Dépôt DSpace/Manakin

SEM blind identification of ARMA models application to seismic data

Afficher la notice abrégée

dc.contributor.author Benayad Nsiri
dc.contributor.author Thierry Chonavel
dc.contributor.author Jean-Marc Boucher
dc.date.accessioned 2019-06-09T10:12:10Z
dc.date.available 2019-06-09T10:12:10Z
dc.date.issued 2004-09-06
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10698
dc.description.abstract In this paper, we address blind identification of an ARMA model convolved with an impulse sequence via Maximum Likelihood (ML) approach. A Stochastic Expectation Maximization (SEM) implementation of the criterion is considered. The problem of ARMA models with long impulse response is addressed as well as the SEM initialization problem. The model estimation is performed in two steps : First, a truncated estimate of the wavelet is obtained from a SEM algorithm. Then improved wavelet estimation is achieved by fitting an ARMA model to the initial MA wavelet using the Prony algorithm. Simulation results show the significant improvement brought by this approach in situations corresponding to seismic data deconvolution. en_US
dc.publisher 2004 12th European Signal Processing Conference en_US
dc.title SEM blind identification of ARMA models application to seismic data en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte