Afficher la notice abrégée
dc.contributor.author |
Belaidi, Benharrat |
|
dc.contributor.author |
Habib, Habib |
|
dc.date.accessioned |
2019-05-30T12:46:56Z |
|
dc.date.available |
2019-05-30T12:46:56Z |
|
dc.date.issued |
2014-01-01 |
|
dc.identifier.issn |
1072-6691 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10531 |
|
dc.description.abstract |
In this article, we discuss the order and hyper-order of the lineardifferential equationf(k)+k−1Xj=1(Bjebjz+Djedjz)f(j)+ (A1ea1z+A2ea2z)f= 0,whereAj(z),Bj(z),Dj(z) are entire functions (6≡0) anda1,a2,djare complexnumbers (6= 0), andbjare real numbers. Under certain conditions, we provethat every solutionf6≡0 of the above equation is of infinite order. Then,we obtain an estimate of the hyper-order. Finally, we give an estimate of theexponent of convergence for distinct zeros of the functionsf(j)−φ(j= 0,1,2),whereφis an entire function (6≡0) and of orderσ(φ)<1, while the solutionfof the differential equation is of infinite order. Our results extend the previousresults due to Chen, Peng and Chen and others. |
en_US |
dc.publisher |
Electronic Journal of Differential Equations |
en_US |
dc.subject |
Linear differential equation |
en_US |
dc.subject |
entire solution |
en_US |
dc.subject |
order of growth |
en_US |
dc.subject |
hyper-order of growth |
en_US |
dc.subject |
fixed point. |
en_US |
dc.title |
Growth of solutions to higher-order linear differential equations with entire coefficients |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée