Afficher la notice abrégée
dc.contributor.author |
Messirdi, Bekkai |
|
dc.contributor.author |
Bouarroudj, Nadra |
|
dc.contributor.author |
Belaib, Lekhmissi |
|
dc.date.accessioned |
2019-06-25T08:54:12Z |
|
dc.date.available |
2019-06-25T08:54:12Z |
|
dc.date.issued |
2018-12 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/11148 |
|
dc.description.abstract |
The method of invariant embedding for the solutions of boundary value problems yields an equivalent formulation to the initial boundary value problems by a system of Riccati operator differential equations. A combined technique based on invariant embedding approach and Yosida regularization is proposed in this paper for solving abstract Riccati problems and Dirichlet problems for the Poisson equation over a circular domain. We exhibit, in polar coordinates, the associated Neumann to Dirichlet operator, somme concrete properties of this operator are given. It also comes that from the existence of a solution for the corresponding Riccati equation, the problem can be solved in appropriate Sobolev spaces. |
en_US |
dc.publisher |
Proyecciones (Antofagasta) |
en_US |
dc.subject |
Elliptic boundary value problems |
en_US |
dc.subject |
Invariant embedding method |
en_US |
dc.subject |
Riccati operator differential equations |
en_US |
dc.subject |
Yosida regularization |
en_US |
dc.subject |
Neumann to Dirichlet operator |
en_US |
dc.title |
New interpretation of elliptic Boundary value problems via invariant embedding approach and Yosida regularization |
en_US |
dc.type |
Article |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée