Afficher la notice abrégée
dc.contributor.author |
Messirdi, Bekkai |
|
dc.contributor.author |
Kouider, Miloud Hocine |
|
dc.contributor.author |
Benharrat, Mohammed |
|
dc.date.accessioned |
2019-06-25T08:50:24Z |
|
dc.date.available |
2019-06-25T08:50:24Z |
|
dc.date.issued |
2019-01-06 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/11146 |
|
dc.description.abstract |
When A∈ B (H) and B∈ B (K) are given, we denote by MC the operator on the Hilbert space H⊕ K of the form MC=(AC 0 B). In this paper we investigate the quasi-nilpotent part and the analytical core for the upper triangular operator matrix MC in terms of those of A and B. We give some necessary and sufficient conditions for MC to be left or right generalized Drazin invertible operator for some C∈ B (K, H). As an application, we study the existence and uniqueness of the solution for abstract boundary value problems described by upper triangular operator matrices with right generalized Drazin invertible component. |
en_US |
dc.publisher |
International Journal of Analysis and Applications |
en_US |
dc.subject |
generalized drazin inverse |
en_US |
dc.subject |
left generalized drazin inverse |
en_US |
dc.subject |
right generalized drazin inverse |
en_US |
dc.subject |
upper triangular operator matrices. |
en_US |
dc.title |
Left and Right Generalized Drazin Invertibility of an Upper Triangular Operator Matrices with Application to Boundary Value Problems |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée