Dépôt DSpace/Manakin

On the k-Riemann-Liouville fractional integral and applications

Afficher la notice abrégée

dc.contributor.author Sarikaya, Mehmet Zeki
dc.contributor.author Karaca, Aysel
dc.date.accessioned 2019-01-13T12:40:05Z
dc.date.available 2019-01-13T12:40:05Z
dc.date.issued 2014-08
dc.identifier.issn xxxx - xxxx
dc.identifier.uri http://e-biblio.univ-mosta.dz/handle/123456789/8416
dc.description.abstract Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary non - integer order. The subject is as old as differential calculus and goes back to times when G.W. Leibniz and I. Newton invented differential calculus. Fracti onal integrals and derivatives arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium. Very recently, Mubeen and Habi bullah have introduced the k - Riemann - Liouville fractional integral defined by using the - Gamma function, which is a generalization of the classical Gamma function. In this paper, we presents a new fractional integration is called k - Riemann - Liouville fractional integral, which generalizes the k - Riemann - Liouville fractional integral. Then, we prove the commutativity and the semi - group properties of the k - Riemann - Liouville frac tional integral and we give Chebyshev inequalities for k - Riemann - Liouville fractional integral. Later, using k - Riemann - Liouville fractional integral, we establish some new integral inequalities. en_US
dc.publisher Int. J. Stat. Math en_US
dc.subject Riemann - liouville fractional integral, convex function, hermite - hadamard inequality and hölder's inequality . en_US
dc.title On the k-Riemann-Liouville fractional integral and applications en_US
dc.type Article en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte