Dépôt DSpace/Manakin

Non-parametric estimation of the conditional distribution function using the kernel method

Afficher la notice abrégée

dc.contributor.author Mekdour, NOUREDDINE
dc.date.accessioned 2025-11-12T08:59:00Z
dc.date.available 2025-11-12T08:59:00Z
dc.date.issued 2024-06-06
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/29909
dc.description.abstract In this work, we were interested in the non-parametric estimation of the conditional distribution function, when the explanatory variable is functional and the response is real, by the kernel method. The main results we obtained are the following : First, we built a local constant of our estimator, then we established its uniform complete convergence by specifying its rate of convergence, when the observations are independent identically distributed. We also established the asymptotic normality of the same estimator by giving an explicit expression of the terms of bias and its the variance. en_US
dc.language.iso en en_US
dc.relation.ispartofseries MMAT380;
dc.subject Non-parametric estimation en_US
dc.subject the kernel method en_US
dc.subject the conditional distribution function en_US
dc.title Non-parametric estimation of the conditional distribution function using the kernel method en_US
dc.type Other en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte