Blind submarine seismic deconvolution for long source wavelets

dc.contributor.authorBenayad, Nsiri
dc.contributor.authorThierry, Chonavel
dc.contributor.authorJean-Marc, Boucher
dc.contributor.authorHervé, Nouzé
dc.date.accessioned2019-05-29T08:54:35Z
dc.date.available2019-05-29T08:54:35Z
dc.date.issued2007-07
dc.description.abstractIn seismic deconvolution, blind approaches must be considered in situations where reflectivity sequence, source wavelet signal, and noise power level are unknown. In the presence of long source wavelets, strong interference among the reflectors contributions makes the wavelet estimation and deconvolution more complicated. In this paper, we solve this problem in a two-step approach. First, we estimate a moving average (MA) truncated version of the wavelet by means of a stochastic expectation–maximization (SEM) algorithm. Then, we use Prony’s method to improve the wavelet estimation accuracy by fitting an autoregressive moving average (ARMA) model with the initial truncated wavelet. Moreover, a solution to the wavelet initialization problem in the SEM algorithm is also proposed. Simulation and real-data experiment results show the significant improvement brought by this approach.en_US
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10328
dc.publisherIEEE Journal of Oceanic Engineeringen_US
dc.subjectBernoulli–Gaussian (BG) processen_US
dc.subjectblind deconvolutionen_US
dc.subjectGibbs sampleren_US
dc.subjectmaximum likelihood (ML)en_US
dc.subjectmaximum posterior mode (MPM)en_US
dc.subjectMonte Carlo Markov chains (MCMCs) methoden_US
dc.subjectProny algorithmen_US
dc.subjectseismic deconvolutionen_US
dc.subjectstochastic expectation–maximization (SEM)en_US
dc.titleBlind submarine seismic deconvolution for long source waveletsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3.pdf
Size:
5.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: