Dépôt DSpace/Manakin

Prostate Cancer diagnosis by Generative Adversarial Networks: Generating High-Fidelity Synthetic Magnetic Resonance Images

Afficher la notice abrégée

dc.contributor.author SAIAD, Zeyd
dc.contributor.author GORINE, Nour El Houda
dc.date.accessioned 2025-11-03T10:19:24Z
dc.date.available 2025-11-03T10:19:24Z
dc.date.issued 2024
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/29839
dc.description.abstract Prostate cancer is a significant health issue for men, it requires early detection for effective treatment. MRI is essential for diagnosis, but low-resolution images can lead to errors. In this project, we used Generative Adversarial Networks (GANs) to enhance MRI quality and deep learning (DL) for accurate analysis of medical images. By integrating GANs and DL, we create a platform that improves MRI resolution and diagnostic accuracy, aiding doctors in effective prostate cancer detection. As a result, we achieved significant improvements in the diagnostic process, contributing to more reliable identification of prostate cancer. en_US
dc.language.iso en en_US
dc.relation.ispartofseries MINF435;
dc.subject Prostate Cancer en_US
dc.subject Generative AI en_US
dc.subject GANs en_US
dc.subject Deep learning en_US
dc.subject Caps Nets en_US
dc.subject MRI en_US
dc.title Prostate Cancer diagnosis by Generative Adversarial Networks: Generating High-Fidelity Synthetic Magnetic Resonance Images en_US
dc.type Other en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte