Dépôt DSpace/Manakin

Oscillation of fast growing solutions of linear differential equations in the unit disc

Afficher la notice abrégée

dc.contributor.author Belaıdi, Benharrat
dc.date.accessioned 2019-05-30T08:38:50Z
dc.date.available 2019-05-30T08:38:50Z
dc.date.issued 2010
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10432
dc.description.abstract In this paper, we investigate the relationship between solutions and their derivatives of the differential equation f (k) + A (z) f = 0, k ≥ 2, where A (z) 6≡ 0 is an analytic function with finite iterated porder and analytic functions of finite iterated p-order in the unit disc ∆ = {z ∈ C : |z| < 1}. Instead of looking at the zeros of f (j) (z) − z (j = 0, .., k), we proceed to a slight generalization by considering zeros of f (j) (z) − ϕ (z) (j = 0, .., k), where ϕ is a small analytic function relative to f such that ϕ(k−j) (z) 6≡ 0 (j = 0, ..., k), while the solution f is of infinite iterated p-order. This paper improves some very recent results of T. B. Cao and G. Zhang, A. Chen. en_US
dc.publisher Acta Univ. Sapientiae, Mathematica en_US
dc.subject Linear differential equations en_US
dc.subject fixed points en_US
dc.subject analytic solutions en_US
dc.subject unit disc en_US
dc.title Oscillation of fast growing solutions of linear differential equations in the unit disc en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte