. Effective degradation of dye solutions has been achieved by means of advanced oxidation processes (AOPs),7-12 which generate powerful oxidizing agents, such as hydroxyl radicals HO• ($E^\circ_{\text{OH}^+/\text{H}_2\text{O}} = 2.8$ V vs normal hydrogen electrode). These techniques have been found especially suitable for degrading azo-type dyes, which are the most-used textile colorants13-16

In this study, we propose an electric process that is based on using a nonthermal plasma generated by electric discharges in humid air. Hydroxyl radicals (HO•) form when the discharge burns in humid air.17 The reactive species generated are able to degrade organic pollutants such as dyes, because the treatment consists of oxidizing destruction.18-20 Azo dyes constitute the largest group of industrial dyes.

In the present work, we examine the degradation of two representative compounds, i.e., Orange I and Eriochrome Black T. For these dyes, the destruction of the azo bond (−N≡N−), i.e., the chromophoric group, induces the bleaching of the solutions.

A third dye (i.e., Crystal Violet, also known as Gentian violet or hexamethylpararosaniline chloride) is also considered in this study. This cationic dye presents a different chemical structure (Table 1) and is commonly used to control fungi and intestinal parasites in humans. It is additionally employed as a germ killer for burns or for various purposes in veterinary medicine.21 Crystal Violet is also extensively used in textile dying and paper coloration.22

2. Experimental Section

2.1. Materials and Methods. The tested dyes (Table 1), i.e., Orange I, Crystal Violet, and Eriochrome Black T (EBT), were
The diffusion process in the liquid is improved by convection in humid air revealed that OH radicals are responsible for the degradation of pollutants.  

The gliding arc system was described previously, and various devices were tested for dye degradation. Its specific use for the treatment of liquids (i.e., spent organic solvents or aqueous solutions of organic pollutants) and pollution abatement was mainly developed in our laboratory.

An electric arc forms between two diverging electrodes raised to a convenient voltage difference (around 10 kV) at the minimum gap (i.e., few millimeters). The arc breaks into a plume when it is short-circuited by a new arc. The resulting plasma is actually quenched plasma at atmospheric pressure and quasi-ambient temperature.

Magnetically stirred aqueous target solutions of given initial concentration (Table 2) are arrayed in front of the reactor (Figure 1), so that they can be exposed to the plasma flux for different treatment times.

Emission spectroscopy measurements on a gliding arc plasma in humid air revealed that OH· and NO+ radicals are simultaneously present in the discharge with a much higher density for OH· than for NO+. The OH· radicals are responsible for the strong oxidizing properties, whereas the NO+ radicals are known as parent molecules for acid derivatives HNO2 and HNO3, which induce acid effect. The plasma plume carries away reactive species and licks the liquid surface, so that reactions can take place at the plasma—solution interface (reactions 1–11). The diffusion process in the liquid is improved by convection in the liquid phase because of the air flow and by magnetic stirring.

Table 2. Properties of Dyes and Kinetics Constant of DeColorization and Degradation

<table>
<thead>
<tr>
<th>Class</th>
<th>Orange I</th>
<th>Crystal Violet</th>
<th>Eriochrome Black T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>acid, anionic</td>
<td>cationic</td>
<td>acid, anionic</td>
</tr>
<tr>
<td>Cl (mol L⁻¹)</td>
<td>1.5 × 10⁻⁴</td>
<td>1.3 × 10⁻⁴</td>
<td>1.8 × 10⁻⁴</td>
</tr>
<tr>
<td>pH_initial – pH_final</td>
<td>8.65–1</td>
<td>3.1–2.2</td>
<td>5.1–2.3</td>
</tr>
<tr>
<td>COD (mg L⁻¹)</td>
<td>96</td>
<td>153.6</td>
<td>144</td>
</tr>
<tr>
<td>k_degradation (min⁻¹)</td>
<td>0.886</td>
<td>0.042</td>
<td>0.083</td>
</tr>
<tr>
<td>R²</td>
<td>0.984</td>
<td>0.9947</td>
<td>0.9949</td>
</tr>
<tr>
<td>k_degradation (min⁻¹)</td>
<td>0.0173</td>
<td>0.024</td>
<td>0.0296</td>
</tr>
<tr>
<td>R²</td>
<td>0.9806</td>
<td>0.9814</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

2.2. Analytical Methods. The UV–vis spectrophotometer used for the determination of dye disappearance kinetics was a Techkom 8500 spectrometer. Each plot was determined at the absorbance peak of each dye (Table 1). The degradation kinetics was determined from the chemical oxygen demand (COD). The COD relevant to various samples and various treatment times were measured by the potassium dichromate standard method.

COD and color removal ratios (R, %) were calculated as follows

$$R_{\text{COD}}(\%) = \frac{(\text{COD}_0 - \text{COD}_i)}{\text{COD}_0} \times 100$$

where COD₀ and CODᵢ refer to the COD values before and after treatment, respectively, and

$$R_{\text{color}}(\%) = \frac{(\text{ABS}_0 - \text{ABS}_i)}{\text{ABS}_0} \times 100$$

where ABS is the absorbance value at the absorbance peak in the visible wavelength range; ABS₀ and ABSᵢ are the ABS values before and after treatment, respectively.

3. Results and Discussion

3.1. Bleaching. The colored solutions were studied by spectrophotometry measurements. The UV–vis spectrum of each dye solution was scanned, and the wavelength of the absorbance peak determined in the visible range.

When the cleavage of the -C=C- and -N=N- bonds and the aromatic rings occurs, the intensity of the absorbance peak of the polluted solution decreases. Also, the absorption band shifts from the visible to the UV or IR region of the electromagnetic spectrum, which means that the dye is degraded into lighter compounds.

The UV–vis spectra obtained for all the plasma-treated dye solutions show a decrease in the intensity of the absorbance...
peaks at 475, 588, and 525 nm, respectively, for Orange I (Figure 2), Crystal Violet (Figure 3), and Eriochrome Black T (Figure 4). The evolution of the spectra with the treatment time of the dye solutions is more complicated in the case of EBT, because an absorption peak forms at 764 nm and later disappears. This suggests the occurrence of an intermediate compound in the general degradation scheme (Figure 5).

Exposing the azo dye solutions to the discharge first causes their fading. This is related to the breaking of the azo groups (−N=N−), which are responsible for the visible color of Orange I and EBT dyes, and to the formation of light species. The observed matching gas emission can be attributed to N2 and related to the breaking of the nitrogen—carbon bonds close to the azo group,29,30 although no special analysis was performed and the identification remains conjectural.

Although the absorbance peaks in the visible region of the three selected dyes disappear during the plasma treatment, new absorbance peaks around 240 nm appear in the meantime, suggesting that new species with simplified structures form.31 For Orange I and EBT, an extra peak at 260 nm appears: it can be attributed to multisubstituted benzene rings (e.g., benzenedicarboxylic acids32,33) coming from the degradation of the naphthalene ring. However, this assumption remains equivocal, because the absorption band of nitrates at λ < 250 nm might interfere with the spectra of the organic moieties.

3.1.1. Model for the Plasma—Liquid Interaction. Exposure to the plasma of the dye solutions induces a noticeable acid effect (Table 2) and the degradation of the solutes, as discussed below. The pH decrease is related to the formation in the target solution of nitrous and nitric acids, as already observed.17,18,26 It can obviously induce color changes in the case of acid—base indicator solutions, which readily occurs at the beginning of the plasma treatment. The overall degradation process of the dye solutions involves two main parallel steps: (a) the bleaching of the treated solution with the formation of light intermediates and (b) the oxidation of the organic light solutes to carbon dioxide and water.

The second step (step b) is assumed to be less rapid than step a, and it was studied by COD measurements.

The kinetics of the bleaching step results from absorbance measurements at the main absorption peak for each dye and concerns short plasma treatment. It concerns the dye molecules, i.e., the chromophoric groups, and we can assume that the dye concentration corresponds to that of the chromophoric group.
for the plasma treatment of pure organic spent solvents. Such the process obeys an overall zeroth-order kinetic law, as it does in this case, the concentration of the solute is rather high, and it is reasonable to consider a first-order kinetic law as a first law (Table 2), and despite the large size of the target molecules, the relevant kinetics then obeys a first-order law.

In the present study, the starting concentrations are rather low (Table 2), and despite the large size of the target molecules, it is reasonable to consider a first-order kinetic law as a first approximation. The relevant integrated \( \ln(C_{\text{dye}})/C_{\text{dye}}^0 \) form accounts for a line for the matching plot in \( C = f(t) \).

### 3.1.2. Bleaching Kinetics.

For Orange I, the bleaching rate actually obeys a first-order reaction for \( t > 1.5 \text{ min} \), with a kinetic constant 0.886 \( \text{min}^{-1} \) \( (14.8 \times 10^{-3} \text{ s}^{-1}) \). However, the reaction does not start when the discharge is switched on, but requires a 1.5-min lag. Such a feature is not unique and has been observed for the plasma degradation of spent solvents. It can be tentatively related to the idea of dose (or energy threshold): a certain amount of impinging species (or the corresponding energy) is necessary to initiate the reaction.

The behaviors of the other dyes, EBT and Crystal Violet, are similar to that of Orange I. The kinetics of the bleaching reaction are first observed and obey a first-order law with the constants \( k = 0.083 \text{ min}^{-1} \) for EBT and \( k = 0.042 \text{ min}^{-1} \) for Crystal Violet (Table 2).

### 3.2. Degradation.

The degradation of the dyes can be followed by measurements of the chemical oxygen demand, which is an index for the pollutant concentration in the considered solution.\(^{34}\) COD indicates the degree to which the degradation or mineralization of organic species has occurred.\(^{35-38}\) The plasma treatment of dye solutions leads to a gradual decrease in the chemical oxygen demand (COD) as the exposure time to the discharge increases (Figures 6–8). This accounts for a degradation process of the solutes and consequently for the detoxication level of water.\(^{34,39}\) The COD removals of Orange I, Crystal Violet, and Eriochrome Black T are 92%, 75%, and 83%, respectively, after a 120-min treatment.

Hence, the overall bleaching reaction kinetic law can be written as

\[
- \frac{dC_{\text{dye}}}{dt} = k_tC_{\text{dye}}^\alpha
\]

At the beginning of the treatment, all of the impinging species of the plasma attack the dye molecules present at the liquid surface, and the rate is limited by the surface concentration of the dye, which can be considered as roughly constant \( (\alpha = 0) \). In this case, the concentration of the solute is rather high, and the process obeys an overall zeroth-order kinetic law, as it does for the plasma treatment of pure organic spent solvents. Such situations have already been studied.\(^{24,25}\)

For dilute organic targets or when a significant portion of the target molecules is already degraded, all of the impinging species no longer react at the target molecules, and only part of the species is efficient. The rate is then limited by the concentration of the target molecules at the surface \( (\alpha = 1) \) and hence by the diffusion process of the solute to the surface. The relevant kinetics then obeys a first-order law.

The plasma attack the dye molecules present at the liquid surface (Figure 6). This accounts for an overall first-order process, because the plots of \( \ln(C_{\text{COD}})/C_{\text{COD}}^0 \) are linear. The plasma treatment leads to the degradation and/or mineralization of the three dyes according to the stoichiometry of the overall oxidation reactions listed in Table 3. The relevant kinetic rates are much smaller than the corresponding bleaching rates, which confirms the accepted idea\(^{40}\) that bleaching is much easier than removal for the dye molecules.

**Model.** At the end of the bleaching period, the aromatic compounds are converted into aliphatic derivatives according to Oturan’s suggestions.\(^{41}\)

Guivarch et al.\(^{40}\) proposed a general reaction mechanism for mineralizing azo dye molecules by oxidative action of hydroxyl radicals in the electron-Fenton process (Figure 9). The relevant mechanism involves two steps: In the first one, molecules with aromatic rings and molecular weights lower than that of the parent species are detected (e.g., hydroquinone). Additionally, the matching bleaching at the beginning of the treatment indicates that cleavage of the azo bond also occurs. In the second step, hydroxylated products such as 4-nitrocatechol, p-nitrophenol, pyrocatechol, and 1,4-benzoquinone were identified by several authors.\(^{30,62}\) The infrared (IR) spectra indicate that the carboxylic intermediates result from the reaction between hydroxyl radicals (\( \text{OH}^\bullet \)) and aromatic rings.\(^{43}\) Formic and acetic acid are known to be organic byproducts of aromatic ring-opening reactions.\(^{44-46}\)

The observed decrease in the COD accounts for the mineralization process and means that the starting molecule is oxidized...
to mineral ions such as NH$_4^+$, NO$_3^-$, SO$_4^{2-}$, CO$_2$, and H$_2$O.$^{47,48}$ Qualitative analysis of Orange I and EBT plasma-treated solutions confirmed the presence of nitrate and sulfate ions.

The occurrence of new peaks in spectral range 260–300 nm indicates the formation of new structures attributed to multi-substituted benzene. The presence of oxidation products such as phenol, quinone, catechol, formic acid, and acetic acid has been reported by many authors.$^{30,41,44}$

The decrease in the chemical oxygen demand indicates the progress of mineralization; it can be explained by the conversion of the aromatic compounds into aliphatic compounds by ring-opening reactions, as already reported by different authors.$^{39,41,45,46}$ The data provided by our spectrometry and COD measurements agree satisfactorily, and they also fit well with the literature data. This leads us to accept the model proposed by Guivarch on the basis of numerous reported data.

### 3.3. Relationship between Bleaching and Degradation

The bleaching of the treated dye solutions matches a decrease in the COD as illustrated by Figures 10–12. The removal of the color and the COD abatement are 95% and 42%, respectively, for the Orange I solution treated for 30 min (92% for 120 min), markedly higher than for Violet Crystal solution, for which 89% and 45% (75% for 120 min) respective abatements require a 60-min plasma treatment.
The plasma-chemical treatment of Eriochrome Black T solutions causes similar effects. The bleaching and COD abatement resulting from a 60-min exposure are only 88.4% and 60%, respectively. The plasma-induced reactions are clearly much slower than for the other considered dyes. This can be related to the difference in the stability of the naphthalene and benzene structures, which is inversely related to the ease of their decomposition.

4. Conclusion

The gliding arc discharge yields a nonthermal quenched plasma at atmospheric pressure. The plasma-chemical effects of a gliding arc plasma in humid air (e.g., the oxidizing power) identified on aqueous solutions were tested on organic solutes such as aqueous solutions of various textile dyes. The reported results show that the plasma treatment is efficient and induces first the bleaching of the target solutions and then the degradation of the organic solute. Application of the gliding arc treatments to industrial wastewaters can be considered as a versatile method for the elimination of toxic chemicals and for the cleaning of industrial effluents.

Acknowledgment

This work was performed in the framework of the Franco-phonie Research Program AUF-FICU 2001PAS23.

Literature Cited

(24) Gupta, A. K.; Pal, A.; Sahoo, A. Photocatalytic degradation of mixture of Crystal Violet (Basic Violet 3) and Methylene Blue in aqueous suspension using Ag+ doped TiO2, Dyes Pigments 2006, 69, 224.
(26) Oturan, M. A.; Oturan, N.; Latiff, C.; Trevis, P. Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application


