Dépôt DSpace/Manakin

On certain nonlinear elliptic systems with indefinite terms.

Afficher la notice abrégée

dc.contributor.author Bensedik, Ahmed
dc.contributor.author Bouchekif, Mohammed
dc.date.accessioned 2019-06-20T09:05:48Z
dc.date.available 2019-06-20T09:05:48Z
dc.date.issued 2002
dc.identifier.issn 1072 - 6691
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/10994
dc.description.abstract The purpose of this article is to nd positive solutions to the system 􀀀 pu = m(x)@H @ u(u; v) in 􀀀 qv = m(x)@H @ v(u; v) in (1:1) u = v = 0 on@ where is a bounded regular domain of RN; with a smooth boundary @ ; pu := div (j ru jp􀀀2 ru) is the p􀀀 Laplacian with 1 < p < N;m is a continuous function on which changes sign , and H is a potential function which will be speci ed later . The case where the sign of m does not change has been studied by F . de Th e lin and J . V e lin [ 9 ] . These authors treat the system ( 1 . 1 ) with a function H having the following properties HThere(x; uexists ; v) CC(j>0 ujp0 ; + for j v jall0q ) x 2 ; for all (u; v) 2 D3 such that 0 There exists C0 > 0; for all x 2 ; for all (u; v) 2 D2 such that H(x; u; v) C0 There exists a positive function a in L1( ); such that for each x 2 and (u; v) 2 D1 \ R2 +;H(x; u; v) = a(x)u +1v +1; en_US
dc.publisher Electronic Journal of Differential Equations (EJDE)[electronic only] en_US
dc.subject Elliptic systems en_US
dc.subject p - Laplacian en_US
dc.subject variational methods en_US
dc.subject mountain - pass Lemma en_US
dc.subject Palais - Smale condition en_US
dc.subject potential function en_US
dc.subject Moser iterative method en_US
dc.title On certain nonlinear elliptic systems with indefinite terms. en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte