Dépôt DSpace/Manakin

Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations

Afficher la notice abrégée

dc.contributor.author Belaidi, Benharrat
dc.contributor.author Andasmas, Maamar
dc.date.accessioned 2019-06-09T09:18:56Z
dc.date.available 2019-06-09T09:18:56Z
dc.date.issued 2016-04-20
dc.identifier.issn 2291-8639
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10681
dc.description.abstract The main purpose of this article is to investigate the growth of meromorphic solutions to homogeneous and non-homogeneous second order linear differential equations f00+ Af0+ Bf= F, where A (z), B (z) and F (z) are meromorphic functions with finite order having only finitely many poles. We show that, if there exist a positive constants σ> 0, α> 0 such that| A (z)|≥ eα| z| σ as| z|→+∞, z∈ H, where dens {| z|: z∈ H}> 0 and ρ= max {ρ (B), ρ (F)}< σ, then every transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros. en_US
dc.publisher International Journal of Analysis and Applications en_US
dc.subject Linear differential equation en_US
dc.subject meromorphic function en_US
dc.subject order of growth en_US
dc.subject hyper order en_US
dc.subject exponent of convergence of zeros en_US
dc.subject hyper-exponent of convergence of zeros en_US
dc.title Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte