Dépôt DSpace/Manakin

A comparative performance analysis of position estimation algorithms for gnss localization in urban areas

Afficher la notice abrégée

dc.contributor.author Bassma Guermah
dc.contributor.author Hassan El Ghazi
dc.contributor.author Tayeb Sadiki
dc.contributor.author Yann Ben Maissa
dc.contributor.author Esmail Ahouzi
dc.date.accessioned 2019-06-02T09:21:01Z
dc.date.available 2019-06-02T09:21:01Z
dc.date.issued 2016-10-17
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10552
dc.description.abstract Global Navigation Satellite Systems (GNSS) have become an integral part of all applications where mobility plays an important role. However, The performances of GNSS-based positioning systems can be affected in constrained environments (urban and indoor environments), due to masking of satellites by buildings and multipath effects. In this paper, a comparative investigation on classical GNSS localization algorithms in urban areas is presented and analyzed in terms of mean squared error. As a result, Kalman filter estimation shows the best error performance in good environments (all satellites are in direct sight). Nevertheless, in constrained environments, the kalman filter and least square method show important positioning errors because their measurement noise model is unsuitable en_US
dc.publisher 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS) en_US
dc.subject GNSS en_US
dc.subject Urban area en_US
dc.subject Statistical filtering algorithm en_US
dc.subject Multipath en_US
dc.subject NLOS en_US
dc.title A comparative performance analysis of position estimation algorithms for gnss localization in urban areas en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte