Dépôt DSpace/Manakin

Properties of higher order differential polynomials generated by solutions of complex differential equations in the unit disc

Afficher la notice abrégée

dc.contributor.author Belaıdi, Benharrat
dc.contributor.author Latreuch, Zinelâabidine
dc.date.accessioned 2019-06-03T11:32:32Z
dc.date.available 2019-06-03T11:32:32Z
dc.date.issued 2014
dc.identifier.issn 2300-9926
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10639
dc.description.abstract In the present paper we determine sharp lower bounds of the real part of the ratios of harmonic univalent meromorphic functions to their sequences of partial sums. Let H denote the class of functions f that are harmonic univalent and sense-preserving in U =; fz : jzj > 1g which are of the form f(z) = h(z) + g(z) ; where h(z) = z + 1X n=1 anz􀀀n ; g(z) = 1X n=1 bnz􀀀n. Now, we de ne the sequences of partial sums of functions f of the form fs(z) = z + Xs n=1 anz􀀀n + g(z); e fr(z) = g(z) + Xr n=1 bnz􀀀n; fs;r(z) = z + Xs n=1 anz􀀀n + Xr n=1 bnz􀀀n: In the present paper we will determine sharp lower bounds for Re n f(z) fs(z) o ; Re n fs(z) f(z) o ; Re n f(z) e fr(z) o ; Re n e fr(z) f(z) o ; Re n f(z) fs;r(z) o , Re n fs;r(z) f(z) o : en_US
dc.publisher J. Math. Appl en_US
dc.subject Harmonic function en_US
dc.subject meromorphic en_US
dc.subject univalent en_US
dc.subject sense-preserving en_US
dc.title Properties of higher order differential polynomials generated by solutions of complex differential equations in the unit disc en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte