Some Results On the Complex Oscillation Theory Of Some Differential Polynomials

dc.contributor.authorBelaıdi, Benharrat
dc.contributor.authorEl Farissi, Abdallah
dc.date.accessioned2019-06-06T10:04:55Z
dc.date.available2019-06-06T10:04:55Z
dc.date.issued2010
dc.description.abstractIn this paper, we investigate the complex oscillation of the differential polynomial gf= d2f+ d1f+ d0f, where dj (j= 0, 1, 2) are meromorphic functions with finite iterated p− order not all equal to zero generated by solutions of the differential equation f+ A (z) f= 0, where A (z) is a transcendental meromorphic function with finite iterated p− order ρp (A)= ρ> 0.en_US
dc.identifier.issn1582-5329
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10660
dc.publisherActa Universitatis Apulensisen_US
dc.titleSome Results On the Complex Oscillation Theory Of Some Differential Polynomialsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
21_256_paper-12-22-2010.pdf
Size:
116.56 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: