Afficher la notice abrégée
dc.contributor.author |
Belaïdi, Benharrat |
|
dc.contributor.author |
Latreuch, Zinelâabidine |
|
dc.date.accessioned |
2019-06-09T10:58:23Z |
|
dc.date.available |
2019-06-09T10:58:23Z |
|
dc.date.issued |
2013 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/10720 |
|
dc.description.abstract |
In this paper, we deal with the growth and oscillation of w = d1ƒ1 + d2ƒ2, where d1,d2 are meromorphic functions of finite iterated p-order that are not all vanishing identically and ƒ1,ƒ2 are two linearly independent meromorphic solutions in the unit disc Δ = {z ε C: |z| < 1} satisfying б (∞,fj) > 0, (j = 1, 2), of the linear differential equation ƒ ' + A (z) ƒ = 0, where A (z) is admissible meromorphic function of finite iterated p-order in Δ. |
en_US |
dc.publisher |
Mathematica Moravica |
en_US |
dc.subject |
Linear differential equations |
en_US |
dc.subject |
Polynomial of solutions |
en_US |
dc.subject |
Meromorphic solutions |
en_US |
dc.subject |
Iterated order |
en_US |
dc.subject |
Iterated exponent of convergence of the sequence of distinct zeros |
en_US |
dc.subject |
Unit disc |
en_US |
dc.title |
Growth and oscillation of polynomial of linearly independent meromorphic solutions of second order linear differential equations in the unit disc |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée