Growth of solutions of an n-th order linear differential equation with entire coefficients

dc.contributor.authorBelaidi, Benharrat
dc.contributor.authorHamouda, Saada
dc.date.accessioned2019-05-30T09:00:14Z
dc.date.available2019-05-30T09:00:14Z
dc.date.issued2002
dc.description.abstractWe consider a differential equation f (n)+ A n− 1 (z) f (n− 1)+…+ A 1 (z) f'+ A 0 (z) f= 0, where A 0 (z),..., A n− 1 (z) are entire functions with A 0 (z){¬≡} 0. Suppose that there exist a positive number μ, and a sequence (z j) j∈ N with lim j→+∞ z j=∞, and also two real numbers α, β (0≤ β< α) such that| A 0 (z j)|≥ e α| z j| μ and| A k (z j)|≤ e β| z j| μ as j→+∞(k= 1,..., n− 1). We prove that all solutions f {¬≡} 0 of this equation are of infinite order. This result is a generalization of one theorem of Gundersen ([3], p. 418).en_US
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10444
dc.publisherKodai Mathematical Journalen_US
dc.subjectLinear differential equationsen_US
dc.subjectentire functionsen_US
dc.subjectfinite order of growthen_US
dc.titleGrowth of solutions of an n-th order linear differential equation with entire coefficientsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25_240.pdf
Size:
72.42 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: