Dépôt DSpace/Manakin

Heart Sound Classification using Convolutional Neural Network

Afficher la notice abrégée

dc.contributor.author BENKEDADRA, FATIMA ZOHRA
dc.date.accessioned 2025-10-09T08:26:29Z
dc.date.available 2025-10-09T08:26:29Z
dc.date.issued 2024-05-28
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/29404
dc.description.abstract Cardiovascular Diseases (CDV) is a term that groups the disorders related to the heart and blood vessels. One way to diagnose the CDV is using the heart sound where an abnormal sound is heard which indicates a problem. In this work we perform a heart sound classification using Convolutional Neural Network (CNN) and log mel spetrogram where we test different models on the available datasets. The experiments included in this work are a 2D-CNN model and adaptations of ResNet-18 and VGG-11 architectures. Results were evaluated based on accuracy, precision, recall, and F1-score metrics, with the pre-trained ResNet-18 model demonstrating superior performance, achieving an accuracy of 86% on the PASCAL dataset and 70% accuracy on the Physionet datasets of 2016 and 2022. en_US
dc.language.iso en en_US
dc.relation.ispartofseries MINF402;
dc.subject CVDs en_US
dc.subject heart en_US
dc.subject sound en_US
dc.subject murmur en_US
dc.subject Deeplearning en_US
dc.subject datasets en_US
dc.subject PhysioNet en_US
dc.subject data en_US
dc.subject augmentation en_US
dc.subject phonocardiogram classification en_US
dc.subject abnormal en_US
dc.subject waveform en_US
dc.title Heart Sound Classification using Convolutional Neural Network en_US
dc.type Other en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte