Dépôt DSpace/Manakin

Complex Oscillation Theory of Differential Polynomials

Afficher la notice abrégée

dc.contributor.author Belaïdi, Benharrat
dc.contributor.author El Farissi, Abdallah
dc.date.accessioned 2019-06-06T10:02:19Z
dc.date.available 2019-06-06T10:02:19Z
dc.date.issued 2011
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10659
dc.description.abstract In this paper, we investigate the relationship between small functions and differential polynomials gf (z) = d2f + d1f + d0f, where d0(z), d1(z), d2(z) are entire functions that are not all equal to zero with ρ(dj) < 1 (j = 0, 1, 2) generated by solutions of the differential equation f + A1(z)eazf + A0(z)ebzf = F, where a, b are complex numbers that satisfy ab(a − b) = 0 and Aj(z) ≡ 0 (j = 0, 1), F(z) ≡ 0 are entire functions such that max {ρ(Aj), j = 0, 1, ρ(F)} < 1. en_US
dc.publisher Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica en_US
dc.subject Linear differential equations en_US
dc.subject differential polynomials en_US
dc.subject entire solutions en_US
dc.subject order of growth en_US
dc.subject exponent of convergence of zeros en_US
dc.subject exponent of convergence of distinct zeros en_US
dc.title Complex Oscillation Theory of Differential Polynomials en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte