Dépôt DSpace/Manakin

New interpretation of elliptic Boundary value problems via invariant embedding approach and Yosida regularization

Afficher la notice abrégée

dc.contributor.author Messirdi, Bekkai
dc.contributor.author Bouarroudj, Nadra
dc.contributor.author Belaib, Lekhmissi
dc.date.accessioned 2019-06-25T08:54:12Z
dc.date.available 2019-06-25T08:54:12Z
dc.date.issued 2018-12
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/11148
dc.description.abstract The method of invariant embedding for the solutions of boundary value problems yields an equivalent formulation to the initial boundary value problems by a system of Riccati operator differential equations. A combined technique based on invariant embedding approach and Yosida regularization is proposed in this paper for solving abstract Riccati problems and Dirichlet problems for the Poisson equation over a circular domain. We exhibit, in polar coordinates, the associated Neumann to Dirichlet operator, somme concrete properties of this operator are given. It also comes that from the existence of a solution for the corresponding Riccati equation, the problem can be solved in appropriate Sobolev spaces. en_US
dc.publisher Proyecciones (Antofagasta) en_US
dc.subject Elliptic boundary value problems en_US
dc.subject Invariant embedding method en_US
dc.subject Riccati operator differential equations en_US
dc.subject Yosida regularization en_US
dc.subject Neumann to Dirichlet operator en_US
dc.title New interpretation of elliptic Boundary value problems via invariant embedding approach and Yosida regularization en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte