Complex Oscillation Theory of Differential Polynomials

dc.contributor.authorBelaïdi, Benharrat
dc.contributor.authorEl Farissi, Abdallah
dc.date.accessioned2019-06-06T10:02:19Z
dc.date.available2019-06-06T10:02:19Z
dc.date.issued2011
dc.description.abstractIn this paper, we investigate the relationship between small functions and differential polynomials gf (z) = d2f + d1f + d0f, where d0(z), d1(z), d2(z) are entire functions that are not all equal to zero with ρ(dj) < 1 (j = 0, 1, 2) generated by solutions of the differential equation f + A1(z)eazf + A0(z)ebzf = F, where a, b are complex numbers that satisfy ab(a − b) = 0 and Aj(z) ≡ 0 (j = 0, 1), F(z) ≡ 0 are entire functions such that max {ρ(Aj), j = 0, 1, ρ(F)} < 1.en_US
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10659
dc.publisherActa Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematicaen_US
dc.subjectLinear differential equationsen_US
dc.subjectdifferential polynomialsen_US
dc.subjectentire solutionsen_US
dc.subjectorder of growthen_US
dc.subjectexponent of convergence of zerosen_US
dc.subjectexponent of convergence of distinct zerosen_US
dc.titleComplex Oscillation Theory of Differential Polynomialsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ActaOlom_50-2011-1_5.pdf
Size:
220.42 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: