Dépôt DSpace/Manakin

Modélisation mathématique et simulation numérique du Covid-19 par des Équations Différentielles Ordinaires

Afficher la notice abrégée

dc.contributor.author BELGHALI, HAYAT
dc.date.accessioned 2022-03-30T08:01:30Z
dc.date.available 2022-03-30T08:01:30Z
dc.date.issued 2021-06-06
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/20568
dc.description.abstract Dans le travail de ce mémoire, on s’est intéressé à la modélisation mathématique du Covid-19. Donc on a proposé un modèle mathématique décrivant la dynamique de la propagation du Covid-19. On a modélisé ce problème par des équations différentielles ordinaires, ces équations donnent deux point d’équilibre l’une sans maladie E et l’autre 0 avec maladie E . D’après les résultats obtenus de la simulation du modèle proposé, on a 1 constaté que la prise en charge, le confinement et le respect de mesures de protection ont un effet important sur la propagation de la maladie, car si ces trois paramètres sont bien alors la maladie va disparaitre si non on remarque une augmentation des cas infectès ce qui amène à la propagation de la maladie. en_US
dc.language.iso fr en_US
dc.relation.ispartofseries MMAT279;
dc.subject Formulation Mathématique de la dynamique de COVID-19 en_US
dc.title Modélisation mathématique et simulation numérique du Covid-19 par des Équations Différentielles Ordinaires en_US
dc.type Other en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte