Dépôt DSpace/Manakin

Croissance des solutions de certaines equations di erentielles lin eaires d'ordre sup erieur avec des coe cients m eromorphes

Afficher la notice abrégée

dc.contributor.author Koucha Saddam, Housseyn
dc.contributor.author Ladjal, Farid
dc.date.accessioned 2018-12-18T09:30:03Z
dc.date.available 2018-12-18T09:30:03Z
dc.date.issued 2016
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/7185
dc.description.abstract La th eorie de la distribution des valeurs des fonctions m eromorphes fond ee par Rolf Nevanlinna a la n des ann ees vingt, joue un r^ole tr es important dans l’ etude de la croissance et l’oscillation des solutions des equations di erentielles lin eaires dans le domaine complexe. Ce m emoire consiste a etudier l’ordre et l’hyper-ordre des solutions des equations di erentielles de la forme : f(k) + (Dk􀀀1(z) + Bk􀀀1(z)eRk􀀀1(z))f(k􀀀1) + ::: + (D1(z) + B1(z)eR1(z))f +(D0(z) + A1(z)eP(z) + A2(z)eQ(z))f = 0 o u P(z); Q(z) et Rl(z) (l = 1; :::; k 􀀀 1) sont des polyn^omes de degr e n 1, Aj(z)(6 0)(j = 1; 2); Bl(z)(6 0)(l = 1; :::; k 􀀀 1) et Dm(z)(m = 0; :::; k 􀀀 1) sont des fonctions m eromorphes avec max = f (Aj)(j = 1; 2); (Bl)(l = 1; :::; k 􀀀 1); (Dm)(m = 0; :::; k 􀀀 1)g < n: On consid ere aussi le cas non homog ene. Le but de ce m emoire est d’ etudier les r esultats obtenus par ZHENG et HE [14] : en_US
dc.language.iso fr en_US
dc.relation.ispartofseries MMA129;
dc.title Croissance des solutions de certaines equations di erentielles lin eaires d'ordre sup erieur avec des coe cients m eromorphes en_US
dc.type Other en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte