Afficher la notice abrégée
dc.contributor.author |
Belaïdi, Benharrat |
|
dc.contributor.author |
El Farissi, Abdallah |
|
dc.date.accessioned |
2019-06-06T10:02:19Z |
|
dc.date.available |
2019-06-06T10:02:19Z |
|
dc.date.issued |
2011 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10659 |
|
dc.description.abstract |
In this paper, we investigate the relationship between small functions
and differential polynomials gf (z) = d2f
+ d1f
+ d0f, where
d0(z), d1(z), d2(z) are entire functions that are not all equal to zero with
ρ(dj) < 1 (j = 0, 1, 2) generated by solutions of the differential equation
f
+ A1(z)eazf
+ A0(z)ebzf = F, where a, b are complex numbers that
satisfy ab(a − b) = 0 and Aj(z) ≡ 0 (j = 0, 1), F(z) ≡ 0 are entire
functions such that max {ρ(Aj), j = 0, 1, ρ(F)} < 1. |
en_US |
dc.publisher |
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
en_US |
dc.subject |
Linear differential equations |
en_US |
dc.subject |
differential polynomials |
en_US |
dc.subject |
entire solutions |
en_US |
dc.subject |
order of growth |
en_US |
dc.subject |
exponent of convergence of zeros |
en_US |
dc.subject |
exponent of convergence of distinct zeros |
en_US |
dc.title |
Complex Oscillation Theory of Differential Polynomials |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée