Afficher la notice abrégée
dc.contributor.author |
ALLOUCH, Nadia |
|
dc.date.accessioned |
2024-09-30T10:52:10Z |
|
dc.date.available |
2024-09-30T10:52:10Z |
|
dc.date.issued |
2024-07-02 |
|
dc.identifier.uri |
http://e-biblio.univ-mosta.dz/handle/123456789/26966 |
|
dc.description.abstract |
Themaingoalofthisthesisistopresentasetresultsontheexistence,uniquenessandsta-
bilityofcertainclassesoftheinitialvalueproblemsandboundaryvalueproblemsforfrac-
tional q-differenceequationsandimpulsivefractional q-differenceequationsinvolving
Caputo’sfractional q-derivative.Theresultshavebeenprovenanalytically,wheretheex-
istenceresultsarebasedonsomeclassicalfixedpointtheorems(Banach,Schaefer,Kras-
noselskii, Non-linearalternativeofLeray-Schauder)aswellasMönch’sfixedpointthe-
oremcombinedwiththetechniqueofKuratowski’smeasureofnoncompactness,while
thestabilityresultsdependonthetechniquesofUlam-HyersstabilityandUlam-Hyers-
Rassiasstability.Tosupportourresults,weprovidedifferentillustrativeexamplesineach
chapter. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
l’Université de Mostaganem |
en_US |
dc.subject |
Fractional q-calculus;Quantumcalculus;Caputofractional q-derivative;Fractional q-differenceequations;Impulsivefractional q-differenceequa- tions;Initialvalueproblem;Boundaryvalueproblem;Banachspace;Existence;Unique- ness;Fixedpointtheorems;Kuratowskimeasureofnoncompactness;Ulam-Hyersstabil- ity;Ulam-Hyers-Rassiasstability |
en_US |
dc.title |
Quantitative Study of Some Fractional Differential Equations With q-Difference |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée