Complex Oscillation of Solutions and Their Derivatives of Non-homogenous Linear Differential Equations in the Unit Disc

dc.contributor.authorBELAIDI, Benharrat
dc.contributor.authorLatreuch, Zinelaâbidine
dc.date.accessioned2019-05-30T10:03:56Z
dc.date.available2019-05-30T10:03:56Z
dc.date.issued2013-08-07
dc.description.abstractIn this paper, we study the complex oscillation of solutions and their derivatives of the differential equation f 00 + A (z) f 0 + B (z) f = F (z) , where A (z) , B (z) (6≡ 0) and F (z) (6≡ 0) are meromorphic functions of finite iterated p-order in the unit disc ∆ = {z : |z| < 1}.en_US
dc.identifier.issn2291-8639
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10465
dc.publisherInternational Journal of Analysis and Applicationsen_US
dc.subjectLinear differential equationsen_US
dc.subjectMeromorphic functionsen_US
dc.subjectIterated p−exponent of convergence of the sequence of zerosen_US
dc.subjectUnit discen_US
dc.titleComplex Oscillation of Solutions and Their Derivatives of Non-homogenous Linear Differential Equations in the Unit Discen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
38-183-1-PB.pdf
Size:
289.21 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: