Afficher la notice abrégée
dc.contributor.author |
Belaidi, Benharrat |
|
dc.contributor.author |
Hamouda, Saada |
|
dc.date.accessioned |
2019-05-30T09:00:14Z |
|
dc.date.available |
2019-05-30T09:00:14Z |
|
dc.date.issued |
2002 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10444 |
|
dc.description.abstract |
We consider a differential equation f (n)+ A n− 1 (z) f (n− 1)+…+ A 1 (z) f'+ A 0 (z) f= 0, where A 0 (z),..., A n− 1 (z) are entire functions with A 0 (z){¬≡} 0. Suppose that there exist a positive number μ, and a sequence (z j) j∈ N with lim j→+∞ z j=∞, and also two real numbers α, β (0≤ β< α) such that| A 0 (z j)|≥ e α| z j| μ and| A k (z j)|≤ e β| z j| μ as j→+∞(k= 1,..., n− 1). We prove that all solutions f {¬≡} 0 of this equation are of infinite order. This result is a generalization of one theorem of Gundersen ([3], p. 418). |
en_US |
dc.publisher |
Kodai Mathematical Journal |
en_US |
dc.subject |
Linear differential equations |
en_US |
dc.subject |
entire functions |
en_US |
dc.subject |
finite order of growth |
en_US |
dc.title |
Growth of solutions of an n-th order linear differential equation with entire coefficients |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée