Dépôt DSpace/Manakin

Left and Right Generalized Drazin Invertibility of an Upper Triangular Operator Matrices with Application to Boundary Value Problems

Afficher la notice abrégée

dc.contributor.author Messirdi, Bekkai
dc.contributor.author Kouider, Miloud Hocine
dc.contributor.author Benharrat, Mohammed
dc.date.accessioned 2019-06-25T08:50:24Z
dc.date.available 2019-06-25T08:50:24Z
dc.date.issued 2019-01-06
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/11146
dc.description.abstract When A∈ B (H) and B∈ B (K) are given, we denote by MC the operator on the Hilbert space H⊕ K of the form MC=(AC 0 B). In this paper we investigate the quasi-nilpotent part and the analytical core for the upper triangular operator matrix MC in terms of those of A and B. We give some necessary and sufficient conditions for MC to be left or right generalized Drazin invertible operator for some C∈ B (K, H). As an application, we study the existence and uniqueness of the solution for abstract boundary value problems described by upper triangular operator matrices with right generalized Drazin invertible component. en_US
dc.publisher International Journal of Analysis and Applications en_US
dc.subject generalized drazin inverse en_US
dc.subject left generalized drazin inverse en_US
dc.subject right generalized drazin inverse en_US
dc.subject upper triangular operator matrices. en_US
dc.title Left and Right Generalized Drazin Invertibility of an Upper Triangular Operator Matrices with Application to Boundary Value Problems en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte