Afficher la notice abrégée
dc.contributor.author |
Belaidi, Benharrat |
|
dc.contributor.author |
Andasmas, Maamar |
|
dc.date.accessioned |
2019-06-09T09:18:56Z |
|
dc.date.available |
2019-06-09T09:18:56Z |
|
dc.date.issued |
2016-04-20 |
|
dc.identifier.issn |
2291-8639 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10681 |
|
dc.description.abstract |
The main purpose of this article is to investigate the growth of meromorphic solutions to homogeneous and non-homogeneous second order linear differential equations f00+ Af0+ Bf= F, where A (z), B (z) and F (z) are meromorphic functions with finite order having only finitely many poles. We show that, if there exist a positive constants σ> 0, α> 0 such that| A (z)|≥ eα| z| σ as| z|→+∞, z∈ H, where dens {| z|: z∈ H}> 0 and ρ= max {ρ (B), ρ (F)}< σ, then every transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros. |
en_US |
dc.publisher |
International Journal of Analysis and Applications |
en_US |
dc.subject |
Linear differential equation |
en_US |
dc.subject |
meromorphic function |
en_US |
dc.subject |
order of growth |
en_US |
dc.subject |
hyper order |
en_US |
dc.subject |
exponent of convergence of zeros |
en_US |
dc.subject |
hyper-exponent of convergence of zeros |
en_US |
dc.title |
Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée