Afficher la notice abrégée
dc.contributor.author |
Belaıdi, Benharrat |
|
dc.date.accessioned |
2019-05-27T13:11:31Z |
|
dc.date.available |
2019-05-27T13:11:31Z |
|
dc.date.issued |
2008 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10246 |
|
dc.description.abstract |
The basic idea of this paper is to consider fixed points of solutions of the
differential equation f(k) + A(z) f = 0, k ¸ 2, where A(z) is a transcendental meromorphic
function with ½ (A) = ½ > 0. Instead of looking at the zeros of f (z) ¡ z, we proceed to a slight
generalization by considering zeros of f (z) ¡ ' (z), where ' is a meromorphic function of finite
order, while the solution of respective differential equation is of infinite order. |
en_US |
dc.publisher |
Mat. Vesnik |
en_US |
dc.subject |
Linear differential equations |
en_US |
dc.subject |
Meromorphic solutions |
en_US |
dc.subject |
Hyper order |
en_US |
dc.subject |
Exponent of convergence of the sequence of distinct zeros |
en_US |
dc.subject |
Hyper exponent of convergence of the sequence of distinct zeros |
en_US |
dc.title |
Growth and oscillation theory of solutions of some linear differential equations |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée