Properties of higher order differential polynomials generated by solutions of complex differential equations in the unit disc

dc.contributor.authorBelaıdi, Benharrat
dc.contributor.authorLatreuch, Zinelâabidine
dc.date.accessioned2019-06-03T11:32:32Z
dc.date.available2019-06-03T11:32:32Z
dc.date.issued2014
dc.description.abstractIn the present paper we determine sharp lower bounds of the real part of the ratios of harmonic univalent meromorphic functions to their sequences of partial sums. Let H denote the class of functions f that are harmonic univalent and sense-preserving in U =; fz : jzj > 1g which are of the form f(z) = h(z) + g(z) ; where h(z) = z + 1X n=1 anz􀀀n ; g(z) = 1X n=1 bnz􀀀n. Now, we de ne the sequences of partial sums of functions f of the form fs(z) = z + Xs n=1 anz􀀀n + g(z); e fr(z) = g(z) + Xr n=1 bnz􀀀n; fs;r(z) = z + Xs n=1 anz􀀀n + Xr n=1 bnz􀀀n: In the present paper we will determine sharp lower bounds for Re n f(z) fs(z) o ; Re n fs(z) f(z) o ; Re n f(z) e fr(z) o ; Re n e fr(z) f(z) o ; Re n f(z) fs;r(z) o , Re n fs;r(z) f(z) o :en_US
dc.identifier.issn2300-9926
dc.identifier.urihttp://e-biblio.univ-mosta.dz/handle/123456789/10639
dc.publisherJ. Math. Applen_US
dc.subjectHarmonic functionen_US
dc.subjectmeromorphicen_US
dc.subjectunivalenten_US
dc.subjectsense-preservingen_US
dc.titleProperties of higher order differential polynomials generated by solutions of complex differential equations in the unit discen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jma_37_2014_pelna_wersja(1).pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: